(19)
(11)EP 2 960 674 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
03.10.2018 Bulletin 2018/40

(21)Application number: 13875341.3

(22)Date of filing:  19.02.2013
(51)International Patent Classification (IPC): 
G01S 13/28(2006.01)
G01S 7/292(2006.01)
G01S 13/32(2006.01)
(86)International application number:
PCT/JP2013/054009
(87)International publication number:
WO 2014/128835 (28.08.2014 Gazette  2014/35)

(54)

RADAR AND OBJECT DETECTION METHOD

RADAR UND OBJEKTERKENNUNGSVERFAHREN

RADAR ET PROCÉDÉ DE DÉTECTION D'OBJET


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
30.12.2015 Bulletin 2015/53

(73)Proprietor: TOYOTA JIDOSHA KABUSHIKI KAISHA
Toyota-shi, Aichi-ken, 471-8571 (JP)

(72)Inventors:
  • MINAMI Yoshiaki
    Toyota-shi Aichi 471-8571 (JP)
  • ODA Yuji
    Toyota-shi Aichi 471-8571 (JP)

(74)Representative: D Young & Co LLP 
120 Holborn
London EC1N 2DY
London EC1N 2DY (GB)


(56)References cited: : 
EP-A2- 1 970 728
JP-A- 2008 232 668
US-A1- 2002 112 855
JP-A- H04 305 163
JP-A- 2013 003 071
US-A1- 2009 074 031
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] One teaching of the present disclosure relates to a radar and an object detection method.

    BACKGROUND ART



    [0002] A technology for applying equivalent time sampling to a radar has been proposed. For example, Patent Literature 1 discloses an example in which equivalent time sampling is applied to a pulse radar. In the example disclosed in Patent Literature 1, a power control signal generating unit, which generates a power control signal having a variable amplitude to equalize the signal strength of the receiving signal, and an amplifying unit, which controls the sending power of the sending signal in the pulse train form by adjusting the gain according to the amplitude of the power control signal, are provided on the sending side.

    CITATION LIST


    Patent Literature



    [0003] Patent Literature 1: Japanese Patent Application Publication No. 2008-145236 (JP 2008-145236 A)

    [0004] US 2002/112855 A1 relates to a medium frequency pseudo noise geological radar.

    [0005] EP 1 970 728 A2 relates to a DSSS radar, a method implemented by radar and a computer-readable storage medium.

    [0006] US 2009/074031 A1 relates to spread spectrum radar apparatus.

    SUMMARY OF THE INVENTION


    Problem to be Solved by the Invention



    [0007] By the way, in equivalent time sampling, there is a disadvantage that it takes long for detecting an object because the sampling period is longer than the period (code length) of the sending signal of a radar and therefore the time, required to acquire all data of the code included in a reflected wave, becomes longer in proportion to about the square of the code length.

    [0008] In view of the above problem, it is an object of one teaching of the present disclosure to provide a radar and an object detection method that can reduce the time required to acquire all data included in a reflected wave for detecting an object more quickly.

    Means for Solving the Problem



    [0009] The invention is defined in the appended claims.

    [0010] In one teaching of the present disclosure, a radar includes a sending unit that has a code generator and repeatedly sends a sending signal modulated by a code generated by the code generator, the code having a predetermined period; a receiving unit that samples a reflected wave of the sending signal, reflected by an object, with a sampling period lower than the predetermined period; and a detection unit that detects the object by calculating a correlation between re-arranged data and the reflected wave sampled by the receiving unit, the re-arranged data corresponding to data generated by re-arranging the code, generated by the code generator, at an interval corresponding to the sampling period.

    [0011] According to this configuration, the radar includes the sending unit that has a code generator and repeatedly sends a sending signal modulated by a code generated by the code generator, the code having a predetermined period; the receiving unit that samples a reflected wave of the sending signal, reflected by an object, with a sampling period lower than the predetermined period; and the detection unit that detects the object by calculating a correlation between re-arranged data and the sampling data of the reflected wave sampled by the receiving unit, the re-arranged data corresponding to data generated by re-arranging the code, generated by the code generator, at an interval corresponding to the sampling period. This configuration can reduce the time required to acquire all data, included in the reflected wave, to detect the object more quickly.

    [0012] In this case, the code is an M sequence code and the sampling period is a period calculated by multiplying Nsp by a width of one chip of the code, Nsp being a number that is smaller than a code length N of the code and is a power of 2.

    [0013] According to this configuration, the code is an M sequence code and therefore, by setting the sampling period to a period calculated by multiplying Nsp, a number that is equal to or smaller than the code length N of the code and is a power of 2, by the width of one chip of the code, the sampling data sampled with the sampling period and the code re-arranged data generated by re-arranging the code with the sampling period become equal to the data generated by cyclically shifting the original code. Therefore, acquiring sampling data with such a sampling period can reduce the time required to acquire all data included in a reflected wave, allowing an object to be detected more quickly through the comparison between the obtained sampling data and the code re-generated data.

    [0014] In this case, the detection unit can output data generated by further re-arranging correlation output data at an interval of (N + 1)/Nsp, the correlation output data being acquired by calculating a correlation between the re-arranged data and the reflected wave.

    [0015] According to this configuration, the detection unit outputs data generated by further re-arranging correlation output data at an interval of (N + 1)/Nsp, the correlation output data being acquired by calculating a correlation between the re-arranged data and the reflected wave. By doing so, the correlation output data can be output in the order of distances.

    [0016] The radar further includes a reference code generator that is separate from the code generator wherein the reference code generator generates the re-arranged data corresponding to data generated by re-arranging the code, generated by the code generator, at an interval corresponding to the sampling period and the detection unit detects the object by calculating a correlation between the re-arranged data, generated by the reference code generator, and the reflected wave sampled by the receiving unit.

    [0017] According to this configuration, the re-arranged data can be generated from the reference code generator, which is separate from the code generator, without generating the re-arranged data by directly re-arranging the code actually generated by the code generator.

    [0018] In one teaching of the present disclosure, an object detection method includes a sending step of repeatedly sending a sending signal modulated by a code generated by a code generator, the code having a predetermined period; a reception step of sampling a reflected wave of the sending signal, reflected by an object, with a sampling period lower than the predetermined period; and a detection step of detecting the object by calculating a correlation between re-arranged data and the reflected wave sampled in the reception step, the re-arranged data corresponding to data generated by re-arranging the code, generated by the code generator, at an interval corresponding to the sampling period.

    [0019] In this case, the code is an M sequence code, and the sampling period can be set to a period calculated by multiplying Nsp by a width of one chip of the code, Nsp being a number that is smaller than a code length N of the code and is a power of 2.

    [0020] In this case, in the detection step, data generated by further re-arranging correlation output data at an interval of (N + 1)/Nsp can be output, the correlation output data being acquired by calculating a correlation between the re-arranged data and the reflected wave.

    [0021] The object detection method further includes a reference code generation step of generating from a reference code generator the re-arranged data corresponding to data generated by re-arranging the code, generated by the code generator, at an interval corresponding to the sampling period, the reference code generator being separate from the code generator wherein, in the detection step, the object can be detected by calculating a correlation between the re-arranged data, generated in the reference code generation step, and the reflected wave sampled in the reception step.

    Effects of the Invention



    [0022] According to the radar and the object detection method in one teaching of the present disclosure, the time required to acquire all data included in a reflected wave can be reduced to detect an object more quickly.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0023] 

    [FIG. 1] FIG. 1 is a block diagram showing a DS-SS radar in a teaching;

    [FIG. 2] FIG. 2 is a flowchart showing the operation of the DS-SS radar in the teaching;

    [FIG. 3] FIG. 3A is a diagram showing a list of correlation outputs and FIG. 3B is a diagram showing an output generated by rearranging A at an interval of (N + 1)/Nsp;

    [FIG. 4] FIG. 4 is a diagram showing the principle by which a conventional DS-SS radar detects a single object;

    [FIG. 5] FIG. 5 is a diagram showing the principle by which a conventional DS-SS radar detects a plurality of objects;

    [FIG. 6] FIG. 6 is a diagram showing the principle of equivalent time sampling;

    [FIG. 7] FIG. 7 is a diagram showing the data acquisition time required for equivalent time sampling; and

    [FIG. 8] FIG. 8 is a block diagram showing a DS-SS radar in another teaching.


