(19)
(11)EP 2 954 167 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 14749072.6

(22)Date of filing:  04.02.2014
(51)Int. Cl.: 
F01D 5/14  (2006.01)
F02C 7/00  (2006.01)
B64D 15/00  (2006.01)
F01D 9/02  (2006.01)
F01D 5/28  (2006.01)
(86)International application number:
PCT/US2014/014556
(87)International publication number:
WO 2014/123841 (14.08.2014 Gazette  2014/33)

(54)

GAS TURBINE ENGINE FAN SECTION WITH A REMOVABLE FILM MATERIAL AND CORRESPONDING METHOD OF PROTECTING SURFACES IN A FAN SECTION

BLÄSERABSCHNITT EINES GASTURBINENMOTORS MIT EINEM LÖSBAREN FILMMATERIAL UND ZUGEHÖRIGES VERFAHREN ZUM OBERFLÄCHENSCHUTZ IN EINEM BLÄSERABSCHNITT

SECTION DE SOUFFLANTE POUR MOTEUR À TURBINE À GAZ AVEC UN FILM AMOVIBLE ET PROCÉDÉ DE PROTECTION DES SURFACES DANS UNE SECTION DE SOUFFLANTE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 10.02.2013 US 201361762908 P

(43)Date of publication of application:
16.12.2015 Bulletin 2015/51

(73)Proprietor: United Technologies Corporation
Farmington, CT 06032 (US)

(72)Inventor:
  • ROBERGE, Gary D.
    Tolland, Connecticut 06084 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
US-A- 5 182 906
US-A1- 2002 062 544
US-A1- 2010 180 597
US-A1- 2011 147 219
US-A- 5 427 332
US-A1- 2005 141 996
US-A1- 2010 218 376
US-A1- 2011 177 250
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] This application relates to gas turbine engine fan sections having surfaces with a removable film for providing an aerodynamically clean surface.

    BACKGROUND OF THE INVENTION



    [0002] Gas turbine engines are known and, typically, include a fan delivering air into a compressor. In an aircraft application, the fan will deliver air into a bypass duct defined inwardly of a nacelle in addition to the air delivered into the compressor. Air from the compressor is delivered into a combustion section where it is mixed with fuel and ignited. Products of this combustion pass downstream over turbine rotors driving them to rotate.

    [0003] Historically, a turbine rotor has driven a fan rotor at a same speed. More recently, it has been proposed to insert a gear reduction between the turbine rotor and the fan. With the movement to the gear reduction, the fan may now rotate at slower speeds to provide reduced levels of fan pressure ratio while increasing the outer diameter of the fan blades dramatically. With this increase, a bypass ratio or the ratio of air delivered into the bypass duct compared to the volume of air delivered into the compressor has increased.

    [0004] With this enlarged fan, laminar or near laminar aerodynamic design and other approaches for reduced fan duct aerodynamic loss becomes more important. However, surfaces of the fan, associated vanes, the nacelle, and inlet into the nacelle, etc. can deteriorate due to dirt, impacted insects or other airborne debris.

    [0005] It has been proposed to wash these surfaces, however, this has not always removed all of the accumulated material. In addition, the impact of debris can cause small areas of damage to surface finish or component profile which, alone, or in combination with accumulated debris, may lead to local disturbances in the aerodynamic properties and degradation away from a laminar flow.

    [0006] It is known to have a removable layer of thin adhesive film that can be removed once the cumulated dirt has been built up on an outer layer of the film. This type film has been utilized on the windows of race cars as an example. Removable film has also been proposed for the windshields of aircraft.

    [0007] Existing automotive applications also include the use of such film to prevent or minimize paint damage from impacting debris.

    [0008] A prior art fan section, having the features of the preamble of claim 1, is disclosed in US 5427332 B. Document US 2011/0147219 A1 discloses gas turbine engine fan section components having a hydrophobic coating. A prior art method of assembling a de-icing mat is disclosed in US 2010/0218376 A1.

    SUMMARY OF THE INVENTION



    [0009] The present invention provides a fan section as recited in claim 1, a gas turbine engine as recited in claim 9 and a method as recited in claim 10.

