(19)
(11)EP 2 951 982 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.10.2019 Bulletin 2019/41

(21)Application number: 13873917.2

(22)Date of filing:  29.01.2013
(51)International Patent Classification (IPC): 
B41J 2/47(2006.01)
H04N 1/113(2006.01)
G02B 26/12(2006.01)
H04N 1/028(2006.01)
(86)International application number:
PCT/US2013/023629
(87)International publication number:
WO 2014/120122 (07.08.2014 Gazette  2014/32)

(54)

SINGLE-FACET SPINDLE IMPLEMENTATION FOR A LASER SCANNER SYSTEM

EINZELFLÄCHEN-SPINDELIMPLEMENTIERUNG FÜR EIN LASERABTASTERSYSTEM

MISE EN OEUVRE D'UNE BROCHE À UNE SEULE FACETTE POUR UN SYSTÈME DE BALAYAGE AU LASER


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
09.12.2015 Bulletin 2015/50

(73)Proprietor: Hewlett-Packard Development Company, L.P.
Spring TX 77389 (US)

(72)Inventors:
  • IVES, Thomas Wayne
    Boise, Idaho 83714-0021 (US)
  • NELSON, Terry M.
    Boise, Idaho 83714-0024 (US)
  • HIRST, Bartley Mark
    Boise, Idaho 83714-0021 (US)

(74)Representative: EIP 
EIP Europe LLP Fairfax House 15 Fulwood Place
London WC1V 6HU
London WC1V 6HU (GB)


(56)References cited: : 
US-A- 4 908 951
US-A1- 2001 046 712
US-A1- 2010 301 232
US-B1- 6 382 514
US-A- 4 939 356
US-A1- 2007 049 476
US-A1- 2011 216 377
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] Laser scanner systems can typically implement a pulsed laser signal that is reflected from facets of a rotating spindle to generate a latent image that corresponds to a scanned image. Typical laser scanner spindles can include a plurality of facets that are each mirrored to reflect the pulsed laser signal at each respective angle of the spindle as it is rotated. Relative errors in the facets of the spindle can result in print defects, such as laser scanner moire. For example, slight variations in positioning, orientation, and flatness of the facets relative to each other can result in such print and scan defects. These print and/or scan defects can thus negatively affect the quality of the scanning of images. Such print and/or scan defects can be even more pronounced in implementations that include more than one color pane.

    [0002] a US2011/216377 discloses systems for reducing the degradation of image quality due to banding in an image processing system by detection of both integrated intensity and peak intensity of a laser beam reflected from a polygon mirror facet of a motor polygon assembly.

    [0003] b US4908951 discloses a multi-coordinate measuring and testing machine in which a scanning or sensing system comprises a mechanical sensing head or probe with at least one stylus and/or a video scanner and/or a laser scanner.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0004] 

    FIG. 1 illustrates an example of a laser scanner system.

    FIG. 2 illustrates an example of a laser scanner spindle.

    FIG. 3 illustrates an example of a spindle assembly.

    FIG. 4 illustrates another example of a laser scanner spindle.


    DETAILED DESCRIPTION



    [0005] FIG. 1 illustrates an example of a laser scanner system 10. The laser scanner system 10 can be implemented in a variety of laser scanning and/or printing devices. The laser scanner system 10 includes a scan controller 12 that is configured to control a scanner laser 13 for each scan operation. The scanner laser 13 that is configured to generate an optical scanning beam OPTIMG. The scanner laser 13 can provide the optical scanning beam OPTIMG as a pulsed laser signal at a power that is sufficient for the creation of a latent image based on the operation of the scan controller 12, as described in greater detail herein.

