(19)
(11)EP 2 952 910 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
23.09.2020 Bulletin 2020/39

(21)Application number: 15168873.6

(22)Date of filing:  22.05.2015
(51)International Patent Classification (IPC): 
G01R 13/02(2006.01)

(54)

DYNAMIC MASK TESTING

DYNAMISCHER MASKENTEST

VÉRIFICATION DE MASQUE DYNAMIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 22.05.2014 US 201414285175

(43)Date of publication of application:
09.12.2015 Bulletin 2015/50

(73)Proprietor: Tektronix, Inc.
Beaverton, Oregon 97077-0001 (US)

(72)Inventor:
  • Alley, James
    Moro, OR 97039 (US)

(74)Representative: HGF 
1 City Walk
Leeds LS11 9DX
Leeds LS11 9DX (GB)


(56)References cited: : 
EP-A2- 2 733 495
US-A1- 2006 025 947
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] This invention pertains to waveform analysis, and more particularly to detecting anomalies in waveform acquisitions.

    BACKGROUND



    [0002] Modern oscilloscopes have the ability to detect anomalies in waveforms using a boundary mask. The boundary mask defines an area within which the waveform is expected to reside. This anomaly detection is accomplished on a pixel by pixel basis. If pixels can be identified as violation pixels in a display pixel plane (a boundary mask), when a digitized signal is presented in two dimensions, it can be determined whether the shape is or is not valid. When the waveform crosses the boundary of the mask, an anomaly can be detected, and any desired course of action can be taken: the oscilloscope can pause waveform acquisition, can alert the user, or can take other action, as desired.

    [0003] But current oscilloscopes only use one boundary mask relative to all waveform acquisitions: the boundary mask has a static shape. That is, the boundary mask represents the limits of all possible waveform acquisitions. While using a single static boundary mask ensures that any violations detected by the oscilloscope are true anomalies, a single static boundary mask also means that some anomalies in the waveform might not be detected using the static boundary mask.

    [0004] Consider, for example, the waveform acquisitions shown in FIG. 1, which shows two acquisitions of a waveform over time. In acquisition 105, the waveform is generally uniform, except for a peak at frequency 110. In acquisition 115, the waveform is generally uniform, except for a peak at frequency 120. Boundary mask 125 represents a single static boundary mask that determines where anomalies might occur over the entire acquisition of the waveform, and can be applied to both acquisitions 105 and 115.

    [0005] But if acquisition 105 were to have a peak at frequency 120, this would be an anomaly: a departure from the expected form of the wave at the time of acquisition. Similarly, a peak at frequency 110 in acquisition 115 would be an anomaly. But in each case, because these anomalous peaks might not cross the edge of boundary mask 125, the oscilloscope would not detect the anomaly and take any appropriate action.

    [0006] US 2006/025947 relates to a spectrogram mask trigger that is generated in response to multiple or complex frequency events within a signal being monitored.

    [0007] EP 2 733 495 relates to combinatorial mask triggering in the time or frequency domain.

    SUMMARY OF THE INVENTION



    [0008] There is provided a system as set out in claim 1 and a method as set out in claim 8.

    [0009] Embodiments of the claimed invention include a system for using dynamic boundary masks. An analog-to-digital converter (ADC) can receive and digitize a waveform, and acquisitions of the waveform can be stored in memory. The memory can also store two or more boundary masks, along with timing information for each boundary mask. A rasterizer can draw acquisitions of the digitized waveform on a display. A processor can be coupled to the memory and the rasterizer, and can signal the rasterizer when to change to a new boundary mask. The processor can determine when the timing interval associated with a boundary mask is over and select another boundary mask to use with further acquisitions of the digitized waveform.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0010] 

    FIG. 1 shows a static boundary mask as used with acquisitions of a waveform in an oscilloscope in the prior art.

    FIG. 2 shows dynamic boundary masks used with the acquisitions of the waveform of FIG. 1.

    FIG. 3 shows one of the dynamic boundary masks of FIG. 2 including multiple segments.

    FIG. 4 shows a hardware arrangement to store and utilize dynamic boundary masks as shown in FIGs. 2 and 3, according to an embodiment of the invention.

    FIG. 5 shows how dynamic boundary masks can be stored in the memory of FIG. 4, according to one embodiment of the invention.

    FIG. 6 shows how dynamic boundary masks can be stored in the memory of FIG. 4, according to another embodiment of the invention.

    FIGs. 7A-7D show a flowchart of a procedure for using dynamic masks in a device, according to an embodiment of the invention.

    FIGs. 8A-8B show a flowchart of a procedure for generating dynamic masks from a known valid waveform, according to an embodiment of the invention.


    DETAILED DESCRIPTION



    [0011] In contrast to FIG .1, FIG. 2 shows dynamic boundary masks (also called just "masks" herein: the term "masks" is intended to mean the same thing as "boundary mask") used with the acquisitions of the waveform of FIG. 1. In FIG. 2, the same waveform, with the same acquisitions 105 and 115, is shown. But instead of using a single static boundary mask, different boundary masks 205 and 210 are used with acquisitions 105 and 115. For example, boundary mask 205 roughly follows acquisition 105, and boundary mask 210 roughly follows acquisition 115. This means that if frequency 120 were to have a peak in acquisition 105, the peak could be a detected anomaly, because it might violate boundary mask 205. Similarly, if frequency 110 were to have a peak in acquisition 115, the peak could be a detected anomaly, because it might violate boundary mask 210. All of this means that fewer anomalies should be missed by the boundary masks.

    [0012] FIG. 2 shows two boundary masks 205 and 210. But it should be understood that any number of boundary masks can be used with a given waveform: the only effective limit is the amount of memory in the device that can be used to store boundary masks. Boundary masks, such as boundary masks 205 and 210, are most useful when the expected waveform shape is known relative to time. It is important to know what boundary mask to use relative to any given waveform acquisition. Put another way, it is important that the device performing the waveform analysis can determine when to transition from one boundary mask to another. Therefore, boundary masks 205 and 210 are not necessarily useful when analyzing a random waveform, where the expected waveform shape relative to time is not known.

    [0013] While FIG. 2 shows the boundary masks used with each acquisition as having one contiguous shape, an individual boundary mask can include multiple segments. For example, FIG. 3 shows one of the dynamic boundary masks of FIG. 2 including multiple segments. In FIG. 3, the boundary mask includes two segments: segment 205 and segment 305. In this manner, multiple boundaries can be applied to a waveform acquisition such as acquisition 105. While FIG. 3 shows only two segments 205 and 305 in the boundary mask, a boundary mask can include any number of segments: for example, seven segments. Furthermore, while segments 205 and 305 have square corners (i.e., 90° corners) and lines that are straight and run parallel to the axes of the waveform, segments could include curved lines, lines that are not parallel to either axis of the graph, and corners that are not square. For the remainder of this document, the term "boundary mask" is intended to describe a boundary mask with any number of segments.

    [0014] FIG. 4 shows a hardware arrangement to store and utilize dynamic boundary masks as shown in FIGs. 2 and 3, according to an embodiment of the invention. The hardware arrangement shown in FIG. 4 can be part of any desired device, such as an oscilloscope or a test-and-measurement instrument, among other possibilities. In FIG. 4, analog-to-digital converter (ADC) 405 can acquire a waveform (that is, generate an acquisition of the waveform), and store that acquisition in memory 410. Rasterizer 415 can access an acquisition from memory 410 and display it on display 420. Display 420 can be any type of display, and can be built into the device that includes the other components shown in FIG. 4.

    [0015] Rasterizer 415 also receives input from processor 425. Processor 425 is responsible for instructing rasterizer 415 as to what boundary mask to use for a particular acquisition of the waveform. The boundary masks can also be stored in memory 410 and accessed therefrom by rasterizer 415. In one embodiment of the invention, processor 425 sends a signal to rasterizer 415 identifying a boundary mask to use for each acquisition. But in another embodiment of the invention, processor 425 determines when the boundary mask should change, and only signals rasterizer 415 when a new boundary mask should be loaded. To that end, processor 425 can use timer 430 to determine when enough "time" has elapsed to change the boundary mask.

    [0016] The word "time" was put in quotation marks above because it should not be interpreted to mean just an interval of time (e.g., two tenths of a second). "Time" can also mean a number of acquisitions between boundary mask changes, or waiting for a trigger event to occur before changing boundary masks.

    [0017] FIG. 5 shows how dynamic boundary masks can be stored in the memory of FIG. 4, according to one embodiment of the invention. In FIG. 5, memory 410 is shown as including three boundary masks 505, 510, and 515, each with an associated timing interval 520, 525, and 530. Boundary mask 505 stores the coordinates for boundary mask 205 in FIG. 2, and boundary mask 515 stores the coordinates for boundary mask 215 in FIG. 2 (boundary mask 510 is not shown in the drawings).

    [0018] Corresponding to each boundary mask is a timing interval, which specifies the amount of "time" the boundary mask is to be used. For example, timing interval 520 specifies that boundary mask 505 is to be used for 0.2 seconds, timing interval 525 specifies that boundary mask 510 is to be used for five waveform acquisitions, and timing interval 530 specifies that boundary mask 515 is to be used until a trigger event occurs. Processor 425 (of FIG. 4) can watch for the trigger event to occur, and can then notify rasterizer 415 to load the next boundary mask.

    [0019] Returning to FIG. 5, memory 410 can also store identifier associated with each boundary mask. For example, boundary mask 505 includes the identifier M1, boundary mask 510 includes the identifier M2, and boundary mask 515 includes the identifier M3. By using an identifier, processor 425 (of FIG. 4) can specify to rasterizer 415 (of FIG. 4) which boundary mask to load. Alternatively, the boundary masks can be stored in memory 410 in the order in which they are to be loaded, and rasterizer 415 (of FIG. 4) simply loads the boundary masks in sequence, starting with the first boundary mask in memory 410. Or, processor 425 (of FIG. 4) can load the next boundary mask from memory 410 and transmit that boundary mask to rasterizer 415 (of FIG. 4).

    [0020] Returning to FIG. 5, memory 410 can also store initial trigger event 535. Initial trigger event 535 specifies an event that indicates when boundary masks should start being used. For example, a waveform might have a periodic form, but the acquisitions could begin at any point in the waveform's period. If the boundary masks were used starting with the first acquisition, the boundary masks being used might not be appropriate for the waveform acquisition. By waiting until a trigger event has occurred, the system can be sure that the boundary masks are properly synchronized with the waveform acquisitions. As an example of an initial trigger event, processor 425 (of FIG. 4) can watch for the peak at frequency 110 (in FIG. 2), after which processor 425 (of FIG. 4) can signal rasterizer 415 (of FIG. 4) to start loading boundary masks.

    [0021] One thing that has not been described yet is what the system should do after the last boundary mask has been used. For example, returning to FIG. 5, assume that boundary masks 505, 510, and 515 are the order in which the boundary masks should be loaded. Once boundary mask 515 has been loaded into rasterizer 415 (of FIG. 4) and timing interval 530 is finished, what should happen? There are several possibilities as to what can occur. In one embodiment of the invention, after the trigger event associated with the last boundary mask has occurred, rasterizer 415 (of FIG. 4) can stop using boundary masks with waveform acquisitions. This embodiment of the invention can be used, for example, when a waveform has a known expected duration, after which no further acquisitions are expected. In another embodiment of the invention, the first boundary mask can be loaded again and used for its associated timing interval. This embodiment of the invention can be used, for example, with waveforms that have an expected period of repetition. In yet another embodiment of the invention, memory 410 can store a final trigger event (not shown). Until the final trigger event occurs, the boundary masks can be used repeatedly, but after the final trigger event occurs, rasterizer 415 (of FIG. 4) can stop using boundary masks. In yet another embodiment, once the use of the last boundary mask is finished, the device can wait for the initial trigger event. This embodiment can be used, for example, in testing parts: when the use of the last boundary mask is finished, the part begin tested can be removed from the device and a new part put in its place. The device can then wait until the initial trigger event occurs to start using the dynamic boundary masks.

    [0022] FIG. 2 shows how the boundary masks of FIG. 2 can be stored in the memory of FIG. 4. The boundary masks of FIG. 2, as discussed above, include only one segment. FIG. 6 shows how dynamic boundary masks, such as the boundary mask shown in FIG. 3, that include multiple segments can be stored in the memory of FIG. 4, according to another embodiment of the invention. In FIG. 6, boundary masks 605, 610, and 615 include not the coordinates of the boundary masks themselves, but rather identifiers of the segments that make up the boundary masks. For example, boundary mask 605 includes segments 620 and 625, boundary mask 610 includes segments 630 and 625, and boundary mask 615 includes segments 635 and 625. While FIG. 6 shows all three boundary masks as including two segments, it should be understood that a boundary mask can include any number of segments, and that the use of two segments per boundary mask is merely illustrative. Again, processor 425 (of FIG. 4) can signal rasterizer 415 (of FIG. 4) with the identifier of the boundary mask to use, and rasterizer 415 (of FIG. 4) can load the boundary mask, including all of its segments, from memory 410.

    [0023] One thing that has not been discussed yet is how the boundary masks (including their segments) are stored in memory 410 originally. Of course, a user can manually define the boundary masks and their associated timing intervals, which can then be loaded into memory 410. But it is also possible for the boundary masks to be created automatically. For example, a waveform that is known to be valid (that is, known to have no anomalies) can be input to the device. The user can provide timing intervals to be used, or the device can scan the waveform acquisitions to determine appropriate timing intervals. The device also scans the waveform acquisitions to determine the acceptable limits for the waveform acquisitions over the timing intervals, and can automatically generate the boundary masks based on the determined acceptable limits of the waveform known to be valid. These generated boundary masks can then be stored in the memory of the device.

    [0024] FIGs. 7A-7D show a flowchart of a procedure for using dynamic masks, according to an embodiment of the invention. In FIG. 7A, at block 703, the device identifies an initial trigger event. At block 706, the device waits until the initial trigger event has occurred. Once the initial trigger event has occurred, at block 709 the device selects a first boundary mask. At block 712, the device loads the first boundary mask from memory. At block 715, the device uses the first boundary mask during its associated timing interval. At block 718, the device displays waveform acquisitions and the first boundary mask during the timing interval.

    [0025] At block 721 (FIG. 7B), the device determines if the waveform violates a boundary of the first boundary mask. If so, then at block 724 the device takes appropriate action, such as alerting the user to the violation anomaly in the waveform acquisition. Regardless of whether or not there was a violation of the boundary mask at block 721, at block 727 the device determines if the timing interval associated with the first boundary mask is over. If not, then control returns to block 721 to continue use of the first boundary mask with another waveform acquisition. But if the first timing interval is over, then at block 730 a second boundary mask is selected, and at block 733 the second boundary mask is loaded from memory.

    [0026] At block 736 (FIG. 7C), the device uses the second boundary mask during its associated timing interval. At block 739, the device displays waveform acquisitions and the second boundary mask during the timing interval. At block 742, the device determines if the waveform violates a boundary of the second boundary mask. If so, then at block 745 the device takes appropriate action, such as alerting the user to the violation anomaly in the waveform acquisition. Regardless of whether or not there was a violation of the second boundary mask at block 742, at block 748 the device determines if the timing interval associated with the second boundary mask is over. If not, then control returns to block 742 to continue use of the second boundary mask with another waveform acquisition.

    [0027] If the second timing interval is over, then at block 751 (FIG. 7D) a third boundary mask is selected, and at block 754 the third boundary mask is loaded from memory. At block 757, the device uses the third boundary mask during its associated timing interval. At block 760, the device displays waveform acquisitions and the third boundary mask during the timing interval. At block 763, the device determines if the waveform violates a boundary of the third boundary mask. If so, then at block 766 the device takes appropriate action, such as alerting the user to the violation anomaly in the waveform acquisition. Regardless of whether or not there was a violation of the third boundary mask at block 763, at block 769 the device determines if the timing interval associated with the third boundary mask is over. If not, then control returns to block 763 to continue use of the third boundary mask with another waveform acquisition.

    [0028] If the third timing interval is over, then there are some options. One possibility is to simply end processing after the third timing interval is over: any remaining acquisitions will then not be subject to boundary mask analysis. Another possibility is to return control to block 709 (FIG. 7A) and restart boundary mask analysis with the first boundary mask. It is also possible to combine these options: for example, the three boundary masks can be used iteratively for some number of iterations, after which boundary mask analysis ends. When to end boundary mask analysis can also be the subject of a trigger event, as described above.