    [0010] Features of embodiments of the invention are disclosed in the dependent claims.

    [0011] These and other features may be best understood from the following drawings and specification.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0012] 

    Figure 1 schematically shows a gas turbine engine.

    Figure 2A shows a fan blade in a gas turbine engine.

    Figure 2B shows a novel fan blade.

    Figure 2C shows details of a fan section.

    Figure 3A is a cross-sectional view of the novel fan blade.

    Figure 3B shows another embodiment.

    Figure 3C shows yet another embodiment.

    Figure 3D shows another embodiment.

    Figure 3E shows yet another embodiment.

    Figure 4 shows a method step in refurbishing a surface of a fan blade.

    Figure 5 is a simplified cross-sectional view of a multi-layer adhesive film.


    DETAILED DESCRIPTION



    [0013] Figure 1 schematically illustrates a gas turbine engine 20. The gas turbine engine 20 is disclosed herein as a two-spool turbofan that generally incorporates a fan section 22, a compressor section 24, a combustor section 26 and a turbine section 28. Alternative engines might include an augmentor section (not shown) among other systems or features. The fan section 22 drives air along a bypass flow path B in a bypass duct defined within a nacelle 15, while the compressor section 24 drives air along a core flow path C for compression and communication into the combustor section 26 then expansion through the turbine section 28. Although depicted as a turbofan gas turbine engine in the disclosed non-limiting embodiment, it should be understood that the concepts described herein are not limited to use with turbofans as the teachings may be applied to other types of turbine engines including three-spool architectures.

    [0014] The engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided.

    [0015] The low speed spool 30 generally includes an inner shaft 40 that interconnects a fan 42, a low pressure compressor 44 and a low pressure turbine 46. A fan exit guide vane 11 is shown downstream of the fan 42. The inner shaft 40 is connected to the fan 42 through a geared architecture 48 to drive the fan 42 at a lower speed than the low speed spool 30. The high speed spool 32 includes an outer shaft 50 that interconnects a high pressure compressor 52 and high pressure turbine 54. A combustor 56 is arranged between the high pressure compressor 52 and the high pressure turbine 54. A mid-turbine frame 57 of the engine static structure 36 is arranged generally between the high pressure turbine 54 and the low pressure turbine 46. The mid-turbine frame 57 further supports bearing systems 38 in the turbine section 28. The inner shaft 40 and the outer shaft 50 are concentric and rotate via bearing systems 38 about the engine central longitudinal axis A which is collinear with their longitudinal axes.

    [0016] The core airflow is compressed by the low pressure compressor 44 then the high pressure compressor 52, mixed and burned with fuel in the combustor 56, then expanded over the high pressure turbine 54 and low pressure turbine 46. The mid-turbine frame 57 includes airfoils 59 which are in the core airflow path. The turbines 46, 54 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion.

    [0017] The engine 20 in one example is a high-bypass geared aircraft engine. In a further example, the engine 20 bypass ratio is greater than about six (6:1), with an example embodiment being greater than ten (10:1), the geared architecture 48 is an epicyclic gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3 and the low pressure turbine 46 has a pressure ratio that is greater than about five (5:1). In one disclosed embodiment, the engine 20 bypass ratio is greater than about ten (10:1), the fan diameter is significantly larger than that of the low pressure compressor 44, and the low pressure turbine 46 has a pressure ratio that is greater than about five (5:1). Low pressure turbine 46 pressure ratio is pressure measured prior to inlet of low pressure turbine 46 as related to the pressure at the outlet of the low pressure turbine 46 prior to an exhaust nozzle. The geared architecture 48 may be an epicycle gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.5:1. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine and that the present invention is applicable to other gas turbine engines including direct drive turbofans.