    [0006] The laser scanner system 10 also includes a spindle assembly 14 that includes a laser scanner spindle 16. The optical scanning beam OPTIMG is provided to the laser scanner spindle 16 that is rotated by additional components in the spindle assembly 14. For example, the spindle assembly 14 can include a motor to rotate the laser scanner spindle 16 and a bearing system to couple the laser scanner spindle 16 to a rotor associated with the motor. The laser controller 12 can be configured to control the scanner laser 13 in a manner in which the optical scanning beam OPTIMG is reflected from only a single facet of the laser scanner spindle 16 during a given scan operation to generate the latent image. In other words, the optical scanning beam OPTIMG is reflected only from the single facet of the laser scanner spindle 16 during a given scan operation. As described herein, the term "scan operation" refers to the creation of a single latent image using the laser scanner system 10. As one example, the laser scanner spindle 16 can include only the single facet, such that the single facet is implemented for reflecting the optical scanning beam OPTIMG. As another example, the laser scanner spindle 16 can include a plurality of facets, but for a given scan operation, the optical scanning beam OPTIMG is reflected from only a single one of the plurality of facets. As yet an example, the optical scanning beam OPTIMG can be reflected from the single facet at each full rotation of the laser scanner spindle 16.

    [0007] The laser scanner spindle 16 can thus reflect the incident optical scanning beam OPTIMG only during a specific active angle of rotation of the laser scanner spindle 16 at which the optical scanning beam OPTIMG can be incident on the single facet based on the scan controller 12. The reflected optical scanning beam OPTIMG is provided from the laser scanner spindle 16 to a beam detector 18 that includes a plurality of photodetectors 20 that collectively form an optical photoconductor (OPC) system. As an example, the photodetectors 20 can be configured as phototransistors and/or as PIN-type photodiodes. The OPC system can thus generate a latent image for each scan line associated with the optical scanning beam OPTIMG.

    [0008] Slight variations in positioning, orientation, and flatness of multiple facets relative to each other for a typical laser spindle can result in print and scan defects, such as moiré. For example, typical laser scanner systems implement a spindle with more than one facet (e.g., ten facets). Eccentricity of the polygon mirror relative to a center axis of the rotor of the motor in a typical laser spindle can be a primary source of scanner moiré, along with other contributing factors such as mirror-to-mirror grinding angle errors. However, by implementing only a single facet on the laser scanner spindle 16, the laser scanner system 10 can provide the latent image in a manner that results in substantially no print and/or scan defects. Because scan and/or print defects can result from variations in positioning, orientation, and flatness of one facet relative to other facets, implementing a single facet in a non-polygon mirror arrangement alleviates such defects based on the consistent and repeatable performance of the reflection from the single facet. Accordingly, laser scanner moiré is substantially mitigated in implementing the laser scanner system 10.

    [0009] In addition, based on implementation of certain parameters for the scanner laser 13, as well as the spindle motor and bearing system as part of the spindle assembly 14, the laser scanner system 10 can provide scanning capability at speeds that are at least as fast as typical laser scanner systems that implement spindles that include more than one facet (e.g., ten facets). Accordingly, the laser scanner system 10 can provide scanning capability that is substantially free of defects, such as scanning moiré, while maintaining a rapid scanning speed. Additionally, because the laser scanner spindle 16 can include only a single facet, as opposed to a larger number of facets for typical laser spindles, the laser scanner spindle 16 can be substantially reduced in size relative to typical laser spindles, as described in greater detail herein. Furthermore, by eliminating a polygon mirror arrangement in the laser scanner system 10, air drag on sharp edges of the polygon is eliminated, thus substantially reducing acoustic noise that can be a nuisance in office environments.

    [0010] FIG. 2 illustrates an example of a laser scanner spindle 50. The laser scanner spindle 50 is demonstrated in the example of FIG. 2 in three plan views, demonstrated as 52, 54, and 56, respectively, with X, Y, and Z axial designations. The laser scanner spindle 50 can correspond to the laser scanner spindle 16 in the spindle assembly 14 in the example of FIG. 1. Therefore, reference is to be made to the example of FIG. 1 in the following description of the example of FIG. 2.