    [0029] While FIGs. 7A-7D describe operations using three boundary masks, this fact is not intended to be a limitation on any embodiments of the invention. That is, embodiments of the invention can include any number of dynamic boundary masks. The use of three boundary masks in FIGs. 7A-7D is merely illustrative.

    [0030] As described above, embodiments of the invention support automatic generation of the boundary masks from a waveform known to be valid. FIGs. 8A-8B show a flowchart of a procedure for generating dynamic masks from a known valid waveform, according to an embodiment of the invention. In FIG. 8A, at block 805, a trigger event is identified. This trigger event can be a trigger event that precedes a periodic form of the waveform. The identification of the trigger event can be either manual or automatic: that is, a user can manually define what the trigger event is, or the device can scan the waveform acquisitions and automatically identify a trigger event that precedes the periodic form of the waveform. At block 810, the device receives the waveform known to be valid. At block 815, the system waits for the trigger event to occur. Once the trigger event has occurred, at block 820 the device determines the timing intervals: for example, by receiving them from the user. At block 825, the device determines if there are still timing intervals to consider. If not, then processing is complete.

    [0031] Otherwise, if there are still timing intervals to consider, then at block 830 (FIG. 8B), the device selects the next timing interval to consider. At block 835, the device analyzes the waveform over the timing interval. At block 840, the device generates a boundary mask for the waveform over the timing interval. At block 845, the device stores the generated boundary mask and its associated timing interval in memory. Control then returns to block 825 (FIG. 8A) to consider another timing interval.

    [0032] The flowcharts described above represent various possible embodiments of the invention. Embodiments of the invention are not limited to those shown in the flowcharts. Various blocks can be omitted, and the order of blocks can be rearranged, without loss of generality to embodiments of the invention. For example, in FIG. 8A, if the device is responsible for automatically identifying the initial trigger event in block 805, the device would have to have already received the waveform, in which case block 810 would need to precede block 805.

    [0033] The following discussion is intended to provide a brief, general description of a suitable machine in which certain aspects of the invention may be implemented. Typically, the machine includes a system bus to which is attached processors, memory, e.g., random access memory (RAM), read-only memory (ROM), or other state preserving medium, storage devices, a video interface, and input/output interface ports. The machine may be controlled, at least in part, by input from conventional input devices, such as keyboards, mice, etc., as well as by directives received from another machine, interaction with a virtual reality (VR) environment, biometric feedback, or other input signal. As used herein, the term "machine" is intended to broadly encompass a single machine, or a system of communicatively coupled machines or devices operating together. Exemplary machines include computing devices such as personal computers, workstations, servers, portable computers, handheld devices, telephones, tablets, etc., as well as transportation devices, such as private or public transportation, e.g., automobiles, trains, cabs, etc.

    [0034] The machine may include embedded controllers, such as programmable or non-programmable logic devices or arrays, Application Specific Integrated Circuits, embedded computers, smart cards, and the like. The machine may utilize one or more connections to one or more remote machines, such as through a network interface, modem, or other communicative coupling. Machines may be interconnected by way of a physical and/or logical network, such as an intranet, the Internet, local area networks, wide area networks, etc. One skilled in the art will appreciated that network communication may utilize various wired and/or wireless short range or long range carriers and protocols, including radio frequency (RF), satellite, microwave, Institute of Electrical and Electronics Engineers (IEEE) 810.11, Bluetooth, optical, infrared, cable, laser, etc.

    [0035] The invention may be described by reference to or in conjunction with associated data including functions, procedures, data structures, application programs, etc. which when accessed by a machine results in the machine performing tasks or defining abstract data types or low-level hardware contexts. Associated data may be stored in, for example, the volatile and/or non-volatile memory, e.g., RAM, ROM, etc., or in other storage devices and their associated storage media, including hard-drives, floppy-disks, optical storage, tapes, flash memory, memory sticks, digital video disks, biological storage, etc. Associated data may be delivered over transmission environments, including the physical and/or logical network, in the form of packets, serial data, parallel data, propagated signals, etc., and may be used in a compressed or encrypted format. Associated data may be used in a distributed environment, and stored locally and/or remotely for machine access.

    [0036] Example embodiments may provide a system, comprising an analog-to-digital converter (ADC) to receive and digitize a waveform, a memory to store acquisitions of the digitized waveform and a plurality of masks, a rasterizer to draw acquisitions of the digitized waveforms on a display, a processor to select a first mask from the plurality of masks stored in the memory to be used with the digitized waveform, and a timer to determine when a first timing interval has passed, wherein the processor is operative to select a second mask from the plurality of masks stored in the memory after the first timing interval has passed.

    [0037] In some example embodiments the timer is operative to determine when a second timing interval has passed and the processor is further operative to select a third mask from the plurality of masks stored in the memory after the second timing interval has passed.

    [0038] In some example embodiments the third mask is the first mask.

    [0039] In some example embodiments the rasterizer is operative to draw the selected mask on the display with the acquisitions of the digitized waveform.

    [0040] Example embodiments may further comprise a trigger event to trigger the processor to select the first mask from the plurality of masks stored in the memory and to trigger the timer to begin timing the first timing interval.

    [0041] In some example embodiments the memory includes a data structure stored in the memory, the data structure including information used on the display and including: a first mask; a first timing interval; a second mask; and a second timing interval.

    [0042] In some example embodiments the first mask includes at least three coordinate pairs.

    [0043] In some example embodiments the first timing interval is drawn from a set consisting of a predefined period of time, a predefined number of acquisitions, and a trigger event.

    [0044] Example embodiments may further comprise a third mask and a third timing interval.

    [0045] Example embodiments may also provide a method, comprising selecting a first mask for a waveform, using the first mask with the waveform on a display for a first timing interval, after the first timing interval is over, selecting a second mask for the waveform, and using the second mask with the waveform on the display for a second timing interval.

    [0046] In some example embodiments using the first mask with the waveform on a display for a first timing interval includes using the first mask with the waveform on the display for the first timing interval, the first timing interval drawn from a set consisting of a predefined period of time, a predefined number of acquisitions, and a predefined trigger event.

    [0047] In some example embodiments selecting a first mask for a waveform includes waiting for a trigger event to occur.

    [0048] In some example embodiments selecting a first mask for a waveform includes loading the first mask for the waveform and the first timing interval from a memory.

    [0049] Example embodiments may further comprise, if the waveform goes outside the bounds of the first mask during the first timing interval, alerting a user about a first boundary violation of the first mask, and if the waveform goes outside the bounds of the second mask during the first timing interval, alerting a user about a second boundary violation of the second mask.

    [0050] Example embodiments may further comprise, after the second timing interval is over, selecting a third mask for the waveform, and using the third mask with the waveform on the display for a third timing interval.

    [0051] Example embodiments may further comprise, after the second timing interval is over, selecting the first mask for the waveform, and using the first mask with the waveform on the display for the first timing interval.

    [0052] Example embodiments may further comprise, during the first timing interval, displaying the waveform and the first mask on the display, and during the first timing interval, displaying the waveform and the second mask on the display.

    [0053] Example embodiments may also provide a method, comprising receiving a waveform at a device, receiving a first timing interval from a user, receiving a second timing interval from the user, analyzing the waveform for the first timing interval, generating a first mask for the waveform for the first timing interval, analyzing the waveform for the second timing interval, generating a second mask for the waveform for the second timing interval, and storing the first mask, the first timing interval, the second mask, and the second timing interval in a memory of the device.

    [0054] In some example embodiments analyzing the waveform for the first timing interval includes waiting for a trigger event to occur.

    [0055] In some example embodiments receiving a first timing interval from a user includes receiving the first timing interval from the user, the first timing interval drawn from a set consisting of a predefined period of time, a predefined number of acquisitions, and a predefined trigger event.


    Claims

    1. A system, comprising:

    an analog-to-digital converter, ADC, to receive and digitize a waveform (105, 115);

    a memory (410) to store acquisitions (105, 115) of the digitized waveform (105, 115) and a plurality of masks (205, 210, 505, 510, 515);

    a rasterizer (415) to draw acquisitions (105, 115) of the digitized waveforms (105, 115) on a display (420);

    a processor (425) to select a first mask (205, 505) from the plurality of masks (205, 210, 505, 510, 515) stored in the memory (410) to be used with a first acquisition (105) of the digitized waveform (105, 115); and

    a timer (430) to determine when a first timing interval (520) has passed,

    wherein the processor (425) is operative to select a second mask (210, 515) from the plurality of masks (205, 210, 505, 510, 515) stored in the memory (410) after the first timing interval (520) has passed, the second mask (210, 515) to be used with a second acquisition (115) of the digitized waveform (105, 115) and having a mask boundary that differs from a mask boundary of the first mask (205, 505).


     
    2. A system according to claim 1, wherein:
    the timer (430) is operative to determine when a second timing interval (530) has passed; and
    the processor (425) is further operative to select a third mask (205, 505, 510) from the plurality of masks (205, 210, 505, 510, 515) stored in the memory (410) after the second timing interval (530) has passed, the third mask to be used with a third acquisition of the digitized waveform and having a mask boundary that differs from a mask boundary of the second mask (210, 515).
     
    3. A system according to claim 2, wherein the third mask (205, 505, 510) is the first mask (205, 505).
     
    4. A system according to any of claims 1 to 3, further comprising a trigger event (535) to trigger the processor (425) to select the first mask (205, 505) from the plurality of masks (205, 210, 505, 510, 515) stored in the memory (410) and to trigger the timer (430) to begin timing the first timing interval (520).
     
    5. A system according to any of claims 1 to 4, wherein the memory (410) includes:
    a data structure stored in the memory (410), the data structure including information used on the display (420) and including:

    a first mask (205, 505);

    a first timing interval (520);

    a second mask (210, 515); and

    a second timing interval (530).


     
    6. A system according to claim 5, wherein the first mask (205, 505) includes at least three coordinate pairs (505).
     
    7. A system according to claim 5 or 6, wherein the first timing interval (520) is drawn from a set consisting of a predefined period of time (520), a predefined number of acquisitions (525), and a trigger event (530).
     
    8. A method, comprising:

    selecting (709) a first mask (205, 505) for a first acquisition (105) of a waveform (105, 115);

    using (715) the first mask (205, 505) with the waveform (105, 115) on a display (420) for a first timing interval (520);

    after the first timing interval (520) is over (727), selecting (730) a second mask (210, 515) for a second acquisition (115) of the waveform (105, 115), the second mask (210, 515) having a mask boundary that differs from a mask boundary of the first mask (205, 505); and

    using (736) the second mask (210, 515) with the waveform (105, 115) on the display (420) for a second timing interval (530).


     
    9. A method according to claim 8, wherein using (715) the first mask (205, 505) with the waveform (105, 115) on a display (420) for a first timing interval (520) includes using (715) the first mask (205, 505) with the waveform (105, 115) on the display (420) for the first timing interval (520), the first timing interval (520) drawn from a set consisting of a predefined period of time (520), a predefined number of acquisitions (525), and a predefined trigger event (530).
     
    10. A method according to claim 8 or 9, wherein selecting (709) a first mask (205, 505) for a waveform (105, 115) includes waiting (706) for a trigger event (535) to occur.
     
    11. A method according to claim 8 or 9, wherein selecting (709) a first mask (205, 505) for a waveform (105, 115) includes loading (712) the first mask (205, 505) for the waveform (105, 115) and the first timing interval (520) from a memory (410).
     
    12. A method according to any of claims 8 to 11, further comprising:

    if the waveform (105, 115) goes outside the bounds of the first mask (205, 505) during the first timing interval (520) (721), alerting (724) a user about a first boundary violation of the first mask (205, 505); and

    if the waveform (105, 115) goes outside the bounds of the second mask (210, 515) during the second timing interval (530) (742), alerting (745) a user about a second boundary violation of the second mask (210, 515).


     
    13. A method according to any of claims 8 to 12, further comprising:

    after the second timing interval (530) is over (748), selecting (751) a third mask (510) for a third acquisition of the waveform (105, 115), the third mask having a mask boundary that differs from a mask boundary of the second mask (210, 515); and

    using (757) the third mask (510) with the waveform (105, 115) on the display (420) for a third timing interval (525).


     
    14. A method according to any of claims 8 to 13, further comprising:

    after the second timing interval (530) is over (748), selecting (709) the first mask (205, 505) for the waveform (105, 115); and

    using (715) the first mask (205, 505) with the waveform (105, 115) on the display (420) for the first timing interval (520).


     
    15. A method according to any of claims 8 to 14, further comprising:

    during the first timing interval (520), displaying (718) the waveform (105, 115) and the first mask (205, 505) on the display (420); and

    during the first timing interval (530), displaying (739) the waveform (105, 115) and the second mask (210, 515) on the display (420).


     


    Ansprüche

    1. System, umfassend:

    einen Analog-Digital-Wandler (ADC) zum Empfangen und Digitalisieren einer Wellenform (105, 115);

    einen Speicher (410) zum Speichern von Erfassungen (105, 115) der digitalisierten Wellenform (105, 115) und mehrerer Masken (205, 210, 505, 510, 515);

    einen Rastervorrichtung (415) zum Zeichnen von Erfassungen (105, 115) der digitalisierten Wellenformen (105, 115) auf einer Anzeige (420);

    einen Prozessor (425) zum Auswählen einer ersten Maske (205, 505) aus den mehreren Masken (205, 210, 505, 510, 515), die in dem Speicher (410) gespeichert sind, um mit einer ersten Erfassung (105) der digitalisierte Wellenform (105, 115) verwendet zu werden; und

    einen Zeitgeber (430) zum Bestimmen, wann ein erstes Zeitintervall (520) vergangen ist, wobei der Prozessor (425) betriebsfähig ist, eine zweite Maske (210, 515) aus den mehreren Masken (205, 210, 505, 510, 515), die in dem Speicher (410) gespeichert ist, auszuwählen, nachdem das erste Zeitintervall (520) verstrichen ist, wobei die zweite Maske (210, 515) mit einer zweiten Erfassung (115) der digitalisierten Wellenform (105, 115) verwendet werden soll und eine Maskengrenze aufweist, die sich von einer Maskengrenze der ersten Maske (205, 505) unterscheidet.


     
    2. System nach Anspruch 1, wobei:

    der Zeitgeber (430) betriebsfähig ist, zu bestimmen, wann ein zweites Zeitintervall (530) verstrichen ist; und

    der Prozessor (425) ferner betriebsfähig ist, um eine dritte Maske (205, 505, 510) aus den mehreren Masken (205, 210, 505, 510, 515), die in dem Speicher (410) gespeichert sind, auszuwählen, nachdem das zweite Zeitintervall (530) verstrichen ist, wobei die dritte Maske mit einer dritten Erfassung der digitalisierten Wellenform verwendet werden soll und eine Maskengrenze aufweist, die sich von einer Maskengrenze der zweiten Maske (210, 515) unterscheidet.


     
    3. System nach Anspruch 2, wobei die dritte Maske (205, 505, 510) die erste Maske (205, 505) ist.
     
    4. System nach einem der Ansprüche 1 bis 3, ferner umfassend ein Auslöseereignis (535) zum Auslösen des Prozessors (425) zum Auswählen der ersten Maske (205, 505) aus den mehreren Masken (205, 210, 505, 510, 515), die in dem Speicher (410) gespeichert sind, und zum Auslösen des Zeitgebers (430) zum Starten des ersten Zeitintervalls (520).
     
    5. System nach einem der Ansprüche 1 bis 4, wobei der Speicher (410) enthält:
    eine Datenstruktur, die in dem Speicher (410) gespeichert ist, wobei die Datenstruktur Informationen enthält, die auf der Anzeige (420) verwendet werden, und enthält: eine erste Maske (205, 505); ein erstes Zeitintervall (520); eine zweite Maske (210, 515); und ein zweites Zeitintervall (530).
     
    6. System nach Anspruch 5, wobei die erste Maske (205, 505) wenigstens drei Koordinatenpaare (505) enthält.
     
    7. System nach Anspruch 5 oder 6, wobei das erste Zeitintervall (520) aus einem Satz gezogen wird, der aus einer vordefinierten Zeitdauer (520), einer vordefinierten Anzahl von Erfassungen (525) und einem Auslöseereignis (530) besteht.
     