    [0018] A significant amount of thrust is provided by the bypass flow B due to the high bypass ratio. The fan section 22 of the engine 20 is designed for a particular flight condition -- typically cruise at about 0.8 Mach and about 10,668 meters (35,000 feet). The flight condition of 0.8 Mach and 10,668 meters (35,000 feet), with the engine at its best fuel consumption - also known as "bucket cruise Thrust Specific Fuel Consumption ('TSFC')" - is the industry standard parameter of lbm of fuel being burned divided by lbf of thrust the engine produces at that minimum point. "Low fan pressure ratio" is the pressure ratio across the fan blade alone, without a Fan Exit Guide Vane ("FEGV") system. The low fan pressure ratio as disclosed herein according to one non-limiting embodiment is less than about 1.45. "Low corrected fan tip speed" is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of [(Tram °R) / (518.7 °R)]0.5 (where °R = °K x 9/.5). The "Low corrected fan tip speed" as disclosed herein according to one non-limiting embodiment is less than about 350.5 m/second (1,150 ft/second).

    [0019] Figure 2A shows a fan blade 120 which may be incorporated into an engine such as shown in Figure 1. A dovetail 124 is received within a rotor that rotates to drive a plurality of the blades 120. Airfoil 126 extends radially outwardly of the dovetail 124. Areas of accumulated debris 150 are shown schematically on the airfoil 126. It can be appreciated that the fan blade is in an area where it is subjected to a good deal of airborne debris and as this debris builds up, the aerodynamic qualities deteriorate. The same is true for the surfaces inwardly of the nacelle 15 as shown in Figure 1, static vanes, or an inlet into the nacelle 15 as shown in Figure 1.

    [0020] Figure 2B shows an improved fan blade 120 wherein a surface 160 may be removed, as will be explained below, from at least the airfoil section 126.

    [0021] Figure 2C shows a number of details in the fan section 600. As shown, a rotor 601 rotates blades 120, and sits within a nacelle 15. The exit guide vanes 11 are downstream of the blades 120. A variable area nozzle 13 is positioned at a downstream end of the nacelle 15, and can move to change the area of the bypass duct, as known. Further, an engine core cowl 14 has an outer surface which also defines a portion of the bypass duct. Any one of the illustrated components in the fan section 600 may receive a similar removable surface. While the engine core cowl 14 and/or variable area nozzle 13 may not be considered part of a fan section in some definitions, for purposes of this application, they are included in the definition of "fan section."

    [0022] As shown in Figure 3A, the surface 160 may be formed on one side of the airfoil 126, and another removable surface 162 may be formed on an opposed side.

    [0023] Although the variable area nozzle 13 and exit guide vanes 11 may not typically be called part of the fan section, they are part of an airflow through the bypass duct, and will benefit from the removable surface. Thus, for purposes of this application, they are part of the fan section 600.

    [0024] Figure 3B shows a nacelle 400 having a removable material 402. Figure 3C shows a static exit guide vane 410 having a removable material 412.

    [0025] Figure 3D shows an engine core cowl 514 having the removable material 516 on a radially outer surface. Figure 3E shows a variable area nozzle 511 having the removable material 512 on a radially inner surface.

    [0026] For purposes of this application, the fan blade 120, the nacelle 400, the static fan exit guide vane 410, the variable area nozzle 13, the engine core cowl 14 and any other related structure are collectively part of the fan section.

    [0027] Figure 4 shows a method according to this application. As shown, debris 150 has built up on the outer surfaces 160 and 162 of the fan blade 120. As shown at 170, an outer layer is peeled away removing the debris 150 from the side 162. An underlying film layer 172 remains and is clean. A similar step would next occur on the side 160. Such film layers have a relatively sticky underside 300, and a relatively less sticky outer side 301.

    [0028] As shown in Figure 5, the surfaces/materials 160, 162, 402 and 412 are all formed of a plurality of layers 180. Appropriate materials may be similar to those utilized on race car applications.

    [0029] However, since the materials for this application need not be optically clear, more freedom in materials may be provided and materials that are more resistant to dirt accumulation or pitting may be utilized. Further, film materials that have hydrophobic or icephobic properties may also be utilized to repel water and/or limit ice accumulation.

    [0030] Example materials may be publicly available from windshield tear-off materials. As an example, materials available under the trade names Pro-Shield or Racing Optics from Pro-Tint of Kannapolis, North Carolina.

    [0031] Although an embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.


    Claims

    1. A fan section (600) for a gas turbine engine (20) comprising:

    a nacelle (400), a rotor (601) and a plurality of fan blades (120), said fan blades (120) for delivering air into a bypass duct defined inwardly of the nacelle (400) and for delivering air into a core engine, and guide vanes (410) inward of said nacelle;

    a surface (160, 162, 402, 412, 512, 516) of said fan section being provided with a removable film material for accumulation of debris,

    characterised in that:
    said removable film material includes a plurality of layers (180) of removable material.


     
    2. The fan section as set forth in claim 1, wherein said surface (160, 162) is on said fan blades (120).
     
    3. The fan section as set forth in claim 1 or 2, wherein said surface (402) is on said nacelle (400).
     
    4. The fan section as set forth in any preceding claim, wherein said surface (412) is on said guide vanes (410).
     
    5. The fan section as set forth in any preceding claim, wherein the fan section (600) further comprises a core engine cowl and said surface (516) is on the core engine cowl (514).
     
    6. The fan section as set forth in any preceding claim, wherein the fan section (600) further comprises a variable area nozzle (13, 511) and said surface (512) is on the variable area nozzle (511).
     
    7. The fan section as set forth in any preceding claim, wherein said removable film material has at least one of hydrophobic or icephobic properties.
     
    8. The fan section or gas turbine engine as set forth in any preceding claim, wherein said removable film material has a relatively sticky underside and a relatively less sticky outer side.
     
    9. A gas turbine engine (20) comprising:
    a fan section (600) as set forth in any preceding claim for delivering air into a bypass duct with a nacelle (400) and for delivering air into a compressor.
     
    10. A method of protecting and refurbishing a surface (160, 162, 402, 412, 512, 516) in a fan section (600) for a gas turbine engine (20) comprising the steps of:
    removing a protective outer removable layer having accumulated debris from a surface in the fan section (600) provided with a removable film material including a plurality of layers (180) of removable material so as to leave an underlying protective removable layer.
     


    Ansprüche

    1. Gebläseabschnitt (600) für ein Gasturbinentriebwerk (20), der Folgendes umfasst:

    eine Gondel (400),

    einen Rotor (601) und eine Vielzahl an Gebläselaufschaufeln (120), wobei die Gebläselaufschaufeln (120) zum Zuführen von Luft in einen Umgehungskanal nach innen in die Gondel (400) und zum Zuführen von Luft in ein Kerntriebwerk definiert sind, und Leitschaufeln (410) einwärts von der Gondel;

    wobei eine Oberfläche (160, 162, 402, 412, 512, 516) des Gebläseabschnitts mit einem lösbaren Filmmaterial zur Akkumulierung von Schmutz bereitgestellt wird,

    dadurch gekennzeichnet, dass:
    das lösbare Filmmaterial eine Vielzahl an Schichten (180) aus lösbarem Material beinhaltet.
     
    2. Gebläseabschnitt nach Anspruch 1, wobei sich die Oberfläche (160, 162) auf den Gebläselaufschaufeln (120) befindet.
     
    3. Gebläseabschnitt nach Anspruch 1 oder 2, wobei sich die Oberfläche (402) auf der Gondel (400) befindet.
     
    4. Gebläseabschnitt nach einem der vorhergehenden Ansprüche, wobei sich die Oberfläche (412) auf den Leitschaufeln (410) befindet.
     
    5. Gebläseabschnitt nach einem der vorhergehenden Ansprüche, wobei der Gebläseabschnitt (600) ferner eine Kerntriebwerksverkleidung umfasst und sich die Oberfläche (516) auf der Kerntriebwerksverkleidung (514) befindet.
     
    6. Gebläseabschnitt nach einem der vorhergehenden Ansprüche, wobei der Gebläseabschnitt (600) ferner eine variable Bereichsdüse (13, 511) umfasst und sich die Oberfläche (512) auf der variablen Bereichsdüse (511) befindet.
     
