(19)
(11)EP 2 955 881 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
27.05.2020 Bulletin 2020/22

(21)Application number: 13876631.6

(22)Date of filing:  28.02.2013
(51)Int. Cl.: 
H04L 12/70  (2013.01)
H04L 27/26  (2006.01)
H04L 5/00  (2006.01)
(86)International application number:
PCT/CN2013/072023
(87)International publication number:
WO 2014/131186 (04.09.2014 Gazette  2014/36)

(54)

DATA SENDING METHOD AND RECEIVING METHOD AND DEVICE

DATENSENDEVERFAHREN UND EMPFANGSVERFAHREN UND VORRICHTUNG

PROCÉDÉ DE TRANSMISSION DE DONNÉES ET PROCÉDÉ DE RÉCEPTION DE DONNÉES, ET DISPOSITIF ASSOCIÉ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
16.12.2015 Bulletin 2015/51

(73)Proprietor: Huawei Technologies Co., Ltd.
Longgang District Shenzhen, Guangdong 518129 (CN)

(72)Inventors:
  • LV, Yongxia
    Shenzhen Guangdong 518129 (CN)
  • JI, Tong
    Shenzhen Guangdong 518129 (CN)
  • ZHANG, Wen
    Shenzhen Guangdong 518129 (CN)

(74)Representative: Epping - Hermann - Fischer 
Patentanwaltsgesellschaft mbH Schloßschmidstraße 5
80639 München
80639 München (DE)


(56)References cited: : 
CN-A- 101 132 327
CN-A- 101 764 746
US-A1- 2008 192 678
US-B1- 6 823 005
CN-A- 101 645 731
JP-A- 2009 177 282
US-A1- 2011 235 529
  
  • HEBA KORAITIM ET AL: "Resource Allocation and Connection Admission Control in Satellite Networks", IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, IEEE SERVICE CENTER, PISCATAWAY, US, vol. 17, no. 2, 1 February 1999 (1999-02-01), XP011054917, ISSN: 0733-8716
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] Embodiments of the present invention relate to a communications technology, and in particular, to a data sending and receiving method and device.

BACKGROUND



[0002] In an existing Long Term Evolution (Long Term Evolution, LTE for short) system, uplink data transmission is based on connections, that is, if a user equipment (User Equipment, UE for short) needs to perform data transmission, the user equipment needs to implement uplink synchronization by random access first, and then establish a radio resource control (Radio Resource Control, RRC) connection and a radio bearer, and only after that can the user equipment implement data transmission.

[0003] In machine to machine (Machine to machine, M2M for short) communications, there are a large number of small packet services. If an existing data transmission manner is adopted, an overhead of more than 10 pieces of signaling is required for transmitting a piece of small data. This not only leads to a waste of resources, but also results in a large transmission delay and rather low transmission efficiency.

[0004] Document "NETWORK SYSTEM" (JP application JP2009177282A) discloses a method to reduce an address learning load in a large-scale network: A plurality of local networks is connected to a relay network. In the relay network, a database stores the MAC address of equipment belonging to the relay network for each local network. An Ethernet frame addressed to a destination address belonging to a third local network from a transmission source node belonging to a second local network is transferred to an edge switch provided on the boundary to the second local network in the relay network.

[0005] Document "Method and device for sending data" (CN application CN101764746A) discloses a method and a device for sending data, wherein the method comprises the following steps: judging whether data volume of data to be sent required currently is larger than the preset maximum and minimum threshold values or not; if the data volume is not larger than the maximum and minimum threshold values, calculating the transmission time required by the data to be sent according to the historical average speed is used for showing the average speed between a source address and a destination address of the data to be sent; judging whether transmission time surpasses a preset time threshold value or not, if the transmission time surpasses the time threshold value, adopting an asynchronous mode to send the date to be sent, and if the transmission time does not surpass the time threshold value, adopting a synchronous method to send the data to be sent; if the data volume is larger than the threshold value, adopting the asynchronous mode to send the date to be sent. The asynchronous transmission and the synchronous transmission are organically combined together so as to utilize the respective advantages of the two transmission modes to the maximum extent.

[0006] Document US 2011/0235529 A1 relates to a method and a communication network node for enabling automatic optimization of a random access preamble format usage in a communication network system. The network comprises the communication network node serving at least one cell to which user equipments are accessing. A random access preamble format is set for each cell and comprises a random access sequence length, TSEQ, and a random access preamble cyclic prefix length, TCP. First, the random access sequence length, TSEQ. is selected and then the random access preamble cyclic prefix length, T CP is selected. Based on the selected random access sequence length, T SEQ and random access preamble cyclic prefix length, TCP, which random access preamble format to use in said cell is selected.

[0007] Document US 2008/0192678 A1 refers to an apparatus and to a method for accessing a wireless telecommunications network by transmitting a random access signal. The random access signal includes a cyclic prefix signal and a guard interval. The cyclic prefix signal and the guard interval are adapted to optimize random access channel coverage in a telecommunications cell. The disclosed method for transmitting a random access signal includes transmitting a cyclic prefix signal. The duration of the cyclic prefix signal is approximately the sum of a maximum round trip delay duration of the telecommunications cell and a maximum delay spread duration. The method further includes providing a guard interval. The guard interval duration being approximately the duration of the maximum round trip delay of the telecommunications cell.

SUMMARY



[0008] Embodiments of the present invention are defined by the claims and provide a data sending and receiving method and device, to reduce a resource waste caused by transmission of small data, improve transmission efficiency of small data, and reduce a transmission delay.

[0009] According to the data sending and receiving method and device provided in the embodiments of the present invention, when a user equipment needs to send a packet, the user equipment compares a data volume of the packet with a received threshold, to determine whether the packet to be sent is a large data packet or a small data packet; when the data volume of the packet to be sent is less than the threshold, regards the packet to be sent as a small data packet, and sends the packet in a first data transmission manner; and when the data volume of the packet to be sent is greater than or equal to the threshold, regards the packet to be sent as a large data packet, and sends the packet in a second data transmission manner, thereby adopting different data transmission manners for packets of different sizes; and a network side device receives the packet in different data transmission manners, thereby solving problems caused by sending a small packet in a data transmission manner used for sending a large packet in the prior art, such as a resource waste, a relatively great transmission delay, and relatively low transmission efficiency.

BRIEF DESCRIPTION OF DRAWINGS



[0010] To describe the technical solutions in the embodiments of the present invention or in the prior art more clearly, the following briefly introduces accompanying drawings required for describing the embodiments or the prior art. Apparently, the accompanying drawings in the following description show merely some embodiments of the present invention, and a person of ordinary skill in the art may still derive other drawings according to these accompanying drawings without creative efforts.

FIG. 1 is a flowchart of a data sending method according to an embodiment of the present invention;

FIG. 2 is a schematic diagram of a data format used in a second data transmission manner according to an embodiment of the present invention;

FIG. 3 is a schematic diagram of a data format used in a first data transmission manner according to an embodiment of the present invention;

FIG. 4 is a flowchart of a data receiving method according to an embodiment of the present invention;

FIG. 5 is a schematic structural diagram of a UE according to an embodiment of the present invention;

FIG. 6 is a schematic structural diagram of another UE according to an embodiment of the present invention;

FIG. 7 is a schematic structural diagram of a network side device according to an embodiment of the present invention; and

FIG. 8 is a schematic structural diagram of another network side device according to an embodiment of the present invention.


DESCRIPTION OF EMBODIMENTS



[0011] To make the objectives, technical solutions, and advantages of the embodiments of the present invention more comprehensible, the following clearly and completely describes the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Apparently, the embodiments to be described are merely a part rather than all of the embodiments of the present invention. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts shall fall within the protection scope of the present invention.

[0012] To solve problems caused by transmitting small data in an M2M communication scenario in a connection-based data transmission manner in the prior art, such as a resource waste, a relatively great transmission delay, and relatively low transmission efficiency, an embodiment of the present invention provides a data transmission method, including: receiving, by a UE, a threshold; when a packet needs to be sent, determining whether a data volume of the packet to be sent is less than the threshold; if a result of the determining is yes, that is, the data volume of the packet to be sent is less than the threshold, sending the packet in a first data transmission manner; and if a result of the determining is no, sending the packet in a second data transmission manner; and correspondingly, determining, by a network side device, a transmission resource for a packet that is sent by a UE and is detected; if a data transmission manner corresponding to the determined transmission resource is a first data transmission manner, receiving the packet in the first data transmission manner; and if a data transmission manner corresponding to the determined transmission resource is a second data transmission manner, receiving the packet in the second data transmission manner. The threshold is mainly used to measure whether the packet to be sent is a small data packet, and may be entered by an operator, that is, the threshold may be set by a system, or may be periodically delivered by the network side device by using a broadcast message, or may be delivered by the network side device by using dedicated signaling. A specific value of the threshold may be set according to an actual application scenario, and is not limited in the embodiment of the present invention. The network side device mainly refers to a base station, but is not limited thereto.

[0013] In the embodiment of the present invention, the second data transmission manner mainly refers to a data transmission manner defined by any release of LTE release 8 to LTE release 11 , and the second data transmission manner is usually a manner in which data transmission can be performed only after uplink synchronization is implemented by random access and an RRC connection and a radio bearer are established, that is, a connection-based data transmission manner. Correspondingly, in the embodiment of the present invention, the first data transmission manner mainly refers to a data transmission manner defined by a release other than LTE Release 8 to LTE Release 11, and mainly refers to a manner in which data transmission can be performed without executing at least one of the operations of implementing uplink synchronization by random access, establishing an RRC connection, and establishing a radio bearer.