    8. Verfahren, umfassend:

    Auswählen (709) einer ersten Maske (205, 505) für eine erste Erfassung (105) einer Wellenform (105, 115);

    Verwenden (715) der ersten Maske (205, 505) mit der Wellenform (105, 115) auf einer Anzeige (420) für ein erstes Zeitintervall (520);

    nachdem das erste Zeitintervall (520) vorüber (727) ist, Auswählen (730) einer zweiten Maske (210, 515) für eine zweite Erfassung (115) der Wellenform (105, 115), wobei die zweite Maske (210, 515) eine Maskengrenze aufweist, die sich von einer Maskengrenze der ersten Maske (205, 505) unterscheidet; und

    Verwenden (736) der zweiten Maske (210, 515) mit der Wellenform (105, 115) auf der Anzeige (420) für ein zweites Zeitintervall (530).


     
    9. Verfahren nach Anspruch 8, wobei das Verwenden (715) der ersten Maske (205, 505) mit der Wellenform (105, 115) auf einer Anzeige (420) für ein erstes Zeitintervall (520) das Verwenden (715) der ersten Maske (205, 505) mit der Wellenform (105, 115) auf der Anzeige (420) für das erste Zeitintervall (520) enthält, wobei das erste Zeitintervall (520) aus einem Satz gezogen wird, der aus einer vordefinierten Zeitdauer (520), einer vordefinierten Anzahl von Erfassungen (525) und einem vordefinierten Auslöseereignis (530) besteht.
     
    10. Verfahren nach Anspruch 8 oder 9, wobei das Auswählen (709) einer ersten Maske (205, 505) für eine Wellenform (105, 115) das Warten (706) auf das Auftreten eines Auslöseereignisses (535) enthält.
     
    11. Verfahren nach Anspruch 8 oder 9, wobei das Auswählen (709) einer ersten Maske (205, 505) für eine Wellenform (105, 115) das Laden (712) der ersten Maske (205, 505) für die Wellenform (105, 115) und das erste Zeitintervall (520) aus einem Speicher (410) enthält.
     
    12. Verfahren nach einem der Ansprüche 8 bis 11, ferner umfassend: Wenn die Wellenform (105, 115) während des ersten Zeitintervalls (520) (721) außerhalb der Grenzen der ersten Maske (205, 505) reicht, Informieren (724) eines Benutzers über eine erste Grenzverletzung der ersten Maske (205, 505); und
    wenn die Wellenform (105, 115) während des zweiten Zeitintervalls (530) (742) außerhalb der Grenzen der zweiten Maske (210, 515) reicht, Informieren (745) eines Benutzers über eine zweite Grenzverletzung der zweiten Maske (210, 515).
     
    13. Verfahren nach einem der Ansprüche 8 bis 12, ferner umfassend: nach dem das zweite Zeitintervall (530) vorüber (748) ist, Auswählen (751) einer dritten Maske (510) für eine dritte Erfassung der Wellenform (105, 115), wobei die dritte Maske eine Maskengrenze aufweist, die sich von einer Maskengrenze der zweiten Maske (210, 515) unterscheidet; und
    Verwenden (757) der dritten Maske (510) mit der Wellenform (105, 115) auf der Anzeige (420) für ein drittes Zeitintervall (525).
     
    14. Verfahren nach einem der Ansprüche 8 bis 13, ferner umfassend: nachdem das zweite Zeitintervall (530) vorüber (748) ist, Auswählen (709) der ersten Maske (205, 505) für die Wellenform (105, 115); und
    Verwenden (715) der ersten Maske (205, 505) mit der Wellenform (105, 115) auf der Anzeige (420) für das erste Zeitintervall (520).
     
    15. Verfahren nach einem der Ansprüche 8 bis 14, ferner umfassend: während des ersten Zeitintervalls (520), Anzeigen (718) der Wellenform (105, 115) und der ersten Maske (205, 505) auf der Anzeige (420); und
    während des ersten Zeitintervalls (530), Anzeigen (739) der Wellenform (105, 115) und der zweiten Maske (210, 515) auf der Anzeige (420).
     


    Revendications

    1. Système comprenant :

    un convertisseur analogique-numérique (ADC) pour recevoir et numériser une forme d'onde (105, 115) ;

    une mémoire (410) pour stocker des acquisitions (105, 115) de la forme d'onde numérisée (105, 115) et une pluralité de masques (205, 210, 505, 510, 515) ;

    un traceur par balayage (415) pour dessiner des acquisitions (105, 115) des formes d'onde numérisées (105, 115) sur un dispositif d'affichage (420) ;

    un processeur (425) pour sélectionner un premier masque (205, 505) parmi la pluralité de masques (205, 210, 505, 510, 515) stockés dans la mémoire (410) à utiliser avec une première acquisition (105) de la forme d'onde numérisée (105, 115) ; et

    une minuterie (430) pour déterminer lorsqu'un premier intervalle de temps (520) s'est écoulé, ledit processeur (425) servant à sélectionner un deuxième masque (210, 515) parmi la pluralité de masques (205, 210, 505, 510, 515) stockés dans la mémoire (410) après que le premier intervalle de temps (520) s'est écoulé, le deuxième masque (210, 515) à utiliser avec une seconde acquisition (115) de la forme d'onde numérisée (105, 115) et possédant un limite de masque qui diffère d'une limite de masque du premier masque (205, 505).


     
    2. Système selon la revendication 1,
    ladite minuterie (430) servant à déterminer lorsqu'un deuxième intervalle de temps (530) s'est écoulé ; et
    ledit processeur (425) servant en outre à sélectionner un troisième masque (205, 505, 510) parmi la pluralité de masques (205, 210, 505, 510, 515) stockés dans la mémoire (410) après que le deuxième intervalle de temps (530) s'est écoulé, le troisième masque étant à utiliser avec une troisième acquisition de la forme d'onde numérisée et possédant une limite de masque qui diffère d'une limite de masque du deuxième masque (210, 515).
     
    3. Système selon la revendication 2, ledit troisième masque (205, 505, 510) étant le premier masque (205, 505).
     
    4. Système selon l'une quelconque des revendications 1 à 3, comprenant en outre un événement déclencheur (535) pour déclencher le processeur (425) pour sélectionner le premier masque (205, 505) parmi la pluralité de masques (205, 210, 505, 510, 515) stockés dans la mémoire (410) et pour déclencher la minuterie (430) pour commencer à chronométrer le premier intervalle de temps (520).
     
    5. Système selon l'une quelconque des revendications 1 à 4, ladite mémoire (410) comprenant :
    une structure de données stockée dans la mémoire (410), la structure de données comprenant des informations utilisées sur le dispositif d'affichage (420) et comprenant :

    un premier masque (205, 505) ;

    un premier intervalle de temps (520) ;

    un deuxième masque (210, 515) ; et

    un deuxième intervalle de temps (530).


     
    6. Système selon la revendication 5, ledit premier masque (205, 505) comprenant au moins trois paires de coordonnées (505).
     
    7. Système selon la revendication 5 ou 6, ledit premier intervalle de temps (520) étant tiré d'un ensemble constitué d'une période de temps prédéfinie (520), d'un nombre prédéfini d'acquisitions (525) et d'un événement déclencheur (530).
     
    8. Procédé, comprenant :

    la sélection (709) d'un premier masque (205, 505) pour une première acquisition (105) d'une forme d'onde (105, 115) ;

    l'utilisation (715) du premier masque (205, 505) avec la forme d'onde (105, 115) sur un dispositif d'affichage (420) pendant un premier intervalle de temps (520) ;

    après la fin (727) du premier intervalle de temps (520), la sélection (730) d'un second masque (210, 515) pour une deuxième acquisition (115) de la forme d'onde (105, 115), le deuxième masque (210, 515) possédant une limite de masque qui diffère d'une limite de masque du premier masque (205, 505) ; et

    l'utilisation (736) du deuxième masque (210, 515) avec la forme d'onde (105, 115) sur le dispositif d'affichage (420) pendant un deuxième intervalle de temps (530).


     
    9. Procédé selon la revendication 8, ladite utilisation (715) du premier masque (205, 505) avec la forme d'onde (105, 115) sur un dispositif d'affichage (420) pour un premier intervalle de temps (520) comprenant l'utilisation (715) du premier masque (205, 505) avec la forme d'onde (105, 115) sur le dispositif d'affichage (420) pour le premier intervalle de temps (520), le premier intervalle de temps (520) étant tiré d'un ensemble constitué d'une période de temps prédéfinie (520), d'un nombre prédéfini d'acquisitions (525) et d'un événement déclencheur prédéfini (530).
     
    10. Procédé selon la revendication 8 ou 9, ladite sélection (709) d'un premier masque (205, 505) pour une forme d'onde (105, 115) comprenant l'attente (706) de la survenue d'un événement déclencheur (535).
     
    11. Procédé selon la revendication 8 ou 9, ladite sélection (709) d'un premier masque (205, 505) pour une forme d'onde (105, 115) comprenant le chargement (712) du premier masque (205, 505) pour la forme d'onde (105, 115) et du premier intervalle de temps (520) à partir d'une mémoire (410).
     
    12. Procédé selon l'une quelconque des revendications 8 à 11, comprenant en outre : si la forme d'onde (105, 115) sort des limites du premier masque (205, 505) durant le premier intervalle de temps (520) (721), l'alerte (724) donnée à un utilisateur concernant une première violation de limite du premier masque (205, 505) ; et
    si la forme d'onde (105, 115) sort des limites du deuxième masque (210, 515) durant le deuxième intervalle de temps (530) (742), l'alerte (745) donnée à un utilisateur concernant une seconde violation de limite du deuxième masque (210, 515).
     
    13. Procédé selon l'une quelconque des revendications 8 à 12, comprenant en outre : après la fin (748) du deuxième intervalle de temps (530), la sélection (751) d'un troisième masque (510) pour une troisième acquisition de la forme d'onde (105, 115), le troisième masque possédant une limite de masque qui diffère d'une limite de masque du deuxième masque (210, 515) ; et
    l'utilisation (757) du troisième masque (510) avec la forme d'onde (105, 115) sur le dispositif d'affichage (420) pendant un troisième intervalle de temps (525).
     
    14. Procédé selon l'une quelconque des revendications 8 à 13, comprenant en outre : après la fin (748) du deuxième intervalle de temps (530), la sélection (709) du premier masque (205, 505) pour la forme d'onde (105, 115) ; et
    l'utilisation (715) du premier masque (205, 505) avec la forme d'onde (105, 115) sur le dispositif d'affichage (420) pour le premier intervalle de temps (520).
     
    15. Procédé selon l'une quelconque des revendications 8 à 14, comprenant en outre : durant le premier intervalle de temps (520), l'affichage (718) de la forme d'onde (105, 115) et du premier masque (205, 505) sur le dispositif d'affichage (420) ; et
    durant le premier intervalle de temps (530), l'affichage (739) de la forme d'onde (105, 115) et du deuxième masque (210, 515) sur le dispositif d'affichage (420).
     




    Drawing









































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description