    7. Gebläseabschnitt nach einem der vorhergehenden Ansprüche, wobei das lösbare Filmmaterial mindestens eines von wasserabweisen oder eisabweisenden Merkmalen aufweist.
     
    8. Gebläseabschnitt nach einem der vorhergehenden Ansprüche, wobei das lösbare Filmmaterial eine relativ klebrige Unterseite und eine relativ weniger klebrige Außenseite aufweist.
     
    9. Gasturbinentriebwerk (20), das Folgendes umfasst:
    einen Gebläseabschnitt (600) nach einem der vorhergehenden Ansprüche zum Zuführen von Luft in einen Umgehungskanal mit einer Gondel (400) und zum Zuführen von Luft in einen Verdichter.
     
    10. Verfahren zum Schützen und Erneuern einer Oberfläche (160, 162, 402, 412, 512, 516) in einem Gebläseabschnitt (600) für ein Gasturbinentriebwerk (20), das folgende Schritte umfasst:
    Entfernen der äußeren, lösbaren Schutzschicht, die Schmutz akkumuliert hat, von einer Oberfläche in dem Gebläseabschnitt (600), der mit einem lösbaren Filmmaterial bereitgestellt ist, das eine Vielzahl an Schichten (180) aus lösbarem Material beinhaltet, um eine grundliegende lösbare Schutzschicht zu hinterlassen.
     


    Revendications

    1. Section de soufflante (600) pour un moteur à turbine à gaz (20) comprenant :

    une nacelle (400),

    un rotor (601) et une pluralité de pales de soufflante (120), lesdites pales de soufflante (120) permettant de délivrer de l'air dans un conduit de dérivation défini vers l'intérieur de la nacelle (400) et de délivrer de l'air dans un moteur central, et des aubes de guidage (410) vers l'intérieur de ladite nacelle ;

    une surface (160, 162, 402, 412, 512, 516) de ladite section de soufflante étant pourvue d'un film amovible pour l'accumulation de débris,

    caractérisée en ce que :
    ledit film amovible comporte une pluralité de couches (180) de matériau amovible.


     
    2. Section de soufflante selon la revendication 1, dans laquelle ladite surface (160, 162) se trouve sur lesdites pales de soufflante (120).
     
    3. Section de soufflante selon la revendication 1 ou 2, dans laquelle ladite surface (402) se trouve sur ladite nacelle (400) .
     
    4. Section de soufflante selon une quelconque revendication précédente, dans laquelle ladite surface (412) se trouve sur lesdites aubes de guidage (410).
     
    5. Section de soufflante selon une quelconque revendication précédente, dans laquelle la section de soufflante (600) comprend en outre un capot de moteur central et ladite surface (516) se trouve sur le capot de moteur central (514).
     
    6. Section de soufflante selon une quelconque revendication précédente, dans laquelle la section de soufflante (600) comprend en outre une buse à section variable (13, 511) et ladite surface (512) se trouve sur la buse à section variable (511).
     
    7. Section de soufflante selon une quelconque revendication précédente, dans laquelle ledit film amovible présente au moins une propriété parmi des propriétés hydrophobes ou icephobiques.
     
    8. Section de soufflante ou moteur à turbine à gaz selon une quelconque revendication précédente, dans laquelle ledit film amovible présente une face inférieure relativement collante et une face externe relativement moins collante.
     
    9. Moteur à turbine à gaz (20) comprenant :
    une section de soufflante (600) selon une quelconque revendication précédente pour délivrer de l'air dans un conduit de dérivation avec une nacelle (400) et pour délivrer de l'air dans un compresseur.
     
    10. Procédé de protection et de remise en état d'une surface (160, 162, 402, 412, 512, 516) dans une section de soufflante (600) pour un moteur à turbine à gaz (20) comprenant les étapes :
    de retrait d'une couche amovible externe de protection ayant des débris accumulés à partir d'une surface dans la section de soufflante (600) pourvue d'un film amovible comportant une pluralité de couches (180) de matériau amovible de façon à laisser une couche amovible de protection sous-jacente.
     




    Drawing















    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description