[0014] It can be seen from the above that, in the data sending method provided in the embodiment of the present invention, small data is sent based on the first data transmission manner, while a large datais sent in the second data transmission manner, which means different data transmission manners are provided for transmitting large data and small data. Unlike the prior art in which data can be sent only after uplink synchronization is implemented by random access and an RRC connection and a radio bearer are established, the first data transmission manner used for transmitting small data can reduce a signaling overhead, help to save resources, reduce a transmission delay, and improve transmission efficiency; and meanwhile, the second data transmission manner can ensure successful transmission of large data.

[0015] FIG. 1 is a flowchart of a data sending method according to an embodiment of the present invention. As shown in FIG. 1, the method in this embodiment includes:

Step 100: Receive a threshold.

Step 101: Determine whether a data volume of a packet to be sent is less than the threshold; if a result of the determining is yes, that is, the data volume of the packet is less than the threshold, it can be regarded that the packet is a small data packet, and step 102 is performed; otherwise, if a result of the determining is no, that is, the data volume of the packet is greater than or equal to the threshold, it can be regarded that the packet is a large data packet, and step 103 is performed.

Step 102: Send the packet in a first data transmission manner.

Step 103: Send the packet in a second data transmission manner.



[0016] In this implementation manner, a UE receives in advance a threshold for measuring a size of a packet to be sent, for example, the threshold may be, but is not limited to, 50 bytes (byte). When the UE needs to send an uplink packet, the UE first checks a data volume of the packet to be sent; if the data volume of the packet is greater than or equal to the threshold, the UE regards that the packet to be sent is a large data packet, and a connection-based data transmission method should be adopted, that is, the UE first implements uplink synchronization by random access, then establishes an RRC connection and a radio bearer, and afterwards transmits the packet; and if the data volume of the packet to be sent is less than the threshold, the UE regards that the packet to be sent is a small data packet, and a first data transmission manner may be adopted, so as to save resources, reduce a transmission delay, and improve transmission efficiency. The threshold may be set by a system, broadcast by the system, or informed by using dedicated signaling.

[0017] The step 100 of receiving information carrying a threshold for indicating whether the data volume is large or small includes: receiving the threshold which is sent by a network side device by using a first broadcast message; or receiving the threshold which is sent by a network side device by using first dedicated signaling; or receiving the threshold entered by an operator. The operator herein may be a user of the UE or another person. By using a man-machine interface provided by the UE, the operator sets the threshold in the UE in advance. This manner is one implementation manner of presetting the threshold by the system, but the manner of presetting the threshold by the system is not limited thereto. The first broadcast message herein is a type of broadcast message, and the first dedicated signaling is a type of dedicated signaling. In order to distinguish the two from a broadcast message and dedicated signaling described below, the broadcast message and the dedicated signaling herein are each named starting with "first". Optionally, in the embodiment of the present invention, the UE may receive the threshold each time the UE sends data, or the UE may receive a new threshold only when the threshold changes, and the UE uses the previously received threshold all the time if the threshold does not change. In a case that the first data transmission manner and the second data transmission manner coexist, transmission resources in the two data transmission manners may be multiplexed. For example, a multiplexing manner for a transmission resource used in the first data transmission manner and a transmission resource used in the second data transmission manner may be frequency division multiplexing, time division multiplexing, time-frequency division multiplexing, space division multiplexing, or the like. Optionally, the network side device may notify, by broadcasting or by using dedicated signaling, the UE of the transmission resource used in the second data transmission manner and the transmission resource used in the first data transmission manner. Specifically, before the sending the packet in a first data transmission manner or a second data transmission manner, the method may further include: receiving a mapping, which is sent by the network side device by using a second broadcast message or second dedicated signaling, between the transmission resources and the data transmission manners. Once which data transmission manner is used to transmit a packet is determined, a transmission resource used for transmitting the packet is determined. Based on this, the sending, by the UE, the packet in a first data transmission manner includes: determining, according to the mapping, the transmission resource corresponding to the first data transmission manner, and sending, on the determined transmission resource, the packet in the first data transmission manner; and correspondingly, the sending, by the UE, the packet in a second data transmission manner includes: determining, according to the mapping, the transmission resource corresponding to the second data transmission manner, and sending, on the determined transmission resource, the packet in the second data transmission manner. Similarly, the second broadcast message is a type of broadcast message, and the second dedicated signaling is a type of dedicated signaling. In order to distinguish the two from the broadcast message and the dedicated signaling described above, the broadcast message and the dedicated signaling are each named starting with "second".

[0018] In the embodiment of the present invention, a data format used in the second data transmission manner is: cyclic prefix (Cyclic Prefix, CP for short) + one OFDM symbol + guard time (Guard Time, GT for short).

[0019] In the embodiment of the present invention, a data format used in the first data transmission manner sequentially includes an information code word field, at least one OFDM symbol formed by the packet to be sent, and a GT, which may be expressed more directly as information code word field + data part + GT, where the data part is the at least one OFDM symbol formed by the packet to be sent, and the information code word field is used to indicate a start position of the data part (that is, the at least one OFDM symbol).

[0020] Optionally, the information code word field may include a CP. A duration of the CP included in the information code word field is greater than or equal to a sum of the double of a propagation delay and a maximum multipath delay spread in a current transmission environment. It can be seen that the CP in the data format used in the first data transmission manner is greater than or equal to the duration of the CP in the data format used in the second data transmission manner, and therefore, the CP in the data format used in the first data transmission manner may be referred to as a large CP.

[0021] Optionally, the GT in the data format used in the first data transmission manner is greater than the double of the propagation delay in the current transmission environment.

[0022] Optionally, if the multiplexing manner for the transmission resource used in the first data transmission manner and the transmission resource used in the second data transmission manner includes the frequency division multiplexing, for example, a frequency division multiplexing manner is adopted for the transmission resource used in the first data transmission manner and the transmission resource used in the second data transmission manner, or a time-frequency division multiplexing manner is adopted for the transmission resource used in the first data transmission manner and the transmission resource used in the second data transmission manner, a duration of the OFDM symbol in the data format used in the first data transmission manner is an integral multiple of a duration of the OFDM symbol in the data format used in the second data transmission manner.

[0023] Based on the data format used in the first data transmission manner, a process of sending, by the UE, the packet in the first data transmission manner includes: modulating the packet into at least one OFDM symbol; mapping, according to the data format used in the first data transmission manner, the at least one OFDM symbol obtained by modulation to the transmission resource used in the first data transmission manner, and sending the OFDM symbol.

[0024] It can be seen from the above that, in this embodiment, when a UE needs to send a packet, the UE compares a data volume of the packet with a threshold, to determine whether the packet to be sent is a large data packet or a small data packet; when the data volume of the packet to be sent is less than the threshold, the UE regards the packet to be sent as a small data packet, and sends the packet in a first data transmission manner; and when the data volume of the packet to be sent is greater than or equal to the threshold, the UE regards the packet to be sent as a large data packet, and adopts a second data transmission manner, thereby not only solving the problems caused by sending a small packet in the second data transmission manner, such as a resource waste, a relatively great transmission delay, and relatively low transmission efficiency, but also achieving transmission of some large packets in M2M communications, for example, transmission of video and entertainment information in video surveillance and telematics, and moreover, satisfying requirements of a service requiring transmission of a large packet and a service requiring transmission of a small packet.

[0025] With reference to the multiplexing manner for the transmission resources used in the two data transmission manners, the following describes the data format used in the first data transmission manner by using an example.

[0026] For example, a method of frequency division may be adopted for the transmission resource used in the first data transmission manner and the transmission resource used in the second data transmission manner, that is, some system spectrum resources are used for the first data transmission manner, and other system spectrum resources are used for the second data transmission manner. Based on this, a data format of the first data transmission manner may be set in a form of large CP + one or more large OFDM symbols + GT, where the large CP herein may be obtained from the last part of the OFDM symbol. The CP in the data format used in the first data transmission manner is referred to as a large CP because compared with a CP used in the second data transmission manner, the CP in the data format used in the first data transmission manner is larger than the CP in a data format used in the second data transmission manner. FIG. 2 shows the data format used in the second data transmission manner, and FIG. 3 shows the data format used in the first data transmission manner. The large CP herein is one specific implementation manner of the information code word field.

[0027] In order to cope with the double of a propagation delay and a maximum multipath delay spread, the CP in FIG. 3 is greater than or equal to the sum of the double of the propagation delay and the maximum multipath delay spread in a current transmission environment. In order to reduce as much as possible a ratio of a resource overhead spent on the CP to an overhead of the whole data part, a duration of one OFDM symbol in the data format used in the first data transmission manner is greater than a duration of one OFDM symbol in the data format used in the second data transmission manner. Besides, a frequency division multiplexing manner is adopted for the transmission resources used in the two data transmission manners. In order to maintain orthogonality between frequency resources of a user who uses the two data transmission manners and reduce interference between the frequency resources, the duration of the OFDM symbol in the data format used in the first data transmission manner may preferably be an integral multiple of the duration of the OFDM symbol in the data format used in the second data transmission manner. The GTs in the data formats used in the two data transmission manners are set for a purpose of reducing interference between adjacent data subframes.

[0028] For example, it is assumed that the threshold for determining whether the packet is a large data packet or a small data packet is 50 bytes, a subcarrier spacing used in the second data transmission manner is 15 KHz, and a subcarrier spacing used in the first data transmission manner is 2.5 KHz; 15/2.5=6, and 6 is an integer, which satisfies orthogonality between subcarriers used in the two data transmission manners. The duration of one OFDM symbol in the data format used in the first data transmission manner is six times the duration of one OFDM symbol in the data format used in the second data transmission manner, and durations of the CP and the GT used in the first data transmission manner are different from the durations of the CP and the GT used in the second data transmission manner. Besides, the data format used in the first data transmission manner also needs to satisfy that the duration of the CP plus the duration of one OFDM symbol plus the duration of the GT is an integral multiple of a timeslot. For example, if a timeslot is 500µs, the sum of the foregoing durations needs to be an integral multiple of 500µs, as illustrated in Table 1.
Table 1
Threshold is 50byteSub carrier spacing (Hz)Duration of CP (µs)Duration of OFDM symbol (µs)Duration of GT (µs)
First data transmission manner 2.5K 105 400 95
Second data transmission manner 15K 5 66.7 5


[0029] The specific values of the threshold, subcarrier spacing, and duration of the OFDM symbol given in the foregoing Table 1 are examples used in the embodiment of the present invention, but the present invention is not limited to the described specific values. If the values are changed to other values, corresponding modifications can be made according to the foregoing corresponding principles.

[0030] For another example, a method of time division may be adopted for the transmission resource used in the first data transmission manner and the transmission resource used in the second data transmission manner, that is, all system bandwidths are used for the first data transmission manner during some time, and are used for the second data transmission manner during another time. Based on this, the data format used in the first data transmission manner is a format of information code word field + data (DATA) part + GT. The data format may specifically be a format of CP + at least one OFDM symbol + GT, or may be a format of preamble (preamble) + at least one OFDM symbol + GT, where the CP and the preamble herein are specific implantation manners of the information code word field, and may be used for timing and channel estimation of the data part (that is, the at least one OFDM symbol) next to the CP or the preamble, and may also implicitly carry some information.

[0031] For another example, a method of time-frequency division may be adopted for the transmission resource used in the first data transmission manner and the transmission resource used in the second data transmission manner, that is, some system bandwidths are used for the first data transmission manner during some time, and other time-frequency resources are used for the second data transmission manner during another time. Based on this, the data format used in the first data transmission manner may be a form of information code word field + data (DATA) part + GT, where the information code word field herein may be a single code, for example, a CP, where the CP herein provides a time synchronization function; or the information code word field may be in a form of CP + time synchronization code, where the CP + time synchronization code herein provides the time synchronization function.

[0032] FIG. 4 is a flowchart of a data receiving method according to an embodiment of the present invention. As shown in FIG. 4, the data receiving method in this embodiment includes:

Step 401: Determine a transmission resource for a packet that is sent by a UE and is detected.

Step 402: Determine whether a data transmission manner corresponding to the determined transmission resource is a first data transmission manner or a second data transmission manner; if the data transmission manner corresponding to the determined transmission resource is the first data transmission manner, execute step 403; and if the data transmission manner corresponding to the determined transmission resource is the second data transmission manner, execute step 404.

Step 403: Receive the packet in the first data transmission manner.

Step 404: Receive the packet in the second data transmission manner.



[0033] In this embodiment, different data transmission manners are provided for receiving packets of different sizes. Besides, different data transmission manners are corresponding to different transmission resources. In other words, once a transmission resource is determined, it means that a data transmission manner in which the transmission resource is used is also determined; and once a data transmission manner is determined, it means that a transmission resource used in the data transmission manner is also determined.

[0034] In this embodiment, the data transmission manners may include but are not limited to the first data transmission manner and the second data transmission manner. For definitions of the first data transmission manner and the second data transmission manner, reference may be made to the description in the foregoing embodiment, which is not repeated herein.

[0035] A network side device performs detection on a transmission resource; when a packet sent by a UE is detected, the network side device determines a transmission resource used for sending the packet (that is, a transmission resource for the packet is detected); if the data transmission manner corresponding to the transmission resource is the first data transmission manner, the network side device receives the packet in the first data transmission manner; and if the data transmission manner corresponding to the transmission resource is the second data transmission manner, the network side device receives the packet in the second data transmission manner. Different data transmission manners are corresponding to different receiving processes. The receiving processes are not described in detail in the embodiment of the present invention.

[0036] In an optional implementation manner, before step 401, the method includes: sending a threshold to the UE by using a first broadcast message, so that the UE determines, according to a value relationship between a data volume of the packet and the threshold, the data transmission manner used for sending the packet; or sending a threshold to the UE by using first dedicated signaling, so that the UE determines, according to a value relationship between a data volume of the packet and the threshold, the data transmission manner used for sending the packet.

[0037] Besides the foregoing manners, the threshold may also be set by a system, that is, the network side device and the UE agree, in advance, on a threshold to be used. For example, for a UE, the threshold may be set in the UE by an operator.

[0038] For a detailed process of determining, by the UE according to the value relationship between the data volume of the packet and the threshold, the data transmission manner used for sending the packet, reference may be made to the description in the foregoing embodiment, which is not repeated herein.

[0039] In an optional implementation manner, before step 401, the method may further include: sending, by using a second broadcast message or second dedicated signaling, a mapping between the transmission resources and the data transmission manners to the UE, so that the UE determines, according to the mapping, the transmission resource used for transmitting the packet.

[0040] When the first data transmission manner and the second data transmission manner coexist, the transmission resources used in the first data transmission manner and the second data transmission manner may be multiplexed. For example, a multiplexing manner for the transmission resource used in the first data transmission manner and the transmission resource used in the second data transmission manner is frequency division multiplexing, time division multiplexing, time-frequency division multiplexing, or space division multiplexing.

[0041] In the embodiment of the present invention, a data format used in the second data transmission manner is: CP + one OFDM symbol + GT, as shown in FIG. 2.

[0042] In the embodiment of the present invention, a data format used in the first data transmission manner sequentially includes an information code word field, at least one OFDM symbol formed by the packet to be sent, and a GT, as shown in FIG. 3. The format may be expressed more directly as information code word field + data part + GT, where the data part is the at least one OFDM symbol formed by the packet to be sent, and the information code word field is used to indicate a start position of the data part (that is, the at least one OFDM symbol).

[0043] Optionally, the information code word field includes a CP, where the CP is greater than or equal to a sum of the double of a propagation delay and a maximum multipath delay spread in a current transmission environment. It can be seen that the CP in the data format used in the first data transmission manner is greater than or equal to the duration of the CP in the data format used in the second data transmission manner, and therefore, the CP in the data format used in the first data transmission manner may be referred to as a large CP.

[0044] Optionally, the GT in the data format used in the first data transmission manner is greater than the double of the propagation delay in the current transmission environment.

[0045] Optionally, if the multiplexing manner for the transmission resource used in the first data transmission manner and the transmission resource used in the second data transmission manner includes the frequency division multiplexing, for example, a frequency division multiplexing manner is adopted for the transmission resource used in the first data transmission manner and the transmission resource used in the second data transmission manner, or a time-frequency division multiplexing manner is adopted for the transmission resource used in the first data transmission manner and the transmission resource used in the second data transmission manner, a duration of the OFDM symbol in the data format used in the first data transmission manner is an integral multiple of a duration of the OFDM symbol in the data format used in the second data transmission manner.

[0046] As seen from above, in this embodiment, different data transmission manners are provided, and the different data transmission manners are distinguished from each other by using different transmission resources used in the different data transmission manners; when a packet arrives, by determining a transmission resource for the detected packet, the packet is received in a data transmission manner corresponding to the transmission resource, so that different packets can be received in different data transmission manners. Compared with a solution of transmitting a small packet in a data transmission manner used for transmitting a large packet in the prior art, this solution helps to reduce a resource waste, reduce a transmission delay, and improve transmission efficiency.

[0047] FIG. 5 is a schematic structural diagram of a UE according to an embodiment of the present invention. As shown in FIG. 5, the UE includes: a receiving module 51 and a sending module 52. The receiving module 51 is configured to receive a threshold, where the threshold is used to indicate whether a data volume is large or small.

[0048] The sending module 52 is connected to the receiving module 51, and is configured to: when a data volume of a packet to be sent is less than the threshold received by the receiving module 51, send the packet in a first data transmission manner; or when a data volume of the packet is greater than or equal to the threshold received by the receiving module 51, send the packet in a second data transmission manner.

[0049] In an optional implementation manner, a multiplexing manner for a transmission resource used in the first data transmission manner and a transmission resource used in the second data transmission manner is frequency division multiplexing, time division multiplexing, time-frequency division multiplexing, or space division multiplexing.

[0050] In an optional implementation manner, a data format used in the first data transmission manner sequentially includes an information code word field, at least one OFDM symbol formed by the packet, and a GT, where the information code word field is used to indicate a start position of the at least one OFDM symbol.

[0051] Optionally, the information code word field includes a CP, where the CP is greater than or equal to a sum of the double of a propagation delay and a maximum multipath delay spread in a current transmission environment.

[0052] Optionally, the GT in the data format used in the first data transmission manner is greater than the double of the propagation delay in the current transmission environment.

[0053] In an optional implementation manner, if the multiplexing manner for the transmission resource used in the first data transmission manner and the transmission resource used in the second data transmission manner includes the frequency division multiplexing, a duration of the OFDM symbol in the data format used in the first data transmission manner is an integral multiple of a duration of an OFDM symbol in a data format used in the second data transmission manner.

[0054] In an optional implementation manner, that the receiving module 51 is configured to receive the threshold includes that: the receiving module 51 is specifically configured to receive the threshold which is sent by a network side device by using a first broadcast message, or receive the threshold which is sent by a network side device by using first dedicated signaling, or receive the threshold entered by an operator.

[0055] In an optional implementation manner, the receiving module 51 is further configured to: before the sending module 52 sends the packet, receive a mapping which is between the transmission resources and the data transmission manners and is sent by the network side device by using a second broadcast message; or receive a mapping which is between the transmission resources and the data transmission manners and is sent by the network side device by using second dedicated signaling. Based on this, the sending module 52 may specifically be configured to: when the data volume of the packet is less than the threshold, determine, according to the mapping received by the receiving module 51, the transmission resource corresponding to the first data transmission manner, and send, on the determined transmission resource, the packet in the first data transmission manner; or when the data volume of the packet is greater than or equal to the threshold, determine, according to the mapping received by the receiving module 51, the transmission resource corresponding to the second data transmission manner, and send, on the determined transmission resource, the packet in the second data transmission manner.

[0056] The functional modules of the UE provided in this embodiment may be configured to execute the processes of the method embodiment shown in FIG. 1. The specific working principle of the UE is not repeated. For details, refer to the description in the method embodiment.

[0057] When a UE provided in this embodiment needs to send a packet, the UE compares a data volume of the packet with a threshold, to determine whether the packet to be sent is a large data packet or a small data packet; when the data volume of the packet to be sent is less than the threshold, the UE regards the packet to be sent as a small data packet, and sends the packet in a first data transmission manner; and when the data volume of the packet to be sent is greater than or equal to the threshold, the UE regards the packet to be sent as a large data packet, and sends the packet in a second data transmission manner. In this way, different data transmission manners are adopted for packets of different sizes, thereby solving problems caused by sending a small packet in a data transmission manner used for sending a large packet in the prior art, such as a resource waste, a relatively great transmission delay, and relatively low transmission efficiency. FIG. 6 is a schematic structural diagram of another UE according to an embodiment of the present invention. As shown in FIG. 6, the UE includes: a memory 61, a processor 62, and a communications interface 63.

[0058] The memory 61 is configured to store a program. Specifically, the program may include program code, where the program code includes a computer operating instruction. The memory 61 may include a high-speed RAM memory, or may further include a non-volatile memory (non-volatile memory), for example, at least one disk memory.

[0059] The processor 62 is configured to execute the program stored in the memory 61.

[0060] The processor 62 may be a central processing unit (Central Processing Unit, CPU for short) or an application specific integrated circuit (Application Specific Integrated Circuit, ASIC for short), or is configured as one or more integrated circuits implementing the embodiment of the present invention.

[0061] The communications interface 63 is configured to receive a threshold, and when a data volume of a packet to be sent is less than the threshold, send the packet in a first data transmission manner; or when a data volume of the packet is greater than or equal to the threshold, send the packet in a second data transmission manner.

[0062] In an optional implementation manner, a multiplexing manner for a transmission resource used in the first data transmission manner and a transmission resource used in the second data transmission manner is frequency division multiplexing, time division multiplexing, time-frequency division multiplexing, or space division multiplexing.

[0063] In an optional implementation manner, a data format used in the first data transmission manner sequentially includes an information code word field, at least one OFDM symbol formed by the packet, and a GT, where the information code word field is used to indicate a start position of the at least one OFDM symbol.

[0064] Optionally, the information code word field includes a CP, where the CP is greater than or equal to a sum of the double of a propagation delay and a maximum multipath delay spread in a current transmission environment.

[0065] Optionally, the GT in the data format used in the first data transmission manner is greater than the double of the propagation delay in the current transmission environment.

[0066] In an optional implementation manner, if the multiplexing manner for the transmission resource used in the first data transmission manner and the transmission resource used in the second data transmission manner includes the frequency division multiplexing, a duration of the OFDM symbol in the data format used in the first data transmission manner is an integral multiple of a duration of an OFDM symbol in a data format used in the second data transmission manner.

[0067] In an optional implementation manner, that the communications interface 63 is configured to receive the threshold includes that: the communications interface 63 is specifically configured to receive the threshold which is sent by a network side device by using a first broadcast message, or receive the threshold which is sent by a network side device by using first dedicated signaling, or receive the threshold entered by an operator.

[0068] In an optional implementation manner, the communications interface 63 is further configured to: before sending the packet, receive a mapping which is between the transmission resources and the data transmission manners and is sent by the network side device by using a second broadcast message; or receive a mapping which is between the transmission resources and the data transmission manners and is sent by the network side device by using second dedicated signaling. Based on this, that the communications interface 63 is configured to: when the data volume of the packet is less than the threshold, send the packet in a first data transmission manner includes that: the communications interface 63 is specifically configured to: when the data volume of the packet is less than the threshold, determine, according to the mapping, the transmission resource corresponding to the first data transmission manner, and send the packet on the determined transmission resource in the first data transmission manner. Similarly, that the communications interface 63 is configured to: when the data volume of the packet is greater than or equal to the threshold, send the packet in the second data transmission manner includes that: the communications interface 63 is specifically configured to: when the data volume of the packet is greater than or equal to the threshold, determine, according to the mapping, the transmission resource corresponding to the second data transmission manner, and send the packet on the determined transmission resource in the second data transmission manner.

[0069] Optionally, in specific implementation, if the memory 61, the processor 62, and the communications interface 63 are implemented independently, the memory 61, the processor 62, and the communications interface 63 may be interconnected through buses and implement communication with each other. The buses may be Industry Standard Architecture (Industry Standard Architecture, ISA for short) buses, Peripheral peripheral component interconnect buses, Extended Industry Standard Architecture (Extended Industry Standard Architecture, EISA for short) buses, and the like. The buses may be classified into address buses, data buses, control buses, and the like. For ease of expression, the buses are expressed as only one bold line in FIG. 6, but it does mean that only one bus or one type of buses exist.

[0070] Optionally, in specific implementation, if the memory 61, the processor 62, and the communications interface 63 are integrated on one chip for implementation, the memory 61, the processor 62, and the communications interface 63 may implement communication with each other by using internal interfaces.

[0071] The UE provided in this embodiment may be configured to execute the processes of the method embodiment shown in FIG. 1. The specific working principle of the UE is not repeated. For details, refer to the description in the method embodiment.

[0072] When a UE provided in this embodiment needs to send a packet, the UE compares a data volume of the packet with a threshold, to determine whether the packet to be sent is a large data packet or a small data packet; when the data volume of the packet to be sent is less than the threshold, the UE regards the packet to be sent as a small data packet, and sends the packet in a first data transmission manner; and when the data volume of the packet to be sent is greater than or equal to the threshold, the UE regards the packet to be sent as a large data packet, and sends the packet in a second data transmission manner. In this way, different data transmission manners are adopted for packets of different sizes, thereby solving problems caused by sending a small packet in a data transmission manner used for sending a large packet in the prior art, such as a resource waste, a relatively great transmission delay, and relatively low transmission efficiency.

[0073] FIG. 7 is a schematic structural diagram of a network side device according to an embodiment of the present invention. As shown in FIG. 7, the network side device includes: a determining module 71 and a receiving processing module 72.

[0074] The determining module 71 is configured to determine a transmission resource for a packet that is sent by a UE and is detected.

[0075] The receiving processing module 72 is connected to the determining module 71, and is configured to: when a data transmission manner corresponding to the determined transmission resource is a first data transmission manner, receive the packet in the first data transmission manner; or when a data transmission manner corresponding to the determined transmission resource is a second data transmission manner, receive the packet in the second data transmission manner.

[0076] In an optional implementation manner, as shown in FIG. 7, the network side device further includes: a sending module 73.

[0077] The sending module 73 is connected to the determining module 71, and is configured to: before the determining module 71 determines the transmission resource for the packet that is sent by the UE and is detected, send the threshold to the UE by using a first broadcast message, or send the threshold to the UE by using first dedicated signaling, so that the UE determines, according to a value relationship between a data volume of the packet and the threshold, the data transmission manner used for sending the packet. Besides the foregoing manners, the threshold may also be set by a system, that is, the network side device and the UE agree, in advance, on a threshold to be used.

[0078] Optionally, the sending module 73 may be further configured to: before the determining module 71 determines the transmission resource for the packet that is sent by the UE and is detected, send a mapping between the transmission resources and the data transmission manners to the UE by using a second broadcast message or second dedicated signaling, so that the UE determines, according to the mapping, the transmission resource used for transmitting the packet.

[0079] In an optional implementation manner, the data transmission manners include the first data transmission manner and the second data transmission manner.

[0080] Optionally, the transmission resources used in the first data transmission manner and the second data transmission manner may be multiplexed. For example, a multiplexing manner for the transmission resource used in the first data transmission manner and the transmission resource used in the second data transmission manner is frequency division multiplexing, time division multiplexing, time-frequency division multiplexing, or space division multiplexing.

[0081] In the embodiment of the present invention, a data format used in the second data transmission manner is: CP + one OFDM symbol + GT, as shown in FIG. 2.

[0082] In the embodiment of the present invention, a data format used in the first data transmission manner sequentially includes an information code word field, at least one OFDM symbol formed by the packet to be sent, and a GT, as shown in FIG. 3, which may be expressed more directly as information code word field + data part + GT, where the data part is the at least one OFDM symbol formed by the packet to be sent, and the information code word field is used to indicate a start position of the data part (that is, the at least one OFDM symbol).

[0083] Optionally, the information code word field includes a CP, where the CP is greater than or equal to a sum of the double of a propagation delay and a maximum multipath delay spread in a current transmission environment. It can be seen that the CP in the data format used in the first data transmission manner is greater than or equal to the duration of the CP in the data format used in the second data transmission manner, and therefore, the CP in the data format used in the first data transmission manner may be referred to as a large CP.

[0084] Optionally, the GT in the data format used in the first data transmission manner is greater than the double of the propagation delay in the current transmission environment.

[0085] Optionally, if the multiplexing manner for the transmission resource used in the first data transmission manner and the transmission resource used in the second data transmission manner includes the frequency division multiplexing, for example, a frequency division multiplexing manner is adopted for the transmission resource used in the first data transmission manner and the transmission resource used in the second data transmission manner, or a time-frequency division multiplexing manner is adopted for the transmission resource used in the first data transmission manner and the transmission resource used in the second data transmission manner, a duration of the OFDM symbol in the data format used in the first data transmission manner is an integral multiple of a duration of the OFDM symbol in the data format used in the second data transmission manner.

[0086] The network side device provided in this embodiment may be a base station, but is not limited thereto.

[0087] The functional modules of the network side device provided in this embodiment may be configured to execute the processes of the method embodiment shown in FIG. 4. A specific working principle of the network side device is not repeated.

[0088] The network side device provided in this embodiment supports different data transmission manners, and distinguishes the different data transmission manners from each other by using different transmission resources used in the different data transmission manners. When a packet arrives, by determining a transmission resource for the packet that is detected, the network side device receives the packet in a data transmission manner corresponding to the transmission resource, so that different packets can be received in different data transmission manners. Compared with a solution of transmitting a small packet in a data transmission manner used for transmitting a large packet in the prior art, this solution helps to reduce a resource waste, reduce a transmission delay, and improve transmission efficiency.

[0089] FIG. 8 is a schematic structural diagram of another network side device according to an embodiment of the present invention. As shown in FIG. 8, the network side device includes: a memory 81 and a processor 82.

[0090] The memory 81 is configured to store a program. Specifically, the program may include program code, where the program code includes a computer operating instruction. The memory 81 may include a high-speed RAM memory, or may further include a non-volatile memory (non-volatile memory), for example, at least one disk memory.

[0091] The processor 82 is configured to execute the program stored in the memory 81, so as to determine a transmission resource for a packet that is sent by a UE and is detected, and when a data transmission manner corresponding to the determined transmission resource is a first data transmission manner, receive the packet in the first data transmission manner; or when a data transmission manner corresponding to the determined transmission resource is a second data transmission manner, receive the packet in the second data transmission manner.

[0092] In an optional implementation manner, as shown in FIG. 8, the network side device further includes: a communications interface 83.

[0093] The communications interface 83 is configured to: before the processor 82 determines the transmission resource for the packet that is sent by the UE and is detected, send the threshold to the UE by using a first broadcast message, or send the threshold to the UE by using first dedicated signaling, so that the UE determines, according to a value relationship between a data volume of the packet and the threshold, the data transmission manner used for sending the packet. Besides the foregoing manners, the threshold may also be set by a system, that is, the network side device and the UE agree, in advance, on a threshold to be used.

[0094] Optionally, the communications interface 83 may be further configured to: before the processor 82 determines the transmission resource for the packet that is sent by the UE and is detected, send a mapping between the transmission resources and the data transmission manners to the UE by using a second broadcast message or second dedicated signaling, so that the UE determines, according to the mapping, the transmission resource used for transmitting the packet.

[0095] Optionally, the transmission resources used in the first data transmission manner and the second data transmission manner may be multiplexed. For example, a multiplexing manner for the transmission resource used in the first data transmission manner and the transmission resource used in the second data transmission manner is frequency division multiplexing, time division multiplexing, time-frequency division multiplexing, or space division multiplexing.

[0096] In the embodiment of the present invention, a data format used in the second data transmission manner is: CP + one OFDM symbol + GT, as shown in FIG. 2.

[0097] In the embodiment of the present invention, a data format used in the first data transmission manner sequentially includes an information code word field, at least one OFDM symbol formed by the packet to be sent, and a GT, as shown in FIG. 3, which may be expressed more directly as information code word field + data part + GT, where the data part is the at least one OFDM symbol formed by the packet to be sent, and the information code word field is used to indicate a start position of the data part (that is, the at least one OFDM symbol).

[0098] Optionally, the information code word field includes a CP, where the CP is greater than or equal to a sum of the double of a propagation delay and a maximum multipath delay spread in a current transmission environment. It can be seen that the CP in the data format used in the first data transmission manner is greater than or equal to the duration of the CP in the data format used in the second data transmission manner, and therefore, the CP in the data format used in the first data transmission manner may be referred to as a large CP.

[0099] Optionally, the GT in the data format used in the first data transmission manner is greater than the double of the propagation delay in the current transmission environment.

[0100] Optionally, if the multiplexing manner for the transmission resource used in the first data transmission manner and the transmission resource used in the second data transmission manner includes the frequency division multiplexing, for example, a frequency division multiplexing manner is adopted for the transmission resource used in the first data transmission manner and the transmission resource used in the second data transmission manner, or a time-frequency division multiplexing manner is adopted for the transmission resource used in the first data transmission manner and the transmission resource used in the second data transmission manner, a duration of the OFDM symbol in the data format used in the first data transmission manner is an integral multiple of a duration of the OFDM symbol in the data format used in the second data transmission manner.

[0101] The network side device provided in this embodiment may be a base station, but is not limited thereto.

[0102] The network side device provided in this embodiment may be configured to execute the processes of the method embodiment shown in FIG. 4. A specific working principle of the network side device is not repeated.

[0103] The network side device provided in this embodiment supports different data transmission manners, and distinguishes the different data transmission manners from each other by using different transmission resources used in the different data transmission manners. When a packet arrives, by determining a transmission resource for the packet that is detected, the network side device receives the packet in a data transmission manner corresponding to the transmission resource, so that different packets can be received in different data transmission manners. Compared with a solution of transmitting a small packet in a data transmission manner used for transmitting a large packet in the prior art, this solution helps to reduce a resource waste, reduce a transmission delay, and improve transmission efficiency.

[0104] A person of ordinary skill in the art may understand that, all or a part of the steps of the foregoing method embodiments may be implemented by a program instructing relevant hardware. The foregoing program may be stored in a computer readable storage medium. When the program runs, the steps of the foregoing method embodiments are performed. The foregoing storage mediums include various mediums capable of storing program code, such as a ROM, a RAM, a magnetic disk, or an optical disc.

[0105] Finally, it should be noted that the foregoing embodiments are merely intended for describing the technical solutions of the present invention other than limiting the present invention. Although the present invention is described in detail with reference to the foregoing embodiments, a person of ordinary skill in the art should understand that they may still make modifications to the technical solutions described in the foregoing embodiments or make equivalent replacements to some or all the technical features thereof, without departing from the scope of the technical solutions of the embodiments of the present invention.


Claims

1. A data sending method, comprising:

receiving a threshold (100);

if a data volume of a packet to be sent is less than the threshold, sending the packet in a first data transmission manner (102); and

if a data volume of the packet is greater than or equal to the threshold, sending the packet in a second data transmission manner (103)

wherein a multiplexing manner for a transmission resource used in the first data transmission manner and a transmission resource used in the second data transmission manner is frequency division multiplexing, and

a data format used in the first data transmission manner sequentially comprises an information code word field, a plurality of OFDM symbols formed by the packet, and a guard time GT, wherein the information code word field is used to indicate a start position of the OFDM symbols, and the information code word field comprises a cyclic prefix CP, the CP is greater than or equal to a sum of the double of a propagation delay and a maximum multipath delay spread in a current transmission environment, wherein:

the GT in the data format used in the first data transmission manner is greater than the double of the propagation delay in the current transmission environment, and

wherein a data format used in the second data transmission manner is: cyclic prefix, CP, plus one OFDM symbol plus guard time, GT, in the stated sequence,

the CP in the data format used in the first data transmission manner is greater than the duration of the CP in the data format used in the second data transmission manner, and a duration of the plurality of OFDM symbols in the data format used in the first data transmission manner is an integer multiple of a duration of the one OFDM symbol in the data format used in the second data transmission manner.


 
2. A data receiving method, comprising:

determining a transmission resource for a packet that is sent by a user equipment and is detected (401);

if a data transmission manner corresponding to the determined transmission resource is a first data transmission manner, receiving the packet in the first data transmission manner (403); and

if a data transmission manner corresponding to the determined transmission resource is a second data transmission manner, receiving the packet in the second data transmission manner (404);

wherein a multiplexing manner for the transmission resource used in the first data transmission manner and the transmission resource used in the second data transmission manner is frequency division multiplexing; and

a data format used in the first data transmission manner sequentially comprises an information code word field, a plurality of OFDM symbols formed by the packet, and a guard time GT, wherein the information code word field is used to indicate a start position of the OFDM symbols and the information code word field comprises a cyclic prefix CP, the CP is greater than or equal to a sum of the double of a propagation delay and a maximum multipath delay spread in a current transmission environment, wherein:

the GT in the data format used in the first data transmission manner is greater than the double of the propagation delay in the current transmission environment, and

wherein a data format used in the second data transmission manner is: cyclic prefix, CP, plus one OFDM symbol plus guard time, GT, in the stated sequence,

the CP in the data format used in the first data transmission manner is greater than the duration of the CP in the data format used in the second data transmission manner, and a duration of the plurality of OFDM symbols in the data format used in the first data transmission manner is an integer multiple of a duration of the one OFDM symbol in the data format used in the second data transmission manner.


 
3. The data receiving method according to claim 2, wherein before the determining a transmission resource for a packet that is sent by a user equipment and is detected, the method further comprises:

sending a threshold to the user equipment by using a first broadcast message, so that the user equipment determines, according to a value relationship between a data volume of the packet and the threshold, the data transmission manner used for sending the packet; or

sending a threshold to the user equipment by using first dedicated signaling, so that the user equipment determines, according to a value relationship between a data volume of the packet and the threshold, the data transmission manner used for sending the packet.


 
4. The data receiving method according to claim 2, wherein before the determining a transmission resource for a packet that is sent by a user equipment and is detected, the method further comprises:

sending a mapping between the transmission resources and the data transmission manners to the user equipment by using a second broadcast message, so that the user equipment determines, according to the mapping, the transmission resource used for transmitting the packet; or

sending a mapping between the transmission resources and the data transmission manners to the user equipment by using second dedicated signaling, so that the user equipment determines, according to the mapping, the transmission resource used for transmitting the packet.


 
5. A user equipment, comprising:

a receiving module, configured to receive a threshold (51); and

a sending module, configured to: when a data volume of a packet to be sent is less than the threshold, send the packet in a first data transmission manner; or when a data volume of the packet is greater than or equal to the threshold, send the packet in a second data transmission manner (52);

wherein a multiplexing manner for a transmission resource used in the first data transmission manner and a transmission resource used in the second data transmission manner is frequency division multiplexing; and

a data format used in the first data transmission manner sequentially comprises an information code word field, a plurality of OFDM symbols formed by the packet, and a guard time GT, wherein the information code word field is used to indicate a start position of the OFDM symbols, and the information code word field comprises a cyclic prefix CP, the CP is greater than or equal to a sum of the double of a propagation delay and a maximum multipath delay spread in a current transmission environment, wherein:

the GT in the data format used in the first data transmission manner is greater than the double of the propagation delay in the current transmission environment, and

wherein a data format used in the second data transmission manner is: cyclic prefix, CP, plus one OFDM symbol plus guard time, GT, in the stated sequence,

the CP in the data format used in the first data transmission manner is greater than the duration of the CP in the data format used in the second data transmission manner, and a duration of the plurality of OFDM symbols in the data format used in the first data transmission manner is an integer multiple of a duration of the one OFDM symbol in the data format used in the second data transmission manner.


 
6. A network side device, comprising:

a determining module, configured to determine a transmission resource for a packet that is sent by a user equipment and is detected; and

a receiving processing module, configured to: when a data transmission manner corresponding to the determined transmission resource is a first data transmission manner, receive the packet in the first data transmission manner; or when a data transmission manner corresponding to the determined transmission resource is a second data transmission manner, receive the packet in the second data transmission manner;

wherein a multiplexing manner for the transmission resource used in the first data transmission manner and the transmission resource used in the second data transmission manner is frequency division multiplexing; and

a data format used in the first data transmission manner sequentially comprises an information code word field, a plurality of OFDM symbols formed by the packet, and a guard time GT, wherein the information code word field is used to indicate a start position of the OFDM symbols and the information code word field comprises a cyclic prefix CP, the CP is greater than or equal to a sum of the double of a propagation delay and a maximum multipath delay spread in a current transmission environment, wherein:

the GT in the data format used in the first data transmission manner is greater than the double of the propagation delay in the current transmission environment, and

wherein a data format used in the second data transmission manner is: cyclic prefix, CP, plus one OFDM symbol plus guard time, GT, in the stated sequence,

the CP in the data format used in the first data transmission manner is greater than the duration of the CP in the data format used in the second data transmission manner, and a duration of the plurality of OFDM symbols in the data format used in the first data transmission manner is an integer multiple of a duration of the one OFDM symbol in the data format used in the second data transmission manner.


 
7. The network side device according to claim 6, further comprising:
a sending module, configured to: before the determining module determines the transmission resource for the packet that is sent by the user equipment and is detected, send the threshold to the user equipment by using a first broadcast message, or send the threshold to the user equipment by using first dedicated signaling, so that the user equipment determines, according to a value relationship between a data volume of the packet and the threshold, the data transmission manner used for sending the packet.
 
8. The network side device according to claim 7, wherein the sending module is further configured to: before the determining module determines the transmission resource for the packet that is sent by the user equipment and is detected, send a mapping between the transmission resources and the data transmission manners to the user equipment by using a second broadcast message or second dedicated signaling, so that the user equipment determines, according to the mapping, the transmission resource used for transmitting the packet.
 
9. The network side device according to any one of claims 7 or 8, wherein the first data transmission manner is a connectionless data transmission manner; and the second data transmission manner is a connection-based data transmission manner.
 
10. The network side device according to claim 9, wherein the connection-based data transmission manner refers to a manner in which data transmission can be performed only after uplink synchronization is implemented by random access and a radio resource control RRC connection and a radio bearer are established; and
the connectionless data transmission manner refers to a manner in which data transmission can be performed without executing at least one of the operations of implementing uplink synchronization by random access, establishing an RRC connection, and establishing a radio bearer.
 


Ansprüche

1. Datensendeverfahren, umfassend:

Empfangen eines Schwellenwerts (100);

wenn ein Datenvolumen eines zu sendenden Pakets kleiner als der Schwellenwert ist, Senden des Pakets in einer ersten Datenübertragungsart (102); und

wenn ein Datenvolumen des Pakets größer als oder gleich dem Schwellenwert ist, Senden des Pakets in einer zweiten Datenübertragungsart (103),

wobei eine Multiplexart für eine in der ersten Datenübertragungsart verwendete Übertragungsressource und eine in der zweiten Datenübertragungsart verwendete Übertragungsressource Frequenzmultiplex ist, und

wobei ein in der ersten Datenübertragungsart verwendetes Datenformat der Reihe nach ein Informationscodewortfeld, mehrere durch das Paket gebildete OFDM-Symbole und ein Schutzintervall GT umfasst, wobei das Informationscodewortfeld verwendet wird, um eine Startposition der OFDM-Symbole anzuzeigen, und das Informationscodewortfeld ein zyklisches Präfix CP umfasst, wobei das CP größer als oder gleich einer Summe des Doppelten einer Laufzeitverzögerung und einer maximalen Mehrwege-Laufzeitspreizung in einer aktuellen Übertragungsumgebung ist, wobei:

das GT in dem in der ersten Datenübertragungsart verwendeten Datenformat größer als das Doppelte der Laufzeitverzögerung in der aktuellen Übertragungsumgebung ist, und

wobei ein in der zweiten Datenübertragungsart verwendetes Datenformat ist: zyklisches Präfix, CP, plus ein OFDM-Symbol plus Schutzintervall, GT, in der angegebenen Reihenfolge,

wobei das CP in dem in der ersten Datenübertragungsart verwendeten Datenformat größer als die Dauer des CP in dem in der zweiten Datenübertragungsart verwendeten Datenformat ist, und eine Dauer der mehreren OFDM-Symbole in dem in der ersten Datenübertragungsart verwendeten Datenformat ein ganzzahliges Vielfaches einer Dauer des einen OFDM-Symbols in dem in der zweiten Datenübertragungsart verwendeten Datenformat ist.


 
2. Datenempfangsverfahren, umfassend:

Bestimmen einer Übertragungsressource für ein Paket, das durch eine Benutzereinrichtung gesendet wird und detektiert (401) wird;

wenn eine der bestimmten Übertragungsressource entsprechende Datenübertragungsart eine erste Datenübertragungsart ist, Empfangen des Pakets in der ersten Datenübertragungsart (403); und

wenn eine der bestimmten Übertragungsressource entsprechende Datenübertragungsart eine zweite Datenübertragungsart ist, Empfangen des Pakets in der zweiten Datenübertragungsart (404);

wobei eine Multiplexart für die in der ersten Datenübertragungsart verwendete Übertragungsressource und die in der zweiten Datenübertragungsart verwendete Übertragungsressource Frequenzmultiplex ist, und

wobei ein in der ersten Datenübertragungsart verwendetes Datenformat der Reihe nach ein Informationscodewortfeld, mehrere durch das Paket gebildete OFDM-Symbole und ein Schutzintervall GT umfasst, wobei das Informationscodewortfeld verwendet wird, um eine Startposition der OFDM-Symbole anzuzeigen, und das Informationscodewortfeld ein zyklisches Präfix CP umfasst, wobei das CP größer als oder gleich einer Summe des Doppelten einer Laufzeitverzögerung und einer maximalen Mehrwege-Laufzeitspreizung in einer aktuellen Übertragungsumgebung ist, wobei:

das GT in dem in der ersten Datenübertragungsart verwendeten Datenformat größer als das Doppelte der Laufzeitverzögerung in der aktuellen Übertragungsumgebung ist, und

wobei ein in der zweiten Datenübertragungsart verwendetes Datenformat ist: zyklisches Präfix, CP, plus ein OFDM-Symbol plus Schutzintervall, GT, in der angegebenen Reihenfolge,

wobei das CP in dem in der ersten Datenübertragungsart verwendeten Datenformat größer als die Dauer des CP in dem in der zweiten Datenübertragungsart verwendeten Datenformat ist, und eine Dauer der mehreren OFDM-Symbole in dem in der ersten Datenübertragungsart verwendeten Datenformat ein ganzzahliges Vielfaches einer Dauer des einen OFDM-Symbols in dem in der zweiten Datenübertragungsart verwendeten Datenformat ist.


 
3. Datenempfangsverfahren nach Anspruch 2, wobei vor dem Bestimmen einer Übertragungsressource für ein Paket, das durch eine Benutzereinrichtung gesendet wird und detektiert wird, das Verfahren ferner umfasst:

Senden eines Schwellenwerts an die Benutzereinrichtung unter Verwenden einer ersten Rundsendenachricht, sodass die Benutzereinrichtung gemäß einem Werteverhältnis zwischen einem Datenvolumen des Pakets und dem Schwellenwert die zum Senden des Pakets verwendete Datenübertragungsart bestimmt; oder

Senden eines Schwellenwerts an die Benutzereinrichtung unter Verwenden einer ersten dedizierten Signalgebung, sodass die Benutzereinrichtung gemäß einem Werteverhältnis zwischen einem Datenvolumen des Pakets und dem Schwellenwert die zum Senden des Pakets verwendete Datenübertragungsart bestimmt.


 
4. Datenempfangsverfahren nach Anspruch 2, wobei vor dem Bestimmen einer Übertragungsressource für ein Paket, das durch eine Benutzereinrichtung gesendet wird und detektiert wird, das Verfahren ferner umfasst:

Senden einer Zuordnung zwischen den Übertragungsressourcen und den Datenübertragungsarten an die Benutzereinrichtung unter Verwenden einer zweiten Rundsendenachricht, sodass die Benutzereinrichtung gemäß der Zuordnung die für ein Übertragen des Pakets verwendete Übertragungsressource bestimmt; oder

Senden einer Zuordnung zwischen den Übertragungsressourcen und den Datenübertragungsarten an die Benutzereinrichtung unter Verwenden einer zweiten dedizierten Signalgebung, sodass die Benutzereinrichtung gemäß der Zuordnung die für ein Übertragen des Pakets verwendete Übertragungsressource bestimmt.


 
5. Benutzereinrichtung, umfassend:

ein Empfangsmodul, das ausgestaltet ist, einen Schwellenwert (51) zu empfangen; und

ein Sendemodul, das zu Folgendem ausgestaltet ist: wenn ein Datenvolumen eines zu sendenden Pakets kleiner als der Schwellenwert ist, Senden des Pakets in einer ersten Datenübertragungsart; oder wenn ein Datenvolumen des Pakets größer als oder gleich dem Schwellenwert ist, Senden des Pakets in einer zweiten Datenübertragungsart (52);

wobei eine Multiplexart für eine in der ersten Datenübertragungsart verwendete Übertragungsressource und eine in der zweiten Datenübertragungsart verwendete Übertragungsressource Frequenzmultiplex ist; und

wobei ein in der ersten Datenübertragungsart verwendetes Datenformat der Reihe nach ein Informationscodewortfeld, mehrere durch das Paket gebildete OFDM-Symbole und ein Schutzintervall GT umfasst, wobei das Informationscodewortfeld verwendet wird, um eine Startposition der OFDM-Symbole anzuzeigen, und das Informationscodewortfeld ein zyklisches Präfix CP umfasst, wobei das CP größer als oder gleich einer Summe des Doppelten einer Laufzeitverzögerung und einer maximalen Mehrwege-Laufzeitspreizung in einer aktuellen Übertragungsumgebung ist, wobei:

das GT in dem in der ersten Datenübertragungsart verwendeten Datenformat größer als das Doppelte der Laufzeitverzögerung in der aktuellen Übertragungsumgebung ist, und

wobei ein in der zweiten Datenübertragungsart verwendetes Datenformat ist: zyklisches Präfix, CP, plus ein OFDM-Symbol plus Schutzintervall, GT, in der angegebenen Reihenfolge,

wobei das CP in dem in der ersten Datenübertragungsart verwendeten Datenformat größer als die Dauer des CP in dem in der zweiten Datenübertragungsart verwendeten Datenformat ist, und eine Dauer der mehrere OFDM-Symbole in dem in der ersten Datenübertragungsart verwendeten Datenformat ein ganzzahliges Vielfaches einer Dauer des einen OFDM-Symbols in dem in der zweiten Datenübertragungsart verwendeten Datenformat ist.


 
6. Netzwerkseitige Vorrichtung, umfassend:

ein Bestimmungsmodul, das ausgestaltet ist, eine Übertragungsressource für ein Paket, das durch eine Benutzereinrichtung gesendet ist und detektiert ist, zu bestimmen; und

ein Empfangsverarbeitungsmodul, das zu Folgendem ausgestaltet ist: wenn eine der bestimmten Übertragungsressource entsprechende Datenübertragungsart eine erste Datenübertragungsart ist, Empfangen des Pakets in der ersten Datenübertragungsart; oder wenn eine der bestimmten Übertragungsressource entsprechende Datenübertragungsart eine zweite Datenübertragungsart ist, Empfangen des Pakets in der zweiten Datenübertragungsart;

wobei eine Multiplexart für die in der ersten Datenübertragungsart verwendete Übertragungsressource und die in der zweiten Datenübertragungsart verwendete Übertragungsressource Frequenzmultiplex ist; und

wobei ein in der ersten Datenübertragungsart verwendetes Datenformat der Reihe nach ein Informationscodewortfeld, mehrere durch das Paket gebildete OFDM-Symbole und ein Schutzintervall GT umfasst, wobei das Informationscodewortfeld verwendet wird, um eine Startposition der OFDM-Symbole anzuzeigen, und das Informationscodewortfeld ein zyklisches Präfix CP umfasst, wobei das CP größer als oder gleich einer Summe des Doppelten einer Laufzeitverzögerung und einer maximalen Mehrwege-Laufzeitspreizung in einer aktuellen Übertragungsumgebung ist, wobei:

das GT in dem in der ersten Datenübertragungsart verwendeten Datenformat größer als das Doppelte der Laufzeitverzögerung in der aktuellen Übertragungsumgebung ist, und

wobei ein in der zweiten Datenübertragungsart verwendetes Datenformat ist: zyklisches Präfix, CP, plus ein OFDM-Symbol plus Schutzintervall, GT, in der angegebenen Reihenfolge,

wobei das CP in dem in der ersten Datenübertragungsart verwendeten Datenformat größer als die Dauer des CP in dem in der zweiten Datenübertragungsart verwendeten Datenformat ist, und eine Dauer der mehreren OFDM-Symbole in dem in der ersten Datenübertragungsart verwendeten Datenformat ein ganzzahliges Vielfaches einer Dauer des einen OFDM-Symbols in dem in der zweiten Datenübertragungsart verwendeten Datenformat ist.


 
7. Netzwerkseitige Vorrichtung nach Anspruch 6, ferner umfassend:
ein Sendemodul, das zu Folgendem ausgestaltet ist: bevor das Bestimmungsmodul die Übertragungsressource für das Paket, das durch die Benutzereinrichtung gesendet ist und detektiert ist, bestimmt, Senden des Schwellenwerts an die Benutzereinrichtung unter Verwenden einer ersten Rundsendenachricht, oder Senden des Schwellenwerts an die Benutzereinrichtung unter Verwenden einer ersten dedizierten Signalgebung, sodass die Benutzereinrichtung gemäß einem Werteverhältnis zwischen einem Datenvolumen des Pakets und dem Schwellenwert die zum Senden des Pakets verwendete Datenübertragungsart bestimmt.
 
8. Netzwerkseitige Vorrichtung nach Anspruch 7, wobei das Sendemodul ferner zu Folgendem ausgestaltet ist: bevor das Bestimmungsmodul die Übertragungsressource für das Paket, das durch die Benutzereinrichtung gesendet ist und detektiert ist, bestimmt, Senden einer Zuordnung zwischen den Übertragungsressourcen und den Datenübertragungsarten an die Benutzereinrichtung unter Verwenden einer zweiten Rundsendenachricht oder zweiten dedizierten Signalgebung, sodass die Benutzereinrichtung gemäß der Zuordnung die für ein Übertragen des Pakets verwendete Übertragungsressource bestimmt.
 
9. Netzwerkseitige Vorrichtung nach Anspruch 7 oder 8, wobei die erste Datenübertragungsart eine verbindungslose Datenübertragungsart ist; und die zweite Datenübertragungsart eine verbindungsbasierte Datenübertragungsart ist.
 
10. Netzwerkseitige Vorrichtung nach Anspruch 9, wobei sich die verbindungsbasierte Datenübertragungsart auf eine Art bezieht, in der eine Datenübertragung erst durchgeführt werden kann, nachdem eine Aufwärtsstreckensynchronisierung durch Direktzugriff umgesetzt ist und eine Funkressourcensteuerungs- RRC-Verbindung und ein Funkträger hergestellt wurden; und
sich die verbindungslose Datenübertragungsart auf eine Art bezieht, in der eine Datenübertragung durchgeführt werden kann, ohne dass mindestens einer der Vorgänge eines Umsetzens einer Aufwärtsstreckensynchronisierung durch Direktzugriff, Herstellen einer Funkressourcensteuerungs-RRC-Verbindung und Herstellen eines Funkträgers ausgeführt wird.
 


Revendications

1. Procédé d'envoi de données consistant :

à recevoir un seuil (100) ;

si un volume de données d'un paquet à envoyer est inférieur au seuil, à envoyer le paquet selon une première manière de transmission de données (102) ; et

si un volume de données du paquet est supérieur ou égal au seuil, à envoyer le paquet selon une seconde manière de transmission de données (103),

dans lequel une manière de multiplexage pour une ressource de transmission utilisée dans la première manière de transmission de données et pour une ressource de transmission utilisée dans la seconde manière de transmission de données est un multiplexage par répartition en fréquence, et

un format de données utilisé dans la première manière de transmission de données comprend de manière séquentielle un champ de mot codé d'informations, une pluralité de symboles de multiplexage OFDM formés par le paquet et un temps de garde, GT,

dans lequel le champ de mot codé d'informations est utilisé pour indiquer une position de début des symboles de multiplexage OFDM et le champ de mot codé d'informations comprend un préfixe cyclique, CP, le préfixe CP est supérieur ou égal à une somme du double d'un délai de propagation et d'un étalement de délai multitrajet maximal dans un environnement de transmission actuel, dans lequel :

le temps GT dans le format de données utilisé dans la première manière de transmission de données est supérieur au double du délai de propagation dans l'environnement de transmission actuel, et

dans lequel un format de données utilisé dans la seconde manière de transmission de données est : un préfixe cyclique, CP, plus un seul symbole de multiplexage OFDM plus le temps de garde, GT, dans la séquence indiquée,

le préfixe CP dans le format de données utilisé dans la première manière de transmission de données est supérieur à la durée du préfixe CP dans le format de données utilisé dans la seconde manière de transmission de données et une durée de la pluralité de symboles de multiplexage OFDM dans le format de données utilisé dans la première manière de transmission de données est un multiple entier d'une durée du seul symbole de multiplexage OFDM dans le format de données utilisé dans la seconde manière de transmission de données.


 
2. Procédé de réception de données consistant :

à déterminer une ressource de transmission pour un paquet qui est envoyé par un équipement utilisateur et qui est détecté (401) ;

si une manière de transmission de données correspondant à la ressource de transmission déterminée est une première manière de transmission de données, à recevoir le paquet dans la première manière de transmission de données (403) ; et

si une manière de transmission de données correspondant à la ressource de transmission déterminée est une seconde manière de transmission de données, à recevoir le paquet dans la seconde manière de transmission de données (404) ;

dans lequel une manière de multiplexage pour la ressource de transmission utilisée dans la première manière de transmission de données et pour la ressource de transmission utilisée dans la seconde manière de transmission de données est un multiplexage par répartition en fréquence ; et

un format de données utilisé dans la première manière de transmission de données comprend de manière séquentielle un champ de mot codé d'informations, une pluralité de symboles de multiplexage OFDM formés par le paquet et un temps de garde, GT,

dans lequel le champ de mot codé d'informations est utilisé pour indiquer une position de début des symboles de multiplexage OFDM et le champ de mot codé d'informations comprend un préfixe cyclique, CP, le préfixe CP est supérieur ou égal à une somme du double d'un délai de propagation et d'un étalement de délai multitrajet maximal dans un environnement de transmission actuel, dans lequel :

le temps GT dans le format de données utilisé dans la première manière de transmission de données est supérieur au double du délai de propagation dans l'environnement de transmission actuel, et

dans lequel un format de données utilisé dans la seconde manière de transmission de données est : un préfixe cyclique, CP, plus un seul symbole de multiplexage OFDM plus le temps de garde, GT, dans la séquence indiquée,

le préfixe CP dans le format de données utilisé dans la première manière de transmission de données est supérieur à la durée du préfixe CP dans le format de données utilisé dans la seconde manière de transmission de données et une durée de la pluralité de symboles de multiplexage OFDM dans le format de données utilisé dans la première manière de transmission de données est un multiple entier d'une durée du seul symbole de multiplexage OFDM dans le format de données utilisé dans la seconde manière de transmission de données.


 
3. Procédé de réception de données selon la revendication 2, le procédé consistant en outre, avant la détermination d'une ressource de transmission pour un paquet qui est envoyé par un équipement utilisateur et qui est détecté, :

à envoyer un seuil à l'équipement utilisateur en utilisant un premier message de diffusion de telle sorte que l'équipement utilisateur détermine, en fonction d'une relation de valeur entre un volume de données du paquet et le seuil, la manière de transmission de données utilisée pour envoyer le paquet ; ou

à envoyer un seuil à l'équipement utilisateur en utilisant une première signalisation dédiée de telle sorte que l'équipement utilisateur détermine, en fonction d'une relation de valeur entre un volume de données du paquet et le seuil, la manière de transmission de données utilisée pour envoyer le paquet.


 
4. Procédé de réception de données selon la revendication 2, le procédé consistant en outre , avant la détermination d'une ressource de transmission pour un paquet qui est envoyé par un équipement utilisateur et qui est détecté:

à envoyer une mise en correspondance entre les ressources de transmission et les manières de transmission de données à l'équipement utilisateur en utilisant un second message de diffusion de telle sorte que l'équipement utilisateur détermine, en fonction de la mise en correspondance, la ressource de transmission utilisée pour transmettre le paquet ; ou

à envoyer une mise en correspondance entre les ressources de transmission et les manières de transmission de données à l'équipement utilisateur en utilisant une seconde signalisation dédiée de telle sorte que l'équipement utilisateur détermine, en fonction de la mise en correspondance, la ressource de transmission utilisée pour transmettre le paquet.


 
5. Équipement utilisateur comprenant :

un module de réception, configuré pour recevoir un seuil (51) ; et

un module d'envoi, configuré : lorsqu'un volume de données d'un paquet à envoyer est inférieur au seuil, pour envoyer le paquet selon une première manière de transmission de données ; ou lorsqu'un volume de données du paquet est supérieur ou égal au seuil, pour envoyer le paquet selon une seconde manière de transmission de données(52) ;

dans lequel une manière de multiplexage pour une ressource de transmission utilisée dans la première manière de transmission de données et pour une ressource de transmission utilisée dans la seconde manière de transmission de données est un multiplexage par répartition en fréquence, et

un format de données utilisé dans la première manière de transmission de données comprend de manière séquentielle un champ de mot codé d'informations, une pluralité de symboles de multiplexage OFDM formés par le paquet et un temps de garde, GT,

dans lequel le champ de mot codé d'informations est utilisé pour indiquer une position de début des symboles de multiplexage OFDM et le champ de mot codé d'informations comprend un préfixe cyclique, CP, le préfixe CP est supérieur ou égal à une somme du double d'un délai de propagation et d'un étalement de délai multitrajet maximal dans un environnement de transmission actuel, dans lequel :

le temps GT dans le format de données utilisé dans la première manière de transmission de données est supérieur au double du délai de propagation dans l'environnement de transmission actuel, et

dans lequel un format de données utilisé dans la seconde manière de transmission de données est : un préfixe cyclique, CP, plus un seul symbole de multiplexage OFDM plus le temps de garde, GT, dans la séquence indiquée,

le préfixe CP dans le format de données utilisé dans la première manière de transmission de données est supérieur à la durée du préfixe CP dans le format de données utilisé dans la seconde manière de transmission de données et une durée de la pluralité de symboles de multiplexage OFDM dans le format de données utilisé dans la première manière de transmission de données est un multiple entier d'une durée du seul symbole de multiplexage OFDM dans le format de données utilisé dans la seconde manière de transmission de données.


 
6. Dispositif côté réseau comprenant :

un module de détermination, configuré pour déterminer une ressource de transmission pour un paquet qui est envoyé par un équipement utilisateur et qui est détecté ; et

un module de traitement de réception, configuré : lorsqu'une manière de transmission de données correspondant à la ressource de transmission déterminée est une première manière de transmission de données, pour recevoir le paquet dans la première manière de transmission de données ; ou lorsqu'une manière de transmission de données correspondant à la ressource de transmission déterminée est une seconde manière de transmission de données, pour recevoir le paquet dans la seconde manière de transmission de données ;

dans lequel une manière de multiplexage pour la ressource de transmission utilisée dans la première manière de transmission de données et pour la ressource de transmission utilisée dans la seconde manière de transmission de données est un multiplexage par répartition en fréquence ; et

un format de données utilisé dans la première manière de transmission de données comprend de manière séquentielle un champ de mot codé d'informations, une pluralité de symboles de multiplexage OFDM formés par le paquet et un temps de garde, GT,

dans lequel le champ de mot codé d'informations est utilisé pour indiquer une position de début des symboles de multiplexage OFDM et le champ de mot codé d'informations comprend un préfixe cyclique, CP, le préfixe CP est supérieur ou égal à une somme du double d'un délai de propagation et d'un étalement de délai multitrajet maximal dans un environnement de transmission actuel, dans lequel :

le temps GT dans le format de données utilisé dans la première manière de transmission de données est supérieur au double du délai de propagation dans l'environnement de transmission actuel, et

dans lequel un format de données utilisé dans la seconde manière de transmission de données est : un préfixe cyclique, CP, plus un seul symbole de multiplexage OFDM plus le temps de garde, GT, dans la séquence indiquée,

le préfixe CP dans le format de données utilisé dans la première manière de transmission de données est supérieur à la durée du préfixe CP dans le format de données utilisé dans la seconde manière de transmission de données et une durée de la pluralité de symboles de multiplexage OFDM dans le format de données utilisé dans la première manière de transmission de données est un multiple entier d'une durée du seul symbole de multiplexage OFDM dans le format de données utilisé dans la seconde manière de transmission de données.


 
7. Dispositif côté réseau selon la revendication 6, comprenant en outre :
un module d'envoi, configuré : avant que le module de détermination ne détermine la ressource de transmission pour le paquet qui est envoyé par l'équipement utilisateur et qui est détecté, pour envoyer le seuil à l'équipement utilisateur en utilisant un premier message de diffusion ou pour envoyer le seuil à l'équipement utilisateur en utilisant une première signalisation dédiée de telle sorte que l'équipement utilisateur détermine, en fonction d'une relation de valeur entre un volume de données du paquet et le seuil, la manière de transmission de données utilisée pour envoyer le paquet.
 
8. Dispositif côté réseau selon la revendication 7, dans lequel le module d'envoi est en outre configuré : avant que le module de détermination ne détermine la ressource de transmission pour le paquet qui est envoyé par l'équipement utilisateur et qui est détecté, pour envoyer une mise en correspondance entre les ressources de transmission et les manières de transmission de données à l'équipement utilisateur en utilisant un second message de diffusion ou une seconde signalisation dédiée de telle sorte que l'équipement utilisateur détermine, en fonction de la mise en correspondance, la ressource de transmission utilisée pour transmettre le paquet.
 
9. Dispositif côté réseau selon l'une quelconque des revendications 7 et 8, dans lequel la première manière de transmission de données est une manière de transmission de données sans connexion ; et la seconde manière de transmission de données est une manière de transmission de données basée sur une connexion.
 
10. Dispositif côté réseau selon la revendication 9, dans lequel la manière de transmission de données basée sur une connexion se réfère à une manière selon laquelle une transmission de données peut être effectuée seulement après qu'une synchronisation de liaison montante est mise en œuvre au moyen d'un accès aléatoire et qu'une connexion de commande de ressources radio, RRC, et une porteuse radio sont établies ; et
la manière de transmission de données sans connexion se réfère à une manière selon laquelle une transmission de données peut être effectuée sans exécuter au moins l'une des opérations de mise en œuvre d'une synchronisation de liaison montante au moyen d'un accès aléatoire, d'établissement d'une connexion de commande RRC et d'établissement d'une porteuse radio.
 




Drawing












REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description