(19)
(11)EP 2 960 900 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.07.2020 Bulletin 2020/31

(21)Application number: 15172073.7

(22)Date of filing:  15.06.2015
(51)International Patent Classification (IPC): 
G10K 11/24(2006.01)
G10K 11/02(2006.01)

(54)

SYSTEMS AND METHODS FOR ACOUSTIC WINDOWS

SYSTEME UND VERFAHREN FÜR AKUSTIKFENSTER

SYSTÈMES ET PROCÉDÉS POUR DES FENÊTRES ACOUSTIQUES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 23.06.2014 US 201414312176

(43)Date of publication of application:
30.12.2015 Bulletin 2015/53

(73)Proprietor: Goodrich Corporation
Charlotte, NC 28217-4578 (US)

(72)Inventor:
  • FINCK, Darren G.
    Jacksonville, FL 32246 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
US-A- 2 430 013
US-A- 3 858 165
US-A- 4 016 530
US-A- 4 997 705
US-A- 3 038 551
US-A- 3 979 565
US-A- 4 096 756
US-B1- 6 831 876
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD



    [0001] The technical field relates to acoustic windows, and more particularly, relates to sonar windows for sonar domes.

    BACKGROUND



    [0002] Acoustic windows such as sonar domes for use in transmitting or receiving acoustic waveform signals in a liquid environment are well known in the art. Typically, the exterior surface of such windows is exposed to a body of free liquid such as an ocean, lake, or tank. The interior surface of such windows conventionally has an at least partially defined chamber filled with water or other liquid. Factors such as structural integrity and insertion loss (the amount of acoustic signal attenuation of sound waves passing through the acoustic window) are considered when constructing acoustic windows. Typical acoustic windows comprising a relatively soft inner core and structural outer skins, or a single layer of essentially homogenous material, generally operate well at lower frequencies, but have significant insertion loss as frequencies increase.

    [0003] US 6,831,876, US 2,430,013, US 4,016,530, US 4,997,705 and US 3,038,551 are all concerned with generating acoustic waves. In particular, US 6,831,876 discloses an acoustic window for sonars, wherein a sandwich of three layers (tuning, core, tuning) is disclosed. Said document points the skilled person towards very thin tuning layers, of the order of 0.05 lambda.

    SUMMARY



    [0004] An acoustic window is disclosed as claimed in claim 1. The acoustic window comprises a structural core comprising a composite ply and a non-structural tuning layer coupled to each side of the structural core.

    [0005] In various embodiments, the structural core may comprise a composite laminate. The non-structural tuning layer may comprise an un-reinforced epoxy. An acoustic impedance of the structural core is greater than an acoustic impedance of the non-structural tuning layer. The acoustic impedance of the non-structural tuning layer is greater than the acoustic impedance of water. A thickness of the structural core is equal to a multiple of one-half wavelength of a sound wave within the structural core for a particular frequency, and a thickness of the non-structural tuning layers is equal to an odd multiple of one-quarter wavelength of a sound wave within the tuning layer for the particular frequency. The structural core may comprise a carbon fiber reinforced epoxy. The acoustic window may be configured to be a portion of a sonar dome.

    [0006] A method of designing an acoustic window is disclosed as claimed in claim 6. The method comprises determining a desired frequency range. Properties for a structural core may be selected such that a local insertion loss minima is located within the desired frequency range. Properties for a tuning layer may be selected such that insertion loss is decreased within the desired frequency range. The tuning layers are coupled to each side of the structural core.

    [0007] In the present invention, the properties for the structural core comprise at least thickness, material, acoustic impedance, and optionally density, bulk modulus, Young's modulus, shear modulus. A thickness of the structural core is selected such that the thickness is approximately equal to a multiple of one-half wavelength of a sound wave in the structural core for a frequency within the desired frequency range. The structural core comprises a composite ply and optionally may comprise a carbon fiber reinforced composite. The tuning layer may comprise an epoxy. A thickness of the tuning layer is selected to be an odd multiple of one-quarter wavelength of a sound wave in the tuning layer for a frequency within the desired frequency range. An acoustic impedance of the structural core is greater than an acoustic impedance of the tuning layer.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0008] The subject matter of the present disclosure is particularly pointed out and distinctly claimed in the concluding portion of the specification. A more complete understanding of the present disclosure, however, may best be obtained by referring to the detailed description and claims when considered in connection with the drawing figures, wherein like numerals denote like elements.

    FIG. 1 illustrates a cross-sectional view of an acoustic window in accordance with various embodiments of the disclosure;

    FIG. 2 illustrates a graph of the insertion loss versus frequency for multiple sample acoustic windows in accordance with various embodiments; and

    FIG. 3 illustrates a flowchart of a process for manufacturing an acoustic window in accordance with various embodiments.


    DETAILED DESCRIPTION



    [0009] The detailed description of various embodiments herein makes reference to the accompanying drawings, which show various embodiments by way of illustration.

    [0010] Referring to FIG. 1, an acoustic window 100 is illustrated according to various embodiments. Acoustic window 100 comprises a core 110 and tuning layers 120. Core 110 provides structural properties to acoustic window 100. In the present invention, core 110 comprises a fiber reinforced material, such as a carbon reinforced epoxy or fiberglass. In various embodiments, core 110 may comprise a plurality of composite plies.

    [0011] Tuning layers 120 comprise a non-structural material. As used herein, "non-structural" refers to a material that has less structural integrity than a material of core 110. The structural integrity refers to the ability of the material to withstand a designed service load, and may be based on the mechanical properties of the material, such as at least one of toughness, strength, weight, hardness, or elasticity. For example, tuning layers 120 may comprise an un-reinforced epoxy. The tuning layers 120 may be bonded to core 110 by any method known in the art.

    [0012] Acoustic window 100 may be used as a cover or barrier to protect ultrasonic or sonar equipment from the environment, such as seawater. For example, acoustic window 100 may protect a transducer 130. Transducer 130 may emit sound waves which travel though acoustic window 100, reflect off an object 140, and return to transducer 130 through acoustic window 100. Higher frequencies may allow transducer 130 to provide a greater resolution of object 140. Acoustic window 100 may be shaped into curved or dome shapes or may be used as a planar window.

    [0013] Referring to FIG. 2, a graph of insertion loss at normal incidence versus frequency is illustrated according to various embodiments. The graph represents a computer simulation of sound waves travelling though acoustic windows. The dashed line represents an acoustic window having a structural core without tuning layers (Sample A), and the solid line represents an acoustic window having a structural core with epoxy tuning layers (Sample B). In both cases, the structural core comprised seven composite plies assembled in a composite laminate. Each composite ply comprised high-strength carbon fibers in an epoxy. However, many types of fibers, such as glass, aramid, polyethylene, boron, and silicon carbide may be used in many types of matrix materials, such as polyimides, aluminum, titanium, and alumina. Similarly, many types of structural materials may be used for the structural core.

    [0014] As the frequency increased, the amount of insertion loss for Sample A varied periodically. As illustrated, local minima were observed at approximately 540 kHz, 1080 kHz, and 1620 kHz. The sinusoid nature of the insertion loss is at least partially a function of the acoustic wavelength and a thickness of the structural core. Insertion loss was lowest when a thickness of the core was a multiple of one-half wavelength of the sound waves in the material of the structural core. This may be at least partially due to constructive interference occurring within the structural core.

    [0015] In the illustrated simulation, the core had a thickness of 2.4 millimeters (0.09 inches), and the speed of sound in the core was 2,600 meters/second (5800 miles per hour). The wavelength of sound waves in the core can be calculated by dividing the speed of sound by the frequency of the sound waves. Thus, at the local minimum of 1080 kHz, the wavelength is 2.4 mm (0.09 inches), and one-half of the wavelength is 1.2 mm (0.05 inches). Thus, the thickness of the core was a multiple of one-half of the wavelength of sound at 1080 kHz, specifically the multiple two, resulting in the local minimum at the desired frequency. Selecting materials with a particular bulk modulus, density, or thickness may allow for the structural core to have a local minimum at a desired frequency.

    [0016] However, as is shown in FIG. 2, the bandwidth about the minima is very narrow. For example, at the 1080 kHz minimum, only frequencies from about 1000 kHz to 1150 kHz are below 1.5 dB of insertion loss for the structural core without tuning layers. Thus, a structural core without tuning layers would block a significant amount of sound outside of a narrow range of frequencies at the local minimum. Many sonars utilize a range of frequencies, and even small manufacturing tolerances in the thickness of the structural core can have a significant impact of the location of the minima. Thus, acoustic windows having a greater bandwidth of low insertion loss are desirable in many applications.

    [0017] Sample B, represented by the solid line, shows the insertion loss versus frequency for the composite core of sample A, with a tuning layer on each side of the core. The tuning layers were comprised of epoxy and had a thickness of 0.51 mm (0.020 inches). However, a variety of materials may be used for the tuning layers, such as engineering plastics or elastomers.

    [0018] In the present invention, a thickness of each tuning layer is an odd multiple of one-quarter wavelength of sound waves in the tuning layers for a desired frequency. For example, the wavelength of sound waves in the epoxy at 1080 kHz is about 2.0 mm (0.080 inches), and the thickness of the epoxy was equal to one quarter wavelength. However, the thickness may also be selected to be 3/4 wavelength, 5/4 wavelength, etc. The effect of the tuning layers is observed in FIG. 2 as the decrease in insertion loss in the region of the local minimum at 1080 kHz. However, the range of frequencies affected by the tuning layers may be changed by selecting different thicknesses of the tuning layers. For example, the thickness of the tuning layers may be selected such that the thickness is equal to 1/4 wavelength in the epoxy at 540 kHz in order to decrease insertion loss in the region of the first local minimum for the structural core.

    [0019] The amount of insertion loss may be proportional to the difference in acoustic impedance between materials. For sound waves being transferred from a material with high acoustic impedance to a material with low acoustic impedance (or from low acoustic impedance to high acoustic impedance) a large amount of the energy of the sound waves may be reflected, resulting in high insertion loss. In the present invention, acoustic impedance of the tuning layers : is greater than the acoustic impedance of water, and less than the acoustic impedance of the structural core.

    [0020] Referring to FIG. 3, a flowchart of a process for designing and manufacturing an acoustic window is illustrated according to various embodiments. A desired frequency range may be determined (step 310). In various embodiments, the desired frequency range may be determined based on the specific application for a sonar device. For example, a particular sonar device may focus on frequencies between 800 kHz - 1300 kHz. Properties for a structural core may be selected such that a local insertion loss minima is located within the desired frequency range (step 320). In various embodiments, the properties of the structural core may be selected such that the local insertion loss minima is at a center of the desired frequency range. The properties of the structural core to be selected may include at least thickness, material, acoustic impedance, and optionally density, bulk modulus, Young's modulus, shear modulus. In the present invention, the thickness is selected to be a multiple of one-half wavelength of a sound wave in the structural core for a frequency within the desired frequency range.

    [0021] Properties for a tuning layer may be selected such that insertion loss is decreased within the desired frequency range (step 330). The properties of the tuning layer to be selected include at least thickness, material, density, acoustic impedance, and optionally bulk modulus, Young's modulus, shear modulus. In the present invention, the thickness is selected to be an odd multiple of one-quarter wavelength of a sound wave in the tuning layer for a frequency within the desired frequency range. A material may be selected with an acoustic impedance close to the acoustic impedance of water, such as within a factor of 2, or within a factor of 4. The tuning layer is coupled to the structural core (step 340). In the present invention, a tuning layer is coupled to each side of the structural core. In various embodiments, more than one tuning layer may be coupled to each side of the structural core.


    Claims

    1. An acoustic window (100) for use in sonar equipment, comprising:

    a structural core (110) comprising a composite ply; and

    a first and a second non-structural tuning layer (120) coupled to each side of the structural core (110) ;

    further characterised in that:

    a thickness of the structural core (110) is equal to a multiple of one-half wavelength of a sound wave within the structural core (110) for a particular frequency; and

    said first and second non-structural tuning layers (120) have a thickness equal to an odd multiple of one-quarter wavelength of the sound wave within said non-structural tuning layers (120) for the particular frequency; and

    wherein an acoustic impedance of the structural core (110) is greater than an acoustic impedance of the non-structural tuning layers (120); and

    wherein the acoustic impedance of the non-structural tuning layers (120) is greater than an acoustic impedance of water.


     
    2. The acoustic window of claim 1, wherein the structural core (110) comprises a composite laminate.
     
    3. The acoustic window of claim 1 or 2, wherein the non-structural tuning layer (120) comprises an un-reinforced epoxy.
     
    4. The acoustic window of any preceding claim, wherein the structural core (110) comprises a carbon fiber reinforced epoxy.
     
    5. The acoustic window of any preceding claim, wherein the acoustic window (100) is configured to be a portion of a sonar dome.
     
    6. A method of designing an acoustic window (100) for use in sonar rquipment comprising:

    determining a desired frequency range;

    selecting a thickness for a structural core (110) that is approximately equal to a multiple of one-half wavelength of a sound wave in the structural core (110) for a frequency within the desired frequency range;

    selecting a material for the structural core (110) which comprises a composite ply; selecting a thickness for first and second tuning layers (120) that is an odd multiple of one-quarter wavelength of the sound wave in the first and second tuning layers (120) for the frequency within the desired frequency range; and

    coupling the first and second tuning layers (120) to opposing sides of the structural core (110);

    wherein an acoustic impedance of the structural core (110) is greater than an acoustic impedance of the tuning players (120) ; and
    wherein the acoustic impedance of the first and second tuning layers (120) is greater than an acoustic impedance of water.


     
    7. The method of claim 6, wherein the structural core (110) comprises a carbon fiber reinforced composite.
     
    8. The method of any of claims 6 or 7, wherein the tuning layer (120) comprises an epoxy.
     


    Ansprüche

    1. Akustikfenster (100) zur Verwendung in einem Sonargerät, umfassend:

    einen strukturellen Kern (110), der eine Verbundlage umfasst; und

    eine erste und eine zweite nicht strukturelle Abstimmschicht (120), die an jede Seite des strukturellen Kerns (110) gekoppelt sind;

    ferner dadurch gekennzeichnet, dass:
    eine Dicke des strukturellen Kerns (110) gleich einem Vielfachen einer halben Wellenlänge einer Schallwelle innerhalb des strukturellen Kerns (110) für eine konkrete Frequenz ist; und

    die erste und die zweite nicht strukturelle Abstimmschicht (120) eine Dicke gleich einem ungeraden Vielfachen einer viertel Wellenlänge der Schallwelle innerhalb der nicht strukturellen Abstimmschichten (120) für die konkrete Frequenz aufweisen; und

    wobei eine akustische Impedanz des strukturellen Kerns (110) größer als eine akustische Impedanz der nicht strukturellen Abstimmschichten (120) ist; und

    wobei die akustische Impedanz der nicht strukturellen Abstimmschichten (120) größer als eine akustische Impedanz von Wasser ist.


     
    2. Akustikfenster nach Anspruch 1, wobei der strukturelle Kern (110) ein Verbundhartgewebe umfasst.
     
    3. Akustikfenster nach Anspruch 1 oder 2, wobei die nicht strukturelle Abstimmschicht (120) ein nicht verstärktes Epoxid umfasst.
     
    4. Akustikfenster nach einem beliebigen vorhergehenden Anspruch, wobei der strukturelle Kern (110) ein kohlenstofffaserverstärktes Epoxid umfasst.
     
    5. Akustikfenster nach einem beliebigen vorhergehenden Anspruch, wobei das Akustikfenster (100) dazu konfiguriert ist, ein Abschnitt einer Sonarkuppel zu sein.
     
    6. Verfahren zum Ausgestalten eines Akustikfensters (100) zur Verwendung in einem Sonargerät, umfassend:

    Bestimmen eines gewünschten Frequenzbereichs;

    Auswählen einer Dicke für einen strukturellen Kern (110), die ungefähr gleich einem Vielfachen einer halben Wellenlänge einer Schallwelle in dem strukturellen Kern (110) für eine Frequenz innerhalb des gewünschten Frequenzbereichs ist;

    Auswählen eines Materials für den strukturellen Kern (110), der eine Verbundlage umfasst;

    Auswählen einer Dicke für eine erste und eine zweite Abstimmschicht (120), die ein ungerades Vielfaches einer viertel Wellenlänge der Schallwelle in der ersten und der zweiten Abstimmschicht (120) für die Frequenz innerhalb des gewünschten Frