(19)
(11)EP 2 958 611 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
11.04.2018 Bulletin 2018/15

(21)Application number: 14705507.3

(22)Date of filing:  19.02.2014
(51)International Patent Classification (IPC): 
A61M 5/24(2006.01)
G01D 5/252(2006.01)
A61M 5/31(2006.01)
G01D 5/12(2006.01)
A61M 5/315(2006.01)
A61M 5/20(2006.01)
(86)International application number:
PCT/EP2014/053220
(87)International publication number:
WO 2014/128156 (28.08.2014 Gazette  2014/35)

(54)

ROTARY SENSOR MODULE WITH AXIAL SWITCH

DREHSENSORMODUL MIT AXIALSCHALTER

MODULE DE CAPTEUR ROTATIF AVEC COMMUTATION AXIALE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 19.02.2013 EP 13155802
22.02.2013 US 201361767818 P

(43)Date of publication of application:
30.12.2015 Bulletin 2015/53

(73)Proprietor: Novo Nordisk A/S
2880 Bagsværd (DK)

(72)Inventors:
  • MADSEN, John Østergaard
    2880 Bagsværd (DK)
  • OLESEN, Jan
    2880 Bagsværd (DK)
  • WINDUM, Jesper Peter
    2880 Bagsværd (DK)


(56)References cited: : 
WO-A1-96/19872
WO-A2-2008/091838
WO-A1-2013/010889
US-A- 5 669 489
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates to devices, assemblies and systems adapted for capturing information in respect of both rotational movement and axial movement. In a specific aspect the invention addresses issues relating to electronic dose data capturing in and for a drug delivery device.

    BACKGROUND OF THE INVENTION



    [0002] In the disclosure of the present invention reference is mostly made to the treatment of diabetes by delivery of insulin using a drug delivery device, however, this is only an exemplary use of the present invention.

    [0003] Drug injection devices have greatly improved the lives of patients who must self-administer drugs and biological agents. Drug injection devices may take many forms, including simple disposable devices that are little more than an ampoule with an injection means or they may be durable devices adapted to be used with pre-filled cartridges. Regardless of their form and type, they have proven to be great aids in assisting patients to self-administer injectable drugs and biological agents. They also greatly assist care givers in administering injectable medicines to those incapable of performing self-injections.

    [0004] Performing the necessary insulin injection at the right time and in the right size is essential for managing diabetes, i.e. compliance with the specified insulin regimen is important. In order to make it possible for medical personnel to determine the effectiveness of a prescribed dosage pattern, diabetes patients are encouraged to keep a log of the size and time of each injection. However, such logs are normally kept in handwritten notebooks, from the logged information may not be easily uploaded to a computer for data processing. Furthermore, as only events, which are noted by the patient, are logged, the note book system requires that the patient remembers to log each injection, if the logged information is to have any value in the treatment of the patient's disease. A missing or erroneous record in the log results in a misleading picture of the injection history and thus a misleading basis for the medical personnel's decision making with respect to future medication. Accordingly, it may be desirable to automate the logging of ejection information from medication delivery systems.

    [0005] Correspondingly, a number of injection devices with a dose monitoring/acquisition feature has been provided, see e.g. in WO 2013/010889 which forms the basis for the preamble of claim 1, US 2009/0318865, WO 2010/052275 and US 7,008,399. However, most devices of today are without it. Rotary sensor assemblies are known from e.g. WO 96/19872 and US 5,669,489.

    [0006] Having regard to the above, it is an object of the present invention to provide a drug delivery device as well as components and assemblies therefore which cost-effectively and reliably allows detection and storage of dose data related to use of a drug delivery device. It is a further object to provide such components and assemblies which could be used also in other applications having the same types of input.

    DISCLOSURE OF THE INVENTION



    [0007] In the disclosure of the present invention, embodiments and aspects will be described which will address one or more of the above objects or which will address objects apparent from the below disclosure as well as from the description of exemplary embodiments.

    [0008] Thus, in a first aspect of the invention a drug delivery device as defined in claim 1 is provided.

    [0009] Such an arrangement allows a rotary sensor assembly to be incorporated cost-effectively in a drug delivery device in which it is desirable to combine a rotary sensor with an axially actuated contact in a compact and cost-effective way. The contact provided by an axially actuatable contact structure may for short be denoted an "axial switch".

    [0010] The second rotary sensor part may be in the form of a metallic disc member comprising a plurality of integrally formed flexible arms forming the contact structures, at least one of the flexible arms (333) being axially moveable to thereby form the actuatable contact structure. The sensor assembly may be provided with electronic circuitry adapted to determine a rotational position between the first and second portions based on a given pattern of contact positions. The determination of rotation may be in the form of detection of incremental rotation (i.e. counting), absolute determination within a given number of degrees, or absolutely within a full rotation. The circuitry will typically comprise a processor in the form of a microprocessor, microcontroller or CPU which may be of a general purpose design or be specifically designed for the actual device.

    [0011] In an exemplary embodiment the sensor assembly is provided in combination with a housing, with the first portion being arranged rotationally relative to the housing, and the second portion being arranged non-rotationally relative to the housing, and with the first and second portions being arranged axially moveable relative to the housing, the actuator means being arranged between the housing and the second portion. The actuator means could be in the form of a mechanical connection formed between the housing and the flexible switch arm, whereby relative axial movement between the housing and the flexible switch arm moves the switch contact between the connected and dis-connected positions.
    The first portion of the sensor assembly may be mounted to and rotate with the rotational member, the first portion comprising electronic circuitry adapted to estimate an amount of expelled drug based on detection of rotational movement between the first and second portions corresponding to a set and/or expelled dose. The electronic circuitry may be provided with logging means adapted to create a log for dose amounts of drug expelled from a cartridge by the drug expelling means, the dose amounts being calculated based on relative rotation between the first and second rotary sensor parts during setting and/or expelling of a dose of drug. The electronic circuitry may be provided with transmitter means adapted to transmit stored data to an external receiver. Alternatively or in addition, the first portion may comprise a display which may be controlled to be turned off during rotation of the first portion.
    As used herein, the term "drug" is meant to encompass any flowable medicine formulation capable of being passed through a delivery means such as a cannula or hollow needle in a controlled manner, such as a liquid, solution, gel or fine suspension, and containing one or more drug agents. The drug may be a single drug compound or a premixed or co-formulated multiple drug compounds drug agent from a single reservoir. Representative drugs include pharmaceuticals such as peptides (e.g. insulins, insulin containing drugs, GLP-1 containing drugs as well as derivatives thereof), proteins, and hormones, biologically derived or active agents, hormonal and gene based agents, nutritional formulas and other substances in both solid (dispensed) or liquid form. In the description of the exemplary embodiments reference will be made to the use of insulin and GLP-1 containing drugs, this including analogues thereof as well as combinations with one or more other drugs.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0012] In the following the invention will be further described with reference to the drawings, wherein

    figs. 1 and 2 show a front-loaded drug delivery device with respectively without a drug cartridge mounted,

    fig. 3 shows in an exploded view a drug delivery device subassembly comprising a logging module,

    fig. 4 shows an exploded view of the logging module of fig. 3,

    figs. 5 and 6 show first respectively second rotary sensor parts of the module of fig. 3,

    fig. 7 shows the logging module of fig. 4 in an assembled state,

    fig. 8 shows a cross-sectional view of the subassembly of fig. 3 in an assembled state,

    figs. 9A-9C show operation of an axial switch of the logging module in different operational states,

    fig. 10 shows a drug delivery pen provided with a logging module and in communication with a smartphone, and

    fig. 11 shows in an exploded view a display assembly.



    [0013] In the figures like structures are mainly identified by like reference numerals.

    DESCRIPTION OF EXEMPLARY EMBODIMENTS



    [0014] When in the following terms such as "upper" and "lower", "right" and "left", "horizontal" and "vertical" or similar relative expressions are used, these only refer to the appended figures and not necessarily to an actual situation of use. The shown figures are schematic representations for which reason the configuration of the different structures as well as their relative dimensions are intended to serve illustrative purposes only. When the term member or element is used for a given component it generally indicates that in the described embodiment the component is a unitary component, however, the same member or element may alternatively comprise a number of sub-components just as two or more of the described components could be provided as unitary components, e.g. manufactured as a single injection moulded part. The terms "assembly" and "subassembly" do not imply that the described components necessarily can be assembled to provide a unitary or functional assembly or subassembly during a given assembly procedure but is merely used to describe components grouped together as being functionally more closely related.

    [0015] Referring to fig. 1 a pen-formed drug delivery device 100 will be described. The device represents a "generic" drug delivery device providing an example of a device in combination with which embodiments of the present invention is intended to be used, such a device comprising a rotational member adapted to rotate corresponding to a set and/or expelled dose of drug.

    [0016] More specifically, the pen device comprises a cap part (not shown) and a main part having a proximal body or drive assembly portion 120 with a housing 121 in which a drug expelling mechanism is arranged or integrated, and a distal cartridge holder portion in which a drug-filled transparent cartridge 180 with a distal needle-penetrable septum can be arranged and retained in place by a cartridge holder 110 attached to the proximal portion, the cartridge holder having openings allowing a portion of the cartridge to be inspected. The cartridge may for example contain an insulin, GLP-1 or growth hormone formulation. The device is designed to be loaded by the user with a new cartridge through a distal receiving opening in the cartridge holder, the cartridge being provided with a piston driven by a piston rod 128 forming part of the expelling mechanism. A proximal-most rotatable dose ring member 125 serves to manually set a desired dose of drug shown in display window 126 and which can then be expelled when the release button 127 is actuated. Depending on the type of expelling mechanism embodied in the drug delivery device, the expelling mechanism may comprise a spring which is strained during dose setting and then released to drive the piston rod when the release button is actuated. Alternatively the expelling mechanism may be fully manual in which case the dose ring member and the release button moves proximally during dose setting corresponding to the set dose size, and then moved distally by the user to expel the set dose. The cartridge is provided with distal coupling means in the form of a needle hub mount 182 having, in the shown example, an external thread 185 adapted to engage an inner thread of a corresponding hub of a needle assembly. In alternative embodiments the thread may be combined with or replaced by other connection means, e.g. a bayonet coupling.

    [0017] The cartridge holder comprises a distal opening adapted to receive a cartridge. More specifically, the cartridge holder comprises an outer rotatable tube member 170 operated by the user to control movement of gripping means to thereby open and close gripping shoulders 145 configured to grip and hold a cartridge. Fig. 2 shows the device with the cartridge removed and the gripping shoulders in their un-locked "open" position in which a cartridge can be removed and a new inserted.

    [0018] As appears, fig. 1 shows a drug delivery device of the front-loaded type in which a cartridge is inserted through a distal opening in the cartridge holder which in non-removable attached to the main part of the device, however, the drug delivery device may alternatively comprise a cartridge holder adapted to be removed from the device main portion and in which a cartridge is received and removed through the proximal opening.

    [0019] With reference to fig. 3 a subassembly 200 for a drug delivery device will be described, the subassembly comprising a logging module in combination with parts of the drug delivery device being directly functionally related to the incorporation and operation of logging unit. More specifically, the subassembly comprises an electronically controlled logging module 300, an inner tube member 210, a generally cylindrical inner housing member 220, a dial ring member 230 and a button assembly comprising a button ring 240, a button window 241 and a button spring 242. The inner housing member is configured to be arranged inside an outer housing member providing the exterior of the drug delivery device.

    [0020] The different components of the logging module 300 are shown in fig. 4. More specifically, the logging module comprises a housing member 310 having a barrel-shaped proximal main portion 311 with a distally extending tube portion 312, a mounting foil member 313, a disc-formed first rotary sensor part 320 onto which a first connector 329 is to be mounted, a disc-formed second rotary sensor part 330, a rotary sensor holder 339 with a lateral projection 337, a flexible PCB 340 folded in a multi-layered stack and onto which a second connector 349 is to be mounted, a battery 345 and battery clip 346, a number of mounting rings 350, 351, 352, an antenna 360, an LCD 370 and an LCD frame 371. Alternatively an OLED or another desirable display technology could be used. On the PCB electronic circuitry components are mounted, e.g. micro-controller, display driver, memory and wireless communication means. As will be described below in greater detail the first rotary sensor part 320 comprises a plurality of arc-formed discreet contact areas, and the second rotary sensor part 330 comprises a plurality of flexible contact arms of which one provides an axial switch having a laterally extending projection 334.

    [0021] Fig. 5 shows the first rotary sensor part 320 comprising a ring-formed disc formed from circuit board material and on which a number of contact areas (or segments) has been plated on forming three concentric rings, an inner, an intermediate and an outer ring. In the shown embodiment the inner ring is a single contact segments 321 used as ground (i.e. reference), the intermediate ring comprises four discrete arch-formed position contact segments 322 arranged with a certain circumferential distance there between, and the outer ring comprises three discrete arch-formed switch contact segments 323 arranged with only a small circumferential gap there between, the segments being individually connected to a given contact terminal of the multi-terminal connector 329 mounted on the rear (proximal) face of the disc. If a given segment is not connected to a terminal it can be considered a passive segment.

    [0022] The second rotary sensor part 330 shown in fig. 6 is in the form of a metallic disc comprising a number of flexible arc-formed contact arms protruding proximally, the distal end of each contact arm comprising a dome-formed contact point 335 (facing downwards in the figure) adapted to create a galvanic connection with a given contact segment. The contact arms are arranged corresponding to the three concentric rings of the first rotary sensor part. More specifically, the second rotary sensor part comprises two inner contact arms 331, three intermediate contact arms 332 and two outer contact arms 333.

    [0023] In this way a given pair of contact arms provides a combined contact structure adapted to create electric contact between two contact segments. In the shown embodiment the two inner ground contact arms 331 are provided to be in contact with the single ground contact segment 321 of the inner concentric ring, the three position contact arms 332 are provided to create contact with the four position contact segments 322 of the intermediate concentric ring, and the two outer switch contact arms 333 are provided to be in contact with the three switch contact segments 323 of the outer concentric ring, the outer switch contact arms carrying a laterally extending projection 334. Indeed, for the intermediate and outer contact arms the rotational position between the two sensor parts will determine which contact segment is engaged with a given contact arm. The two outer switch contact arms 333 are in the shown embodiment used to provide redundancy for the axial switch, however, in cooperation with the switch contact segments of the outer ring they could additionally be used to provide rotational information.

    [0024] The second rotary sensor part further comprises a gripping part 336 adapted to engage the projection 337 on the rotary sensor holder 339 to prevent rotational movement there between.

    [0025] In the shown embodiment the intermediate arms and contact segments provide the rotary sensor contacts whereas the outer arms and contact segments provide an axial switch as will be described in greater detail below.

    [0026] The four position contact segments 322 represent in combination with the ground segment four position contacts having an "off" state when not connected by the ground contact arms 331 and any of the position contact arms, and an "on" state when connected by the ground contact arms and a given position contact arm.

    [0027] For a given rotational position the electrically connected arms create a number of "on" galvanic contacts between given pairs of contact segments, other non-connected areas representing an "off" contact condition. The shown rotary sensor has a resolution of 15 degrees, i.e. 24 steps for a full rotation, such that for each 15 degrees of rotation a pre-determined change in which of the individual position rotary contacts are on and off is created. As each of the shown contact segments is connected to the electronic circuitry 340 it is possible to determine the relative rotational position between the two rotary sensor parts.

    [0028] Fig. 7 shows the logging module 300 in an assembled state. The flexible PCB 340 with its mounted components and the antenna have been mounted in a sandwich configuration with the mounting rings 350, 351, 352 providing the required spacing and attachment via e.g. gluing or adhesives, the battery 345 being attached to the PCB via battery clip 346. The PCB sandwich is mounted with a "tongue" threaded through a distal opening in the housing 311 button portion and held in place with adhesive mounting foil member 325 (see fig. 4) during assembly. The first rotary sensor part 320 is mounted non-rotationally on the tube portion 312 and connected to the PCB via the connectors 329, 349. The second rotary sensor part 330 is mounted non-rotationally and axially fixed on the rotary sensor holder 339 which is mounted rotationally free but axially fixed on the tube portion 312. By this arrangement the flexible rotary sensor arms are held in sliding contact with the contact surfaces. The LCD 370 is mounted on top of the PCB sandwich which together is held in place in the housing barrel by the display frame 371 which is permanently attached to the housing by e.g. welding. As appears, in this way an electronic logging module is provided comprising a distally arranged rotatable sensor part. As shown in fig. 4 the housing main portion 311 comprises a circumferential distal flange 313 with a number of proximally projecting teeth 314 and a circumferential proximal groove 315. The tube portion 312 is provided with distal snap connectors 316 adapted to engage corresponding openings 211 in the inner tube member 210.

    [0029] Fig. 8 shows a cross-sectional view of the subassembly 200 in an assembled state. The term "subassembly" does not imply that the shown parts necessary are assembled to provide a subassembly as shown and which can be used in an assembly process for a given drug delivery device. In contrast, the shown logging module of fig.7 may be provided in the shown form as a "real" subassembly. Referring to the parts shown in figs. 3 and 4, the inner tube member 210 is connected rotationally and axially locked to the distal tube portion 312 of the logging module. This arrangement is mainly for the purpose of moulding and subsequent assembly. The dial ring member 230 is mounted on the proximal portion of the housing member 220 on which it is allowed to freely rotate but not move axially. The dial ring member 230 comprises an inner circumferential coupling flange 231 with a plurality of distally facing teeth adapted to engage the proximally facing teeth 314 of the logging module to thereby rotationally lock the two components during engagement. The housing member 220 comprises first and second openings or cut-outs 221, 222 (see fig. 3) adapted to engage respectively the rotary sensor holder lateral projection 337 and the axial switch lateral projection 334, this ensuring non-rotational engagement between the second rotary sensor part and the housing yet allows axial movement.

    [0030] The button 240 with the window 241 attached is mounted on the module housing in gripping engagement with the circumferential groove 315, this allowing the button to rotate relative to the module housing. The axially compressed button assembly spring 242 is arranged in the circumferential gap between the module housing and the dial ring member and held in place between a distally facing ring portion of the button ring and the proximally facing portion of the coupling flange. In this way the spring provides an axial force biasing the module proximally into non-rotational engagement with the dial ring member 230 via the coupling flange, however, when a distally directed force is applied to the module via the button the module can be moved distally and thereby out of the rotational coupling with the dial ring member, this allowing the logging module main housing to rotate relative to the dial ring member.

    [0031] As indicated above, the shown rotary sensor comprises an axial switch, this switch serving to detect an axial position of the logging module relative to (here) the housing member 220. More specifically, fig. 9A shows the logging module 300 biased into an initial proximal position by the button spring 242, fig. 9B shows the logging module in an intermediate position in which it has been moved distally by the distance H1, and fig. 9C shows the logging module in an actuated distal position in which it has been moved distally by the distance H2. In all three states the axial switch lateral projection 334 is positioned in the corresponding housing opening 221 and rotationally locked to the housing via the rotary sensor holder 339. As appears, in fig. 9A the switch projection 334 engages a proximal edge of the opening and the flexible switch arm 333 with the contact point 335 is thereby held out of contact with the first rotary sensor part 320, in fig. 9B the switch projection 334 still engages the proximal edge of the opening, however, the logging module has been moved distally and thereby the first rotary sensor part 320 has been moved into contact with the switch arm 333, this bringing the axial switch into an "on" state detectable by the logging module circuitry, and in fig. 9C the logging module has been moved further distally to its actuated distal position. The switch projection 334 has been moved out of engagement with the proximal edge of the opening, the axial switch thus remaining in its "on" state. In an exemplary embodiment the axial movement between the different positions may be e.g. 1.5 mm, this ensuring that the expelling mode is safely registered by the axial switch before the dosing mechanism is actually released. The axial switch could also be used to control the functioning of the logging module when no dose has been set, see below.

    [0032] The parts of the subassembly 200, apart from module 300, as shown in fig. 3 represent "generic" parts of a drug expelling mechanism having properties which are relevant for the implementation of embodiments of the present invention. More specifically, the shown module 300 is adapted to be implemented in a drug delivery device having a housing, dose setting means allowing a user to set a dose of drug to be expelled, and a rotational member adapted to rotate corresponding to a set and/or expelled dose. In the shown subassembly the inner tube member 210 represents a "generic" rotational member.

    [0033] Although not part of the present invention, in the following a short description of a drug expelling mechanism into which the shown inner tube member 210 could be integrated will be described. When setting a dose to be expelled the user rotates the dial ring member 230 and thereby the inner tube member 210 to a given rotational position representing a desired dose, this straining a torsional spring member arranged around the tube member and attached at its proximal end to a housing proximal portion and at its distal end to the tube member distal portion. A ratchet coupling arranged at the distal end of the inner tube member serves to hold the now rotationally biased tube member in the set position. A scale drum is coupled to and rotates with the tube member, the scale drum having a threaded connection with the housing (e.g. threads 226 in fig. 3) whereby a spirally arranged series of numeric values is moved relative to a window in the housing (e.g. opening 225 in fig. 3), the shown number indicating the presently set dose. To release the set and loaded mechanism the user pushes a proximal release button whereby the inner tube member is moved distally. By this action the ratchet coupling (serving as a release member) is released and the inner tube member is moved into engagement, directly or indirectly, with a rotational drive member, the drive member being arranged to rotate a piston rod which due to a threaded engagement with the housing is moved distally to thereby the set dose. As the tube member rotates backwards, thereby driving the piston rod distally, also the scale drum is rotated backwards and reaches its initial "zero" position together with the tube member. This kind of mechanism is known from e.g. the FlexTouch® drug delivery pen device marketed by Novo Nordisk for the injection of e.g. insulin formulations.

    [0034] As appears, in the described exemplary mechanism the inner tube member 210 (to which the main portion of the logging module 300 is rigidly mounted) rotates relative to the housing 220 during both setting and expelling of a given dose. As the second rotary sensor part 330 is rotationally locked to the housing, also the two rotary sensor parts 320, 330 rotate relative to each other during both setting and expelling of a given dose. As this is merely an exemplary mechanism, other mechanisms can be envisaged in which a given member rotates only during setting or expelling.

    [0035] This said, in the shown embodiment the logging module is adapted to detect rotation in both directions corresponding to a set dose and an expelled dose. In the shown embodiment the logging module is further provided with an axial switch allowing the module to detect whether the mechanism is in the setting or expelling mode, however, this is an optional feature. In the shown embodiment the code pattern has a step "resolution" of 15 degrees of rotations which for a given drug formulation and delivery device combination may correspond to 1 unit (IU) of insulin. Indeed, for a drug formulation having the double concentration a 7.5 degree rotary resolution would be necessary to register dose steps corresponding to 1 IU of insulin. The rotary sensor comprising the rotary contacts and the associated electronic circuitry could be designed to detect the amount of rotation using a number of designs, e.g. each 15 degrees increment may be counted, or a given position may be detected absolutely within sectors of e.g. 120 or 360 degrees, a counter registering the number of completed sectors. Such a counter could be implemented using the switch arms and outer contact areas described with reference to figs. 5 and 6. With a "counting" design it is important that the first increment is registered, however, modern electronics can be operated in a low-power "on" state avoiding the delay normally associated with a wake-up change of state from a "sleep" state to an "on" state.

    [0036] In an exemplary embodiment the rotary sensor is designed to count the number of steps during setting and to count down the number of steps during expelling, with the expelling steps being registered in the log as the dose being expelled. By counting in both directions proper registering and functioning of the logging module can be assured to a high degree. As a given dose of drug, especially if large, may be divided and injected with a given pause, the logging module may be programmed to log two dose amounts expelled within a given time window, e.g. 15 minutes, as one dose.

    [0037] The logging module may be configured to store and show data in different ways. To many users the time since last dose and the size of that dose are the most important values. To other users and/or a medical practitioner an overview of the entire log for a given period, e.g. a week or a month, may be of importance. To allow such an overview the logging module may be provided with output means allowing the dose log to be transferred, e.g. by NFC transfer, to an external display device, e.g. a smartphone or computer for better graphic overview, see below.

    [0038] To ensure that the full dose is expelled the logging module may be set up to display the last expelled dose only when the expelling mechanism has been returned to zero. Otherwise a given "half" dose will be stored in the log but not displayed. For example, if a dose of 40 IU is dialled and 20 IU are expelled immediately thereafter the display will not show data for that delivery. To have the dose shown in the display the user may expel the remaining dose and the combined dose of 40 IU together with a time stamp will be shown in the display. Alternatively the user may dial the expelling mechanism back to zero and the display will show 20 IU, or the user may dial the expelling mechanism back to 10 IU and expel the 10 IU and the display will show 30 IU. Indeed, for the expelled amounts to be combined the two (or more) doses will have to be expelled within the above-described time window, e.g. 15 minutes. Otherwise only the last portion of the dose will display, the first portion being stored merely as an entry in the log.

    [0039] The display can be configured to show data in different formats. For example, the display 411 of fig 10 is a two-line display in which time is shown using a HH:MM:SS stop watch design, this providing that the time since the last dose expelled from the device can be shown with a running second counter allowing a user to easily identify the shown information as a counting time value. After 24 hours the display may continue to display time in the HH:MM:SS format or change to a day and hour format.

    [0040] To save energy the display will turn off after a pre-determined amount of time, e.g. 30 seconds. To turn on the display again the user may e.g. press the button thereby using the axial switch to turn on the display, or the display may be turned on when the dose dial is turned away from and then back to zero.

    [0041] A user may desire to check the dose log directly on the module display. Toggling through the dose log could also be controlled by the axial switch, e.g. two fast pushes on the button 412 will bring the module into log display mode, each consecutive push on the button recalling the next log entry. The module may leave the log display mode automatically after a given amount of time, or the user may bring the module into normal display mode by e.g. dialling back and forth as described above. As an alternative, the electronic module may be provided with other types of input means, e.g. a motion sensor which would allow a user to turn on the display by shaking or tapping, or a touch sensor integrated in the display as is well known from e.g. smartphones which would allow a user to turn on the display by swiping a finger across the display.

    [0042] Fig. 10 shows a drug delivery pen 400 provided with a logging module 410 as described above and arranged next to a smartphone 430 configured to receive logging data from the logging module via wireless communication, e.g. NFC. As appears, the logging module is provided with a display configured to indicate the size of the last dose and the time since the last dose using the stopwatch display mode.

    [0043] In order to communicate with the logging module the smartphone has been provided with specific "insulin diary" software. When the software is activated to initiate data transfer the smartphone NFC transmitter will transmit specific code which will wake up any nearby logging module which will then retransmit a unique code identifying the specific module. If a specific code is received for the first time the user is asked to confirm pairing and is asked to select from a list the given drug that should be associated with the given logging module, e.g. "Mix 30" as shown. In this way the smartphone can create an insulin diary covering more than one drug. In the described simple "manual" set-up the user has to ensure that a correct cartridge, e.g. with Mix 30 insulin, is loaded in a drug delivery pen which has been associated with that type of drug. Indeed, other set-ups can be envisaged, e.g. a given pen may be (mechanically) coded to only accept a given type of cartridge with the designated type of drug, or the pen and logging module may be provided with the ability to identify different types of cartridges and thus types of drug.

    [0044] In the shown embodiment log data from a logging module associated with a Mix 30 insulin has been transferred. In the exemplary user interface the user can toggle back and forth between different day views, each day view showing the different amounts of drug delivered together with a real time value. In fig. 10 on a given day 431 first and second amounts 432 of Mix 30 has been delivered with the time and amount shown for each delivery.

    [0045] In the embodiment of fig. 7 the LCD has been attached to the PCB using traditional ACF (Anisotropic Conductive Film) bonding, however, in fig. 11 an alternative solution for attaching the LCD to a PCB is shown. More specifically, fig. 11 shows in an exploded view a display assembly 500 comprising a PCB 510 with a flexible connector 511, a curved elastomeric connector 520 (e.g. a Zebra® connector), a segmented LCD (e.g. numeric or dot-matrix) 530, a mounting ring 540 and a housing ring 550. The LCD comprises a connector array with a plurality of connectors arranged in a first curved configuration a long at a part of the curved circumferential portion, e.g. 300 degrees, and the PCB comprises a corresponding connector array having a plurality of connectors arranged in a second curved configuration corresponding at least in part to the first curved configuration. The curved elastomeric connector is adapted to establish a plurality of electrical connections between the connectors of the two connector arrays when the LCD, the PCB and the elastomeric connector is arranged in conducting contact. In an assembled state the housing ring is attached to the PCB thereby holding the remaining components into forced engagement with each other.

    [0046] In the above description of exemplary embodiments, the different structures and means providing the described functionality for the different components have been described to a degree to which the concept of the present invention will be apparent to the skilled reader. The detailed construction and specification for the different components are considered the object of a normal design procedure performed by the skilled person along the lines set out in the present specification.


    Claims

    1. A drug delivery device (100) comprising:

    - a housing (220, 121),

    - a drug-filled cartridge (180) or means for receiving a drug-filled cartridge, the cartridge comprising an axially displaceable piston and a distal outlet portion,

    - drug expelling means comprising:

    - dose setting means (125) allowing a user to set a dose of drug to be expelled,

    - an axially displaceable piston rod (128) adapted to move the piston of a cartridge in a distal direction to thereby expel drug from the cartridge,

    - a rotational member (210) adapted to rotate corresponding to a set and/or expelled dose, and

    - and an axially moveable actuation member (127) adapted to actuate the drug expelling means to thereby expel the set dose of drug,

    - a rotary sensor assembly (300) defining an axis of rotation, comprising:

    (i) a first portion (310) comprising a first rotary sensor part (320), the first rotary sensor part comprising a surface with a plurality of individual electrically conducting sensor areas (322, 323) arranged in a pattern,

    (ii) a second portion (339) comprising a second rotary sensor part (330) arranged rotationally relative to the first portion, the second rotary sensor part comprising a plurality of contact structures (332, 333) adapted to be in contact with conducting sensor areas on the first sensor rotary part,

    - wherein at least a portion of the contact structures (332) are configured to engage and connect different sensor areas as the first and second part of the rotary sensor rotate relative to each, the created connections being indicative of a rotational position between the first and second portions,

    characterized in that,

    - at least one of the contact structures is an actuatable contact structure (333) being axially moveable relative to the first portion and having a connected position in which the actuatable contact structure is in contact with a sensor area and a dis-connected position in which the actuatable contact structure is not in contact with a sensor area, and

    - the rotary sensor assembly further comprises:

    (iii) actuator means (334) for axially moving the at least one actuatable contact structure between the connected and the dis-connected position,

    wherein:

    - the first and second rotary sensor parts rotate relative to each other during setting and/or expelling of a dose of drug,

    - the at least one actuatable contact structure (333) is actuated between its two positions when the actuation member is moved axially,

    - the rotational member (210) is adapted to move axially between an initial and an actuated position, the first portion (310) of the sensor assembly being mounted to move axially with the rotational member, and

    - the second portion (335) is mounted to move axially with the rotational member.


     
    2. A drug delivery device as in claim 1, wherein the second rotary sensor part is in the form of a metallic disc member (330) comprising a plurality of integrally formed flexible arms (332, 333) forming the contact structures, at least one of the flexible arms (333) being axially moveable to thereby form the actuatable contact structure.
     
    3. A drug delivery device as in claim 1 or 2, further comprising:

    - electronic circuitry (340) adapted to determine a rotational position between the first and second portions based on a given pattern of created connections.


     
    4. A drug delivery device as in any of claims 1-3 in combination with a housing (220), wherein:

    - the first portion is arranged rotationally relative to the housing,

    - the second portion is arranged non-rotationally relative to the housing, and

    - the first and second portions are arranged axially moveable relative to the housing, and

    - the actuator means is arranged between the housing and the second portion.


     
    5. A drug delivery device as in claim 4, wherein the actuator means is in the form of a mechanical connection formed between the housing and the flexible switch arm, whereby relative axial movement between the housing and the flexible switch arm moves the switch contact between the connected and dis-connected positions.
     
    6. A drug delivery device as in claim 1, wherein the first portion (310) of the sensor assembly is mounted to and rotates with the rotational member, the first portion comprising electronic circuitry (340) adapted to estimate an amount of expelled drug based on detection of rotational movement between the first and second portions corresponding to a set and/or expelled dose.
     
    7. A drug delivery device as in claim 3 or 6, wherein the electronic circuitry comprises logging means adapted to create a log for dose amounts of drug expelled from a cartridge by the drug expelling means, wherein the dose amounts are calculated based on relative rotation between the first and second rotary sensor parts during setting and/or expelling of a dose of drug.
     
    8. A drug delivery device as in any of claims 1-7, wherein the first portion comprises a display (370, 530).
     
    9. A drug delivery device as in claim 8, wherein the display is turned off during rotation of the first portion.
     
    10. A drug delivery device as in any of claims 3 and 6-9, wherein the electronic circuitry comprises transmitter means adapted to transmit stored data to an external receiver.
     


    Ansprüche

    1. Medikamenten-Verabreichungsvorrichtung (100), umfassend:

    - ein Gehäuse (220, 121),

    - eine mit Arzneimittel gefüllte Kartusche (180) oder ein Mittel zur Aufnahme einer mit Arzneimittel gefüllten Kartusche, wobei die Kartusche einen axial verschiebbaren Kolben und einen distalen Auslassabschnitt umfasst,

    - Arzneimittelausstoßmittel, umfassend:

    - Dosiseinstellmittel (125), das es einem Benutzer erlaubt, eine auszustoßende Arzneimitteldosis einzustellen,

    - eine axial verschiebbare Kolbenstange (128), die dazu ausgelegt ist, den Kolben einer Kartusche in eine distale Richtung zu bewegen, um dadurch Arzneimittel aus der Kartusche auszustoßen,

    - ein Drehelement (210), das dazu ausgelegt ist, sich entsprechend einer eingestellten und/oder ausgestoßenen Dosis zu drehen, und

    - ein axial bewegliches Betätigungselement (127), das dazu ausgelegt ist, das Arzneimittelausstoßmittel zu betätigen, um dadurch die eingestellte Arzneimitteldosis auszustoßen,

    - eine Drehsensoranordnung (300), die eine Drehachse definiert, umfassend:

    (i) einen ersten Abschnitt (310), der einen ersten Drehsensorteil (320) umfasst, wobei der erste Drehsensorteil eine Oberfläche mit einer Vielzahl von einzelnen elektrisch leitenden Sensorflächen (322, 323) umfasst, die in einem Muster angeordnet sind,

    (ii) einen zweiten Abschnitt (339) der einen zweiten Drehsensorteil (330) umfasst, der bezüglich des ersten Abschnitts drehbar angeordnet ist, wobei der zweite Drehsensorteil eine Vielzahl von Kontaktstrukturen (332, 333) umfasst, die für einen Kontakt mit leitenden Sensorflächen auf dem ersten Sensordrehteil ausgelegt sind,

    - wobei mindestens ein Abschnitt der Kontaktstrukturen (332) dazu ausgelegt ist, verschiedene Sensorflächen in Eingriff zu nehmen und zu verbinden, wenn sich der erste und der zweite Teil des Drehsensors im Verhältnis zueinander drehen, wobei die erzeugten Verbindungen auf eine Drehposition zwischen den ersten und zweiten Abschnitten hinweisen,

    dadurch gekennzeichnet, dass

    - mindestens eine der Kontaktstrukturen eine betätigbare Kontaktstruktur (333) ist, die bezüglich des ersten Abschnitts axial beweglich ist und eine verbundene Position, in der die betätigbare Kontaktstruktur mit einer Sensorfläche in Kontakt ist, und eine nicht verbundene Position aufweist, in der die betätigbare Kontaktstruktur nicht mit einer Sensorfläche in Kontakt ist, und

    - die Drehsensoranordnung ferner das Folgende umfasst:

    (iii) Betätigungsmittel (334) zum axialen Bewegen der mindestens einen betätigbaren Kontaktstruktur zwischen der verbundenen und der nicht verbundenen Position,

    wobei:

    - sich die ersten und zweiten Drehsensorteile während der Einstellung und/oder dem Ausstoßen einer Arzneimitteldosis im Verhältnis zueinander drehen,

    - die mindestens eine betätigbare Kontaktstruktur (333) zwischen ihren zwei Positionen betätigt wird, wenn das Betätigungselement axial bewegt wird,

    - das Drehelement (210) dazu ausgelegt ist, sich axial zwischen einer Anfangsposition und einer betätigten Position zu bewegen, wobei der erste Abschnitt (310) der Sensoranordnung zur axialen Bewegung mit dem Drehelement angebracht ist, und

    - der zweite Abschnitt (335) zur axialen Bewegung mit dem Drehelement angebracht ist.


     
    2. Medikamenten-Verabreichungsvorrichtung nach Anspruch 1, wobei der zweite Drehsensorteil in Form eines Metallscheibenelements (330) vorliegt, das eine Vielzahl von einstückig ausgebildeten flexiblen Armen (332, 333) umfasst, welche die Kontaktstrukturen bilden, wobei mindestens einer der flexiblen Arme (333) axial beweglich ist, um dadurch die betätigbare Kontaktstruktur zu bilden.
     
    3. Medikamenten-Verabreichungsvorrichtung nach Anspruch 1 oder 2, ferner umfassend:

    - einen elektronischen Schaltkreis (340), der zur Bestimmung einer Drehposition zwischen den ersten und zweiten Abschnitten auf Basis eines gegebenen Musters von erzeugten Verbindungen ausgelegt ist.


     
    4. Medikamenten-Verabreichungsvorrichtung nach einem der Ansprüche 1-3 in Kombination mit einem Gehäuse (220), wobei:

    - der erste Abschnitt bezüglich des Gehäuses drehbar angeordnet ist,

    - der zweite Abschnitt bezüglich des Gehäuses nicht drehbar angeordnet ist, und

    - die ersten und zweiten Abschnitte bezüglich des Gehäuses axial beweglich angeordnet sind, und

    - das Betätigungsmittel zwischen dem Gehäuse und dem zweiten Abschnitt angeordnet ist.


     
    5. Medikamenten-Verabreichungsvorrichtung nach Anspruch 4, wobei das Betätigungsmittel in Form einer mechanischen Verbindung vorliegt, die zwischen dem Gehäuse und dem flexiblen Schaltarm ausgebildet ist, wodurch eine relative axiale Bewegung zwischen dem Gehäuse und dem flexiblen Schaltarm den Schaltkontakt zwischen den verbundenen und nicht verbundenen Positionen bewegt.
     
    6. Medikamenten-Verabreichungsvorrichtung nach Anspruch 1, wobei der erste Abschnitt (310) der Sensoranordnung am Drehelement angebracht ist und sich damit dreht, wobei der erste Abschnitt einen elektronischen Schaltkreis (340) umfasst, der dazu ausgelegt ist, eine Menge an ausgestoßenem Arzneimittel auf Basis des Nachweises der Drehbewegung zwischen den ersten und zweiten Abschnitten entsprechend einer eingestellten und/oder ausgestoßenen Dosis zu schätzen.
     
    7. Medikamenten-Verabreichungsvorrichtung nach Anspruch 3 oder 6, wobei der elektronische Schaltkreis ein Erfassungsmittel umfasst, das zur Erzeugung eines Protokolls für Arzneimitteldosismengen ausgelegt ist, die vom Arzneimittelausstoßmittel aus einer Kartusche ausgestoßen wurden, wobei die Dosismengen auf Basis einer relativen Drehung zwischen den ersten und zweiten Drehsensorteilen während der Einstellung und/oder während des Ausstoßens einer Arzneimitteldosis berechnet werden.
     
    8. Medikamenten-Verabreichungsvorrichtung nach einem der Ansprüche 1-7, wobei der erste Abschnitt eine Anzeige (370, 530) umfasst.
     
    9. Medikamenten-Verabreichungsvorrichtung nach Anspruch 8, wobei die Anzeige während der Drehung des ersten Abschnitts abgeschaltet wird.
     
    10. Medikamenten-Verabreichungsvorrichtung nach einem der Ansprüche 3 und 6-9, wobei der elektronische Schaltkreis Sendermittel umfasst, die zur Übertragung von gespeicherten Daten an einen externen Empfänger ausgelegt sind.
     


    Revendications

    1. Dispositif d'administration de médicament (100) comprenant :

    - un boîtier (220, 121),

    - une cartouche remplie de médicament (180) ou des moyens permettant de recevoir une cartouche remplie de médicament, la cartouche comprenant un piston pouvant être déplacé dans le sens axial et une partie orifice de sortie distale,

    - des moyens d'expulsion de médicament comprenant :

    - des moyens de paramétrage de dose (125) permettant à un utilisateur de paramétrer une dose de médicament destinée à être expulsée,

    - une tige (128) de piston pouvant être déplacée dans le sens axial conçue pour déplacer le piston d'une cartouche dans une direction distale afin d'expulser ainsi le médicament de la cartouche,

    - un élément rotatif (210) conçu pour tourner en fonction d'une dose paramétrée et/ou expulsée, et

    - un élément d'actionnement (127) mobile dans le sens axial conçu pour actionner les moyens d'expulsion de médicament afin d'expulser ainsi la dose paramétrée de médicament,

    - un ensemble capteur rotatif (300) définissant un axe de rotation, comprenant :

    (i) une première partie (310) comprenant une première partie de détection rotative (320), la première partie de détection rotative comprenant une surface dotée d'une pluralité de zones (322, 323) de détection électroconductrices agencées selon un motif,

    (ii) une seconde partie (339) comprenant une seconde partie (330) de détection rotative agencée rotative par rapport à la première partie, la seconde partie de détection rotative comprenant une pluralité de structures de contact (332, 333) conçues pour être en contact avec des zones de détection conductrices sur la première partie rotative de détection,

    - dans lequel au moins une partie des structures de contact (332) est conçue pour entrer en prise avec différentes zones de détection et se connecter à celles-ci pendant que les première et seconde parties du capteur rotatif tournent l'une par rapport à l'autre, les connexions créées indiquant une position de rotation entre les première et seconde parties, caractérisé en ce que,

    - au moins une des structures de contact est une structure de contact actionnable (333) étant mobile dans le sens axial par rapport à la première partie et ayant une position connectée dans laquelle la structure de contact actionnable est en contact avec une zone de détection et une position déconnectée dans laquelle la structure de contact actionnable n'est pas en contact avec une zone de détection, et

    - l'ensemble capteur rotatif comprend en outre :

    (iii) des moyens d'actionneur (334) permettant de déplacer dans le sens axial l'au moins une structure de contact actionnable entre la position connectée et la position déconnectée,

    dans lequel :

    - les première et seconde parties de détection rotatives tournent l'une par rapport à l'autre pendant le paramétrage et/ou l'expulsion d'une dose de médicament,

    - l'au moins une structure de contact actionnable (333) est actionnée entre ses deux positions lorsque l'élément d'actionnement est déplacé dans le sens axial,

    - l'élément rotatif (210) est conçu pour se déplacer dans le sens axial entre une position initiale et une position actionnée, la première partie (310) de l'ensemble capteur étant montée pour se déplacer dans le sens axial avec l'élément rotatif, et

    - la seconde partie (335) est montée pour se déplacer dans le sens axial avec l'élément rotatif.


     
    2. Dispositif d'administration de médicament selon la revendication 1, dans lequel la seconde partie de détection rotative a la forme d'un élément en disque métallique (330) comprenant une pluralité de bras souples (332, 333) formés d'un seul tenant formant les structures de contact, au moins un des bras souples (333) étant mobile dans le sens axial afin de former de ce fait la structure de contact actionnable.
     
    3. Dispositif d'administration de médicament selon la revendication 1 ou 2, comprenant en outre :

    - des circuits électroniques (340) conçus pour déterminer une position de rotation entre les première et seconde parties sur la base d'un motif donné de connexions créées.


     
    4. Dispositif d'administration de médicament selon l'une quelconque des revendications 1 à 3 en association avec un boîtier (220), dans lequel :

    - la première partie est agencée rotative par rapport au boîtier,

    - la seconde partie est agencée non rotative par rapport au boîtier, et

    - les première et seconde parties sont agencées mobiles dans le sens axial par rapport au boîtier, et

    - les moyens d'actionneur sont agencés entre le boîtier et la seconde partie.


     
    5. Dispositif d'administration de médicament selon la revendication 4, dans lequel les moyens d'actionneur ont la forme d'un raccord mécanique formé entre le boîtier et le bras souple de commutation, moyennant quoi un mouvement axial relatif entre le boîtier et le bras souple de commutation déplace le contact de commutation entre les positions connectée et déconnectée.
     
    6. Dispositif d'administration de médicament selon la revendication 1, dans lequel la première partie (310) de l'ensemble capteur est montée sur l'élément rotatif et tourne avec celui-ci, la première partie comprenant des circuits électroniques (340) conçus pour estimer une quantité de médicament expulsé sur la base de la détection d'un mouvement de rotation entre les première et seconde parties correspondant à une dose paramétrée et/ou expulsée.
     
    7. Dispositif d'administration de médicament selon la revendication 3 ou 6, dans lequel les circuits électroniques comprennent des moyens de journalisation conçus pour créer un journal pour des quantités de doses d'un médicament expulsé d'une cartouche par les moyens d'expulsion de dose, les quantités de doses étant calculées sur la base d'une rotation relative entre les première et seconde parties de détection rotatives pendant le paramétrage et/ou l'expulsion d'une dose de médicament.
     
    8. Dispositif d'administration de médicament selon l'une quelconque des revendications 1 à 7, dans lequel la première partie comprend un affichage (370, 530).
     
    9. Dispositif d'administration de médicament selon la revendication 8, dans lequel l'affichage est éteint pendant la rotation de la première partie.
     
    10. Dispositif d'administration de médicament selon l'une quelconque des revendications 3 et 6 à 9, dans lequel les circuits électroniques comprennent des moyens émetteurs conçus pour émettre des données enregistrées vers un récepteur externe.
     




    Drawing





























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description