    [0011] The laser scanner spindle 50 is substantially cylindrical in shape, with a defined outer diameter "D" of the cylindrical shape, and extends along an axis, demonstrated as the Y-axis in the example of FIG. 2, between a first end 58 and a second end 60. As an example, the outer diameter "D" can be substantially less than typical laser spindles (e.g., one-tenth the diameter of typical laser spindles). For example, the outer diameter "D" of the laser scanner spindle 50 can be less than 3mm. As described herein, "substantially cylindrical" can be provided to mean cylindrical to have a circular cross-section with respect to the Y-axis, or can be used to mean prismatic with respect to the shape of the laser scanner spindle 50, such as to have any of a variety of cross-sectional shapes (e.g., hexagon, octagon, etc.) having a centroid located at the Y-axis. The laser scanner spindle 50 includes a first substantially planar surface 62 that extends along the axial length of the laser scanner spindle 50. The first substantially planar surface 62 is demonstrated in the example of FIG. 2 as being centered along the length of the laser scanner spindle 50. The first substantially planar surface 62 is demonstrated as being substantially recessed with respect to the outer diameter, such that the first substantially planar surface 62 extends radially inward from the outer diameter, with X-axis edges of the first substantially planar surface 62 intersecting the outer diameter of the laser scanner spindle 50. The first substantially planar surface 62 can be mirrored, such that the first substantially planar surface 62 corresponds to the single facet to reflect the optical scanning beam OPTIMG.

    [0012] The laser scanner spindle 50 also includes a second substantially planar surface 64 that extends along the axial length of the laser scanner spindle 50. Similar to the first substantially planar surface 62, the second substantially planar surface 64 is demonstrated in the example of FIG. 2 as being centered along the length of the laser scanner spindle 50. The second substantially planar surface 64 is demonstrated as being substantially recessed with respect to the outer diameter, such that the second substantially planar surface 64 extends radially inward from the outer diameter, with X-axis edges of the second substantially planar surface 64 intersecting the outer diameter of the laser scanner spindle 50. In the example of FIG. 2, the second substantially planar surface 64 is congruent to the first substantially planar surface 62, and is disposed opposite the first substantially planar surface 64 with respect to the Y-axis.

    [0013] As an example, the second substantially planar surface 64 may not be mirrored, such that only the first substantially planar surface 62 is mirrored. Therefore, the laser scanner spindle 50 could include only a single surface that could operate as the single facet (e.g., the first substantially planar surface 62). As another example, the second substantially planar surface 64 could also be mirrored, such as for ease in fabrication and/or installation. Therefore, either of the first and second substantially planar surfaces 62 and 64 could correspond to the single facet, such that the laser scanner system 10 is configured to reflect the optical scanning beam OPTIMG from only one of the first and second substantially planar surfaces 62 and 64 for a given scan operation to generate the latent image. The one of the first and second substantially planar surfaces 62 and 64 that operates as the single facet from which the optical scanning beam OPTIMG is reflected can be the same for every scan operation or could be arbitrary from one scan operation to the next. Regardless, the second substantially planar surface 64 can be provided on the laser scanner spindle 50 to balance the laser scanner spindle 50 for providing stability as it rotates at high speed, such as at least 100,000 RPM (e.g., 200,000 RPM). In addition, because the first and second substantially planar surfaces 62 and 64 are recessed (e.g., extending radially inward from the outer diameter), hoop stresses on the laser scanner spindle 50 can be significantly reduced to avoid shattering of the laser scanner spindle 50 at the high rotational speed.

    [0014] FIG. 3 illustrates an example of a spindle assembly 100. The spindle assembly 100 can correspond to the spindle assembly 14 in the example of FIG. 1. Therefore, reference is to be made to the example of FIG. 1 in the following description of the example of FIG. 3.