    MODES FOR CARRYING OUT THE INVENTION



    [0024] An example of a radar and an object detection method in a teaching of the present disclosure are described below with reference to the drawings. As shown in FIG. 1, a DS-SS radar 10 in the teaching of the present disclosure includes a code generator 21, a mixer 22, an amplifier 23, an antenna 24, a re-arranger 31, an oscillator 32, an antenna 41, an amplifier 42, a mixer 43, an LPF 44, an A/D converter 45, a correlator 46, and a re-arranger 47.

    [0025] The code generator 21 continuously generates an M sequence code. The oscillator 32 generates a carrier frequency signal for carrying a signal. The mixer 22 modulates the carrier frequency signal, generated by the oscillator 32, with the M sequence code, generated by the code generator 21, for generating a sending signal. The amplifier 23 amplifies the power of the sending signal generated by the mixer 22. The antenna 24 sends the sending signal, amplified by the amplifier 23, to the outside of the DS-SS radar 10.

    [0026] The antenna 41 receives the sending signal, reflected by an object external to the DS-SS radar 10, as a received signal. The amplifier 42 amplifies the power of the received signal received by the antenna 41. The mixer 43 converts the frequency of the received signal, amplified by the amplifier 42, using the carrier frequency signal generated by the oscillator 32. The LPF 44 excludes high-frequency components, included in the output of the mixer 43, to output the baseband signal.

    [0027] The A/D converter 45 samples the baseband signal, extracted via the mixer 43 and the LPF 44, with the period of the width of Nsp × chip, to generate sampling data where "chip" is one element of the code. The width of one chip is the time during which the code (0 or 1) of one chip is generated. As will be described later, Nsp is an integer that is equal to or smaller than N and is a power of 2, where N is the code length of the code.

    [0028] The re-arranger 31 re-arranges the M sequence code, generated by the code generator 21, at an interval of Nsp to generate the reference code that is used for the correlation processing by the correlator 46. The property of the M sequence code is that the code generated by re-arranging an M sequence code at an interval of Nsp is equal to the code generated by cyclically shifting the original M sequence code and, therefore, the code generated by cyclically shifting the original M sequence code may be used as the reference code for the correlation processing used by the correlator 46.

    [0029] The correlator 46 calculates the correlation between the sampling data, sampled by the A/D converter 45, and the reference code for correlation processing, generated by the re-arranger 31, and outputs the correlation output data.

    [0030] The re-arranger 47 re-arranges the correlation output data, output by the correlator 46, at an interval of (N + 1)/Nsp and outputs the rearranged correlation output data as the radar output.

    [0031] The operation of the DS-SS radar 10 in this teaching is described below. As shown in FIG. 2, the code generator 21, oscillator 32, mixer 22, amplifier 23, and antenna 24 repeatedly send the M sequence coed as the sending signal (S11).

    [0032] The A/D converter 45 samples the received signal, received via the antenna 41, amplifier 42, oscillator 32, mixer 43, and LPF 44, with a period of the width of Nsp × chip where Nsp is a number smaller than the code length N and is a power of 2 (S12).

    [0033] The re-arranger 31 re-arranges the M sequence code, generated by the code generator 21, at an interval of Nsp to generate the reference code for the correlation processing. The code generated by re-arranging the M-sequence code at an interval of Nsp is equal to the code that is generated by cyclically shifting the original code. The correlator 46 calculates the correlation between the sampling data, sampled by the A/D converter 45, and the reference code for the correlation processing, generated by the re-arranger 31, and outputs the correlation output data (S13). As a result, though the list of the correlation output should be arranged in the distance order of "0" to "14" when Nsp = 4 and N = 15, the correlation output data is a list of correlation outputs re-arranged at an interval of Nsp such as that shown in FIG. 3A.

    [0034] The re-arranger 47 re-arranges the correlation output data, output by the correlator 46, at an interval of (N + 1)/Nsp for outputting as the radar output (S14). For example, when Nsp = 4 and N = 15, the radar output in this case is a list of output, such as the that shown in FIG. 3B, generated by re-arranging the correlation output data, shown in FIG. 3A, at an interval of (N + 1)/Nsp = 4. In this manner, the correlation output (=detection result), which is arranged in the order of "0" to "14", is reproduced.

    [0035] In this teaching, the DS-SS radar 10 detects an object in the following way. That is, the code generator 21, oscillator 32, and antenna 24 repeatedly send the sending signal modulated with the predetermined-frequency code generated by the code generator 21, the A/D converter 45 samples the code, included in the reflected wave of the sending signal reflected by an object, with a sampling period lower than the period of the code, and the correlator 46 calculates the correlation between the reference
    code, generated by re-arranging the code from the code generator 21 at an interval of Nsp, and the sampling data converted by the A/D converter 45. This processing reduces the time required to acquire all data included in the reflected wave during equivalent time sampling, allowing an object to be detected more quickly.

    [0036] As shown in FIG. 4, a conventional DS-SS radar 1 sends the sending signal phase-modulated using the code generated by the code generator 21. The correlator 46 calculates the correlation between the received signal, reflected by an object T1, and the code used for the modulation. This calculation gives the distance r1 between the object T1 and the DS-SS radar 1 based on the time difference between the code, included in the sending signal, and the code included in the received signal. The code generator 21, which generates code having good autocorrelation characteristics, separates a plurality of objects T1 to T3, if present as shown in FIG. 5, to calculate each of the distances r1 to r3 between each of the objects T1 to T3 and the DS-SS radar 1.

    [0037] For example, for code having the code length of N = 7 and arranged in the order of the code elements "1" to "7" as shown in FIG. 6, equivalent time sampling is performed conventionally with a period of the width of (code period + width of one chip) = (N + 1) × chip = 8 × chip. This allows a code string to be restored even by low-speed sampling. However, in the conventional sampling method, sampling must be performed with a period of the width of (N + 1) × chip while repeatedly sending the code with the code length of N.

    [0038] Therefore, as shown in FIG. 7, this sampling method requires the time with the width of (N + 1) × N × chip to acquire all data. The longer the code is, the higher the spread gain is and the higher the detection performance of the DS-SS radar is. However, in the conventional equivalent time sampling, the time for acquiring all data is increased in proportion to about the square of the code length N, meaning that, if the code length N of the code is long, the time for acquiring all data becomes extremely long.

    [0039] On the other hand, the time required for acquiring data necessary for detecting an object can be reduced in this embodiment to the time with the width of Nsp × N × chip. Moreover, in addition to reducing the time for acquiring data, the speed of an object can be detected at the same time in this embodiment. The DS-SS radar 10 detects the speed relative to an object using the phase change (frequency) in the received signal caused by the Doppler shift. In this embodiment, because the processing can be performed without re-arranging the array of acquired data until the correlation processing is performed by the correlator 46, the continuity of the phase change can be maintained and the speed of an object can be detected. In addition, sampling can be performed in this embodiment with a sampling period compatible with the performance of the A/D converter 45 that is used. This maximizes the performance of the A/D converter 45.

    [0040] The code used in this embodiment is an M sequence code. This means that, by using the sampling period as a period calculated by multiplying Nsp, which is equal to or smaller than the code length and is a power of 2, by the width of one chip of the code, the sampling data, sampled with the sampling period, and the reference code, generated by re-arranging the code with the sampling period, become equal to the code generated by cyclically shifting the original code. Therefore, acquiring sampling data with such a sampling period can reduce the time required to acquire all data included in the reflected wave and, in addition, calculating the correlation between the acquired sampling data and the reference code allows an object to be detected more quickly.

    [0041] In addition, the re-arranger 47 in this embodiment re-arranges the correlation output data, which is acquired by calculating the correlation between the reference code and the sampling data, at an interval of (N + 1)/Nsp to produce the radar output. This allows the correlation output data to be output as a list of data in the order of the distance.

    [0042] The present disclosure is not limited to the teaching described above, but various modifications are possible. For example, in the above teaching , the re-arranger 31 directly re-arranges the code, actually generated by the code generator 21, for generating the reference code for the correlation processing. However, if the code length N and the sampling interval Nsp are designed as fixed values, a reference code generator 51 may be provided as shown in a DS-SS radar 11 in FIG. 8. This reference code generator 51 generates the reference code, corresponding to the data generated by re-arranging the code, which is generated by the code generator 21 and has the code length of N, at a sampling interval of Nsp, separately from the code generator 21 and the re-arranger 31. The correlator 46 can detect an object in the same manner as in the above teaching by calculating the correlation between the reference code from the reference code generator 51 and the reflected wave.

    INDUSTRIAL APPLICABILITY



    [0043] According to the radar and the object detection method in one teaching of the present disclosure, the time required for acquiring all data included in a reflected wave can be reduced to detect an object more quickly.

    Description of the Reference Numerals



    [0044] 
    1
    DS-SS radar
    10, 11
    DS-SS radar
    21
    Code generator
    22
    Mixer
    23
    Amplifier
    24
    Antenna
    31
    Re-arranger
    32
    Oscillator
    41
    Antenna
    42
    Amplifier
    43
    Mixer
    44
    LPF
    45
    A/D converter
    46
    Correlator
    47
    Re-arranger
    51
    Reference code generator
    24
    Antenna
    31
    Re-arranger
    32
    Oscillator
    41
    Antenna
    42
    Amplifier
    43
    Mixer
    44
    LPF
    45
    A/D converter
    46
    Correlator
    47
    Re-arranger
    51
    Reference code generator



    Claims

    1. A radar comprising:

    a sending unit that has a code generator (21) and repeatedly sends a sending signal modulated by a code generated by the code generator, the code having a predetermined period, wherein the code is an M sequence code;

    a receiving unit that samples a reflected wave of the sending signal, reflected by an object, with a sampling period lower than the predetermined period, wherein the sampling period is a period calculated by multiplying Nsp by a width of one chip of the code, Nsp being a number that is smaller than a code length N of the code and is a power of 2; and

    a detection unit that detects the object by calculating a correlation between re-arranged data and the reflected wave sampled by the receiving unit, the re-arranged data corresponding to data generated by cyclically shifting the code, generated by the code generator, at an interval corresponding to the sampling period.


     
    2. The radar according to claim 1 wherein
    the detection unit outputs data generated by further re-arranging correlation output data at an interval of (N + 1)/Nsp, the correlation output data being acquired by calculating the correlation between there-arranged data and the reflected wave.
     
    3. The radar according to any one of claims 1 to 2, further comprising a reference code generator (51) that is separate from the code generator wherein
    the reference code generator generates the re-arranged data corresponding to data generated by cyclically shifting the code, generated by the code generator, at the interval corresponding to the sampling period and
    the detection unit detects the object by calculating a correlation between the re-arranged data, generated by the reference code generator, and the reflected wave sampled by the receiving unit.
     
    4. An object detection method comprising:

    a sending step (S11) of repeatedly sending a sending signal modulated by a code generated by a code generator, the code having a predetermined period, wherein the code is an M sequence code;

    a reception step (S12) of sampling a reflected wave of the sending signal, reflected by an object, with a sampling period lower than the predetermined period, wherein the sampling period is a period calculated by multiplying Nsp by a width of one chip of the code, Nsp being a number that is smaller than a code length N of the code and is a power of 2; and

    a detection step (S13) of detecting the object by calculating a correlation between re-arranged data and the reflected wave sampled in the reception step, the re-arranged data corresponding to data generated by cyclically shifting the code, generated by the code generator, at an interval corresponding to the sampling period.


     
    5. The object detection method according to claim 4 wherein
    in the detection step, data generated by further re-arranging correlation output data at an interval of(N + 1)/Nsp is output (S14), the correlation output data being acquired by calculating the correlation between the re-arranged data and the reflected wave.
     
    6. The object detection method according to any one of claims 4 to 5, further comprising a reference code generation step of generating from a reference code generator the re-arranged data corresponding to data generated by cyclically shifting the code, generated by the code generator, at the interval corresponding to the sampling period, the reference code generator being separate from the code generator wherein
    in the detection step, the object is detected by calculating a correlation between the re-arranged data, generated in the reference code generation step, and the reflected wave sampled in the reception step.
     


    Ansprüche

    1. Radar, Folgendes umfassend:

    eine Sendeeinheit, die einen Codegenerator (21) aufweist und wiederholt ein Sendesignal sendet, das durch einen Code moduliert ist, der durch den Codegenerator erzeugt wurde, wobei der Code eine vorgegebene Periode aufweist, wobei der Code ein M-Sequenz-Code ist;

    eine Empfangseinheit, die eine reflektierte Welle des Sendesignals, die durch ein Objekt reflektiert wurde, mit einer Abtastperiode abtastet, die kürzer ist als die vorgegebene Periode, wobei die Abtastperiode eine Periode ist, die durch Multiplizieren von Nsp mit einer Breite eines Chips des Codes berechnet wird, wobei Nsp eine Zahl ist, die kleiner ist als eine Codelänge N des Codes und eine Potenz von 2 ist; und

    eine Erkennungseinheit, die das Objekt durch Berechnen einer Korrelation zwischen neu angeordneten Daten und der reflektierten Welle erkennt, die durch die Empfangseinheit abgetastet wurde, wobei die neu angeordneten Daten solchen Daten entsprechen, die durch zyklisches Verschieben des Codes, der durch den Codegenerator erzeugt wurde, mit einem Intervall erzeugt werden, das der Abtastperiode entspricht.


     
    2. Radar nach Anspruch 1, wobei
    die Erkennungseinheit Daten ausgibt, die durch weiteres Neuanordnen von Korrelationsausgabedaten mit einem Intervall von (N + 1)/Nsp erzeugt werden, wobei die Korrelationsausgabedaten durch Berechnen der Korrelation zwischen den neu angeordneten Daten und der reflektierten Welle gewonnen werden.
     
    3. Radar nach einem der Ansprüche 1 bis 2, weiterhin umfassend einen Referenzcodegenerator (51), der von dem Codegenerator getrennt ist, wobei
    der Referenzcodegenerator die neu angeordneten Daten entsprechend Daten erzeugt, die durch zyklisches Verschieben des Codes, der durch den Codegenerator erzeugt wurde, mit dem Intervall erzeugt wurden, das der Abtastperiode entspricht, und
    die Erkennungseinheit das Objekt durch Berechnen einer Korrelation zwischen den neu angeordneten Daten, die durch den Referenzcodegenerator erzeugt wurden, und der reflektierten Welle erkennt, die durch die Empfangseinheit abgetastet wurde.
     
    4. Objekterkennungsverfahren, Folgendes umfassend:

    einen Sendeschritt (S11) des wiederholten Sendens eines Sendesignals, das durch einen Code moduliert ist, der durch einen Codegenerator erzeugt wurde, wobei der Code eine vorgegebene Periode aufweist, wobei der Code ein M-Sequenz-Code ist;

    einen Empfangsschritt (S12) des Abtastens einer reflektierten Welle des Sendesignals, die durch ein Objekt reflektiert wurde, mit einer Abtastperiode, die kürzer ist als die vorgegebene Periode, wobei die Abtastperiode eine Periode ist, die durch Multiplizieren von Nsp mit einer Breite eines Chips des Codes berechnet wird, wobei Nsp eine Zahl ist, die kleiner ist als eine Codelänge N des Codes und eine Potenz von 2 ist; und

    einen Erkennungsschritt (S13) des Erkennens des Objekts durch Berechnen einer Korrelation zwischen neu angeordneten Daten und der reflektierten Welle, die in dem Empfangsschritt abgetastet wurde, wobei die neu angeordneten Daten solchen Daten entsprechen, die durch zyklisches Verschieben des Codes, der durch den Codegenerator erzeugt wurde, mit einem Intervall erzeugt werden, das der Abtastperiode entspricht.


     
    5. Objekterkennungsverfahren nach Anspruch 4, wobei
    in dem Erkennungsschritt Daten, die durch weiteres Neuanordnen von Korrelationsausgabedaten mit einem Intervall von (N + 1)/Nsp erzeugt werden, ausgegeben werden (S14), wobei die Korrelationsausgabedaten durch Berechnen der Korrelation zwischen den neu angeordneten Daten und der reflektierten Welle gewonnen werden.
     
    6. Objekterkennungsverfahren nach einem der Ansprüche 4 bis 5, weiterhin umfassend einen Referenzcode-Erzeugungsschritt des Erzeugens der neu angeordneten Daten aus einem Referenzcodegenerator entsprechend Daten, die durch zyklisches Verschieben des Codes, der durch den Codegenerator erzeugt wurde, mit dem Intervall erzeugt werden, das der Abtastperiode entspricht, wobei der Referenzcodegenerator von dem Codegenerator getrennt ist, wobei
    in dem Erkennungsschritt das Objekt durch Berechnen einer Korrelation zwischen den neu angeordneten Daten, die in dem Referenzcode-Erzeugungsschritt erzeugt wurden, und der reflektierten Welle erkannt wird, die in dem Empfangsschritt abgetastet wurde.
     


    Revendications

    1. Radar comprenant :

    une unité d'envoi qui possède un générateur de code (21) et envoie de manière répétée un signal d'envoi modulé par un code généré par le générateur de code, le code ayant une période prédéterminée, le code étant un code de séquence M ;

    une unité de réception qui échantillonne une onde réfléchie du signal d'envoi, réfléchie par un objet, avec une période d'échantillonnage inférieure à la période prédéterminée, la période d'échantillonnage étant une période calculée en multipliant Nsp par une largeur d'une puce du code, Nsp étant un nombre qui est inférieur à une longueur N de code du code et est une puissance de 2 ; et

    une unité de détection qui détecte l'objet en calculant une corrélation entre des données réorganisées et l'onde réfléchie échantillonnée par l'unité de réception, les données réorganisées correspondant aux données générées en décalant cycliquement le code, généré par le générateur de code, à un intervalle correspondant à la période d'échantillonnage.


     
    2. Radar selon la revendication 1 dans lequel
    l'unité de détection produit des données générées en réorganisant en outre des données de sortie de corrélation à un intervalle de (N+1)/Nsp, les données de sortie de corrélation étant acquises en calculant la corrélation entre les données organisées là et l'onde réfléchie.
     
    3. Radar selon l'une quelconque des revendications 1 à 2, comprenant en outre un générateur de code de référence (51) qui est séparé du générateur de code dans lequel
    le générateur de code de référence génère les données réorganisées correspondant aux données générées en décalant cycliquement le code, généré par le générateur de code, à l'intervalle correspondant à la période d'échantillonnage et
    l'unité de détection détecte l'objet en calculant une corrélation entre les données réorganisées, générées par le générateur de code de référence, et l'onde réfléchie échantillonnée par l'unité de réception.
     
    4. Procédé de détection d'objet comprenant :

    une étape d'envoi (S11) consistant à envoyer de manière répétée un signal d'envoi modulé par un code généré par un générateur de code, le code ayant une période prédéterminée, le code étant un code de séquence M ;

    une étape de réception (S12) consistant à échantillonner une onde réfléchie du signal d'envoi, réfléchie par un objet, avec une période d'échantillonnage inférieure à la période prédéterminée, la période d'échantillonnage étant une période calculée en multipliant Nsp par une largeur d'une puce du code, Nsp étant un nombre qui est inférieur à une longueur de code N du code et est une puissance de 2 ; et

    une étape de détection (S13) consistant à détecter l'objet en calculant une corrélation entre des données réorganisées et l'onde réfléchie échantillonnée dans l'étape de réception, les données réorganisées correspondant aux données générées en décalant cycliquement le code, généré par le générateur de code, à un intervalle correspondant à la période d'échantillonnage.


     
    5. Procédé de détection d'objet selon la revendication 4, dans lequel
    dans l'étape de détection, des données générées en réorganisant en outre des données de sortie de corrélation à un intervalle de (N+1)/Nsp sont produites (S14), les données de sortie de corrélation étant acquises en calculant la corrélation entre les données réorganisées et l'onde réfléchie.
     
    6. Procédé de détection d'objet selon l'une quelconque des revendications 4 à 5, comprenant en outre une étape de génération de code de référence consistant à générer à partir d'un générateur de code de référence les données réorganisées correspondant aux données générées en décalant cycliquement le code, généré par le générateur de code, à l'intervalle correspondant à la période d'échantillonnage, le générateur de code de référence étant séparé du générateur de code dans lequel
    dans l'étape de détection, l'objet est détecté en calculant une corrélation entre les données réorganisées, générées dans l'étape de génération de code de référence, et l'onde réfléchie échantillonnée dans l'étape de réception.
     




    Drawing





























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description