    [0015] The spindle assembly 100 includes a laser scanner spindle 102, which can correspond to the laser scanner spindle 50 in the example of FIG. 2. The spindle assembly 100 also includes a spindle motor 104 and a spindle bearing system 106. The spindle motor 104 can be configured to rotate the laser scanner spindle 102 at rapid speeds. For example, the spindle motor 104 can provide sufficient rotational speeds to achieve scanning speeds that are substantially comparable to typical laser spindles having a plurality of facets (e.g., ten facets). As an example, to achieve a scanning speed that is approximately comparable to a typical laser spindle that includes ten facets and that rotates at a speed of approximately 20,000 RPM, the spindle motor 104 can be configured to rotate the laser scanner spindle 102 at ten times the speed of the typical laser spindle (e.g., 200,000 RPM). The spindle motor 104 can be configured, for example, as a switched two-phase DC induction motor, which can be a brushless motor, that includes an outside stator and an inside rotor configuration. With such a configuration, the spindle motor 104 can achieve the rotation speed to rotate the laser scanner spindle 102 to provide scanning speeds that are comparable to typical laser scanner systems.

    [0016] The spindle bearing system 106 is configured to couple the laser scanner spindle 102 to the spindle motor 104. Due to the substantially reduced diameter of the laser scanner spindle 102 relative to typical laser spindles, the spindle bearing system 106 can be implemented in a variety of configurations to achieve sufficient coupling at the high rotational speeds of the spindle motor 104. For example, the spindle bearing system 106 can be configured as an air bearing for both a radial bearing and for a thrust bearing at speed. As another example, the spindle bearing system 106 can also include a jewel bearing on which the laser scanner spindle 102 rotates prior to achieving critical speed for thrust air bearing launch. As yet another example, the spindle bearing system 106 can also or alternatively include a magnetic levitation bearing system. Accordingly, at the high rotational speeds provided by the spindle motor 104, the air and/or magnetic levitation bearing system in the spindle assembly 100 can support rotation of the laser scanner spindle 102 with substantially zero friction and wear, and provide a natural dampening characteristic.

    [0017] FIG. 4 illustrates another example of a laser scanner spindle 150. The laser scanner spindle 150 can correspond to the laser scanner spindles 16, 50, and 102 in the examples of FIGS. 1-3. Therefore, reference is to be made to the examples of FIGS. 1-3 in the following description of the example of FIG. 4.

    [0018] The laser scanner spindle 150 is provided in the example of FIG. 4 in three separate views, demonstrated in the example of FIG. 4 as 152, 154, and 156. In each of the views, the laser scanner spindle 150 is demonstrated as rotating about the Y-axis, demonstrated by the arrow 158, such as based on the rotation of the spindle motor 104 and the coupling of the laser scanner spindle 150 to the spindle motor 104 based on the spindle bearing system 106. The laser scanner spindle 150 is demonstrated as including a first substantially planar surface 160 that extends along the axial length of the laser scanner spindle 150 and which extends radially inward from the outer diameter of the laser scanner spindle 150. The first substantially planar surface 160 can correspond to the single facet of the laser scanner spindle 150. Therefore, in the example of FIG. 4, the optical scanning beam OPTIMG is provided onto the first substantially planar surface 160 as it rotates about the Y-axis. As an example, the optical scanning beam OPTIMG can be generated by the scanner laser 13 in the example of FIG. 1. Thus, the scanner laser 13 can generate the optical scanning beam OPTIMG in pulses that are substantially timed with an active reflection angle θ of the first substantially planar surface 160 for the optical scanning beam OPTIMG to be incident on the first substantially planar surface 160. Accordingly, the optical scanning beam OPTIMG can be reflected from the first substantially planar surface 160 across the active angle of reflection θ of the laser scanner spindle 150, as provided generally at 162.

    [0019] In the first view 152, the laser scanner spindle 150 is demonstrated as rotating through the angle θ, such that in the first view 152, the laser scanner spindle 150 rotates from 0º to θº. In the second view 154, the laser scanner spindle 150 is demonstrated as beginning its rotation at 180º, such that in the second view 154, the laser scanner spindle 150 rotates from 180º to (180+θ)º. In the second view 154, the laser scanner spindle 150 is demonstrated as including a second substantially planar surface 164. The second substantially planar surface 164 can be congruent to the first substantially planar surface 160 and can be provided on the laser scanner spindle 50 to balance the laser scanner spindle 150 for providing stability as it rotates at high speed (e.g., 200,000 RPM). The second substantially planar surface 164 can be mirrored to correspond to a second facet, or may not be mirrored. However, in the example of the second substantially planar surface 164 being mirrored, the second substantially planar surface 164 is not implemented as a facet to reflect the optical scanning beam OPTIMG in the example of FIG. 4.

    [0020] In the third view 156, the laser scanner spindle 150 is demonstrated as beginning its rotation at 360º, such that in the third view 156, the laser scanner spindle 150 rotates from 360º to (360+θ)º. Therefore, because the laser scanner spindle 150 has performed a full rotation, the optical scanning beam OPTIMG can again be reflected from the first substantially planar surface 160 across the active angle of reflection θ of the laser scanner spindle 150, as provided generally at 162. Accordingly, the laser scanner spindle 150 implements only a single facet to reflect the optical scanning beam OPTIMG for the given scan operation, such as at each full rotation of the laser scanner spindle 150, to substantially mitigate scanning and/or printing defects.

    [0021] Due to the substantially higher rotational speed of the laser scanner spindle 150, the scanner laser 13 can be configured to meet the requirements necessary for achieving a scanning speed that is substantially comparable to typical laser scanner systems. In the example provided previously with respect to FIG. 3, a typical ten-facet laser spindle can rotate at a speed of approximately 20,000 RPM. Thus, to achieve a comparable scanning speed, the spindle motor 104 can rotate the laser scanner spindle 150 at approximately 200,000 RPM (i.e., ten times the typical ten-facet laser spindle). The scanner laser 13 can thus be configured to provide the optical scanning beam OPTIMG at pulses that are approximately ten times that necessary for the typical ten-facet laser spindle, which can be achieved by a variety of different types of lasers.

    [0022] In addition, the rapid rotation rate of the laser scanner spindle 150 results in the energy of the optical scanning beam OPTIMG being incident on the photodetectors 20 is substantially reduced relative to typical laser scanner systems (e.g., ten times less in the example of the ten-facet spindle). Therefore, the scanner laser 13 can be configured to generate the optical scanning beam OPTIMG at higher power (e.g., ten times the power than in typical laser scanner systems) to achieve the comparable and necessary amount of power to generate the respective latent image. However, because the scanner laser 13 provides the optical scanning beam OPTIMG less often than in typical laser scanner systems (e.g., one-tenth the time) based on the reduced number of facets and increased rotation speed, the average power consumed by the scanner laser 13 can be approximately the same as a scanner laser in a typical laser scanner system to achieve approximately the same scanning speed. As another example, the laser scanner system can include more than just a single laser (e.g., the scanner laser 13) for each color pane. By implementing multiple lasers per color pane, the power of each of the lasers can be substantially reduced, as can the rotational speed of the laser scanner spindle 150.

    [0023] Furthermore, as described previously, because the laser scanner spindle 150 includes only the first substantially planar surface 160, as opposed to a larger number of facets for typical laser spindles, the laser scanner spindle 150 can be substantially reduced in size relative to typical laser spindles. For example, the laser scanner spindle 150 can have an outer diameter that is approximately one-tenth the diameter of a typical ten-facet laser spindle. Therefore, based on the relatively reduced diameter of the laser scanner spindle 150 relative to a typical laser spindle, the active angle of reflection θ of the optical scanning beam area can be approximately the same as for a typical laser spindle (e.g., having ten facets). In other words, the reduced diameter of the laser scanner spindle 150 relative to a typical laser spindle, along with the intersection of the substantially planar surface with the outer diameter of the laser scanner spindle 150, can result in an approximately equal proportion of the outer diameter that is within the active angle of reflection θ. As a result, the number of addressable pixels that can be provided by the optical scanning beam OPTIMG can be approximately the same as for typical laser scanner systems. Accordingly, the reduced size of the laser scanner spindle 150 relative to typical laser spindles does not compromise performance of the laser scanner system 10.


    Claims

    1. A laser scanner system (10) comprising:

    a scanner laser (13) to generate an optical scanning beam (OPTIMG);

    a spindle assembly (14, 100) comprising a spindle (16, 50) that extends along an axis and reflects the optical scanning beam (OPTIMG), wherein the spindle (16, 50) is arranged as a substantially cylindrical spindle having a substantially planar surface (62) that extends along the axial length of the spindle (16, 50), the substantially planar surface (16) being mirrored to correspond to a single facet to reflect the optical scanning beam (OPTIMG);

    a beam detector (18) to receive the reflected optical scanning beam (OPTIMG) from the single facet and to indicate when to generate a latent image corresponding to an image based on the optical scanning beam (OPTIMG) for a given scan operation; and

    a scan controller (12) to control the scanner laser (13) such that the optical scanning beam (OPTIMG) is reflected from only the single facet of the spindle (16, 50) during the given scan operation.


     
    2. The system (10) of claim 1, wherein the substantially planar surface (62) extends radially inward with respect to an outer diameter (D) of the substantially cylindrical spindle (16, 50).
     
    3. The system (10) of claim 1, wherein the substantially planar surface (62) is a first substantially planar surface (62), the spindle (16, 50) further comprising a second substantially planar surface (64), the first and second substantially planar surfaces (62, 64) being disposed opposite each other with respect to the axis;
    optionally wherein each of the first and second substantially planar surfaces (62, 64) are substantially congruent and are arranged as substantially centered between a first end (58) and a second end (60) of the spindle (16, 50).
     
    4. The system (10) of claim 1, wherein the spindle assembly (14, 100) comprises a spindle motor (104) to rotate the spindle (50), the spindle motor (104) being configured as a two-phase DC induction motor comprising an outside stator and an inside rotor;
    optionally wherein the spindle motor (104) is configured to rotate the spindle (16, 50) at a speed of at least 100,000 RPM.
     
    5. The system (10) of claim 1, wherein the spindle assembly (14, 100) comprises a spindle bearing system (106) comprising one of an air bearing and a magnetic levitation bearing to couple the spindle (16, 50) to a rotor associated with a spindle motor (104).
     
    6. The system (10) of claim 1, wherein the substantially planar surface (62)extends radially inward with respect to an outer diameter (D) of the substantially cylindrical spindle (16, 50),; and the system (10) comprises:
    a spindle motor (104) to rotate the spindle (16, 50); and
    a spindle bearing system (102) to couple the spindle (16, 50) to a rotor associated with the spindle motor (104).
     
    7. The system (10) of claim 6, wherein the substantially planar surface is a first substantially planar surface (62), the spindle (16, 50) further comprising a second substantially planar surface (64), the first and second substantially planar surfaces (62, 64) being congruent and disposed opposite each other with respect to the axis.
     
    8. The system (10) of claim 6, wherein the spindle motor (104) is configured as a two-phase DC induction motor comprising an outside stator and an inside rotor.
     
    9. The system of claim 6, wherein the spindle bearing system (106) comprises one of an air bearing and a magnetic levitation bearing.
     


    Ansprüche

    1. Laserabstastersystem (10), Folgendes umfassend:

    einen Abtasterlaser (13), um einen optischen Abtaststrahl (OPTIMG) zu erzeugen;

    eine Spindelanordnung (14, 100), die eine Spindel (16, 50) umfasst, die sich entlang einer Achse erstreckt und den optischen Abtaststrahl (OPTIMG) reflektiert, wobei die Spindel (16, 50) als eine im Wesentlichen zylindrische Spindel mit einer im Wesentlichen ebenen Oberfläche (62) angeordnet ist, die sich entlang der axialen Länge der Spindel (16, 50) erstreckt, wobei die im Wesentlichen ebene Oberfläche (16) gespiegelt wird, um einer einzigen Facette zu entsprechen, um den optischen Abtaststrahl (OPTIMG) zu reflektieren;

    einen Strahldetektor (18), um den reflektierten optischen Abtaststrahl (OPTIMG) von der einzelnen Facette zu empfangen und um anzuzeigen, wann ein latentes Bild erzeugt werden soll, das einem Bild entspricht, das auf dem optischen Abtaststrahl (OPTIMG) basiert, für einen gegebenen Abtastvorgang; und

    einen Abtastcontroller (12), um den Abtasterlaser (13) so zu steuern, dass der optische Abtaststrahl (OPTIMG) während des gegebenen Abtastungsvorgangs nur von der einzelnen Facette der Spindel (16, 50) reflektiert wird.


     
    2. System (10) nach Anspruch 1, wobei sich die im Wesentlichen ebene Oberfläche (62) in Bezug auf einen Außendurchmesser (D) der im Wesentlichen zylindrischen Spindel (16, 50) radial nach innen erstreckt.
     
    3. System (10) nach Anspruch 1, wobei die im Wesentlichen ebene Oberfläche (62) eine erste im Wesentlichen ebene Oberfläche (62) ist, die Spindel (16, 50) ferner eine zweite im Wesentlichen ebene Oberfläche (64) umfasst, die erste und die zweite im Wesentlichen ebenen Oberflächen (62, 64) in Bezug auf die Achse einander gegenüberliegend angeordnet sind;
    wobei optional beide der ersten und der zweiten im Wesentlichen ebenen Oberflächen (62, 64) im Wesentlichen kongruent sind und als im Wesentlichen zentriert zwischen einem ersten Ende (58) und einem zweiten Ende (60) der Spindel (16, 50) angeordnet sind.
     
    4. System (10) nach Anspruch 1, wobei die Spindelanordnung (14, 100) einen Spindelmotor (104) umfasst, um die Spindel (50) zu drehen, wobei der Spindelmotor (104) als zweiphasiger Gleichstrom-Induktionsmotor konfiguriert ist, der einen äußeren Stator und einen inneren Rotor umfasst;
    wobei der Spindelmotor (104) optional dazu konfiguriert ist, die Spindel (16, 50) mit einer Geschwindigkeit von mindestens 100.000 U/min zu drehen.
     
    5. System (10) nach Anspruch 1, wobei die Spindelanordnung (14, 100) ein Spindellagersystem (106) umfasst, das entweder ein Luftlager oder ein Magnetschwebelager umfasst, um die Spindel (16, 50) mit einem Rotor zu koppeln, der einem Spindelmotor (104) zugeordnet ist.
     
    6. System (10) nach Anspruch 1, wobei sich die im Wesentlichen ebene Oberfläche (62) in Bezug auf einen Außendurchmesser (D) der im Wesentlichen zylindrischen Spindel (16, 50) radial nach innen erstreckt; und das System (10) Folgendes umfasst:

    einen Spindelmotor (104), um die Spindel (16, 50) zu drehen; und

    ein Spindellagersystem (102), um die Spindel (16, 50) mit einem Rotor zu koppeln, der dem Spindelmotor (104) zugeordnet ist.


     
    7. System (10) nach Anspruch 6, wobei die im Wesentlichen ebene Oberfläche eine erste im Wesentlichen ebene Oberfläche (62) ist, die Spindel (16, 50) ferner eine zweite im Wesentlichen ebene Oberfläche (64) umfasst, die erste und die zweite im Wesentlichen ebenen Oberflächen (62, 64) kongruent und in Bezug auf die Achse einander gegenüberliegend angeordnet sind.
     
    8. System (10) nach Anspruch 6, wobei der Spindelmotor (104) als zweiphasiger Gleichstrom-Induktionsmotor konfiguriert ist, der einen äußeren Stator und einen inneren Rotor umfasst.
     
    9. System nach Anspruch 6, wobei das Spindellagersystem (106) entweder ein Luftlager oder ein Magnetschwebelager umfasst.
     


    Revendications

    1. Système de balayage laser (10) comprenant :

    un laser de balayage (13) pour générer un faisceau de balayage optique (OPTIMG) ;

    un ensemble de broches (14, 100) comprenant une broche (16, 50) qui s'étend le long d'un axe et réfléchit le faisceau de balayage optique (OPTIMG), la broche (16, 50) étant agencée comme une broche sensiblement cylindrique ayant une surface sensiblement plane (62) qui s'étend sur toute la longueur axiale de la broche (16, 50), la surface sensiblement plane (16) étant réfléchie pour correspondre à une facette unique pour refléter le faisceau de balayage optique (OPTIMG) ;

    un détecteur de faisceau (18) pour recevoir le faisceau de balayage optique réfléchi (OPTIMG) provenant de la facette unique et pour indiquer quand générer une image latente correspondant à une image basée sur le faisceau de balayage optique (OPTIMG) pour une opération de balayage donnée ; et

    un dispositif de commande de balayage (12) pour commander le laser de balayage (13) de sorte que le faisceau de balayage optique (OPTIMG) est uniquement réfléchi par la facette unique de la broche (16, 50) pendant l'opération de balayage donnée.


     
    2. Système (10) selon la revendication 1, dans lequel la surface sensiblement plane (62) s'étend radialement vers l'intérieur par rapport à un diamètre extérieur (D) de la broche sensiblement cylindrique (16, 50).
     
    3. Système (10) selon la revendication 1, dans lequel la surface sensiblement plane (62) est une première surface sensiblement plane (62), la broche (16, 50) comprenant en outre une seconde surface sensiblement plane (64), les première et seconde surfaces sensiblement planes (62, 64) étant disposées en face l'une de l'autre par rapport à l'axe ;
    éventuellement chacune des première et seconde surfaces sensiblement planes (62, 64) étant sensiblement congruentes et étant disposées de manière sensiblement centrées entre une première extrémité (58) et une seconde extrémité (60) de la broche (16, 50).
     
    4. Système (10) selon la revendication 1, dans lequel l'ensemble de broche (14, 100) comprend un moteur à broche (104) pour faire tourner la broche (50), le moteur à broche (104) étant configuré comme un moteur à induction à courant continu à deux phases comprenant un stator extérieur et un rotor intérieur ;
    éventuellement le moteur à broche (104) étant configuré pour faire tourner la broche (16, 50) à une vitesse d'au moins 100 000 tr/min.
     
    5. Système (10) selon la revendication 1, dans lequel l'ensemble de broche (14, 100) comprend un système de palier de broche (106) comprenant l'un d'un palier à air et d'un palier à lévitation magnétique pour coupler la broche (16, 50) à un rotor associé à un moteur à broche (104).
     
    6. Système (10) selon la revendication 1, dans lequel la surface sensiblement plane (62) s'étend radialement vers l'intérieur par rapport à un diamètre extérieur (D) de la broche sensiblement cylindrique (16, 50) ; et
    le système (10) comprend :

    un moteur à broche (104) pour faire tourner la broche (16, 50) ; et

    un système de palier de broche (102) pour coupler la broche (16, 50) à un rotor associé au moteur à broche (104).


     
    7. Système (10) selon la revendication 6, dans lequel la surface sensiblement plane (62) est une première surface sensiblement plane (62), la broche (16, 50) comprenant en outre une seconde surface sensiblement plane (64), les première et seconde surfaces sensiblement planes (62, 64) étant congruentes et disposées en face l'une de l'autre par rapport à l'axe.
     
    8. Système (10) selon la revendication 6, dans lequel le moteur à broche (104) est configuré comme un moteur à induction à courant continu à deux phases comprenant un stator extérieur et un rotor intérieur.
     
    9. Système selon la revendication 6, dans lequel le système de palier de broche (106) comprend l'un d'un palier à air et d'un palier à lévitation magnétique.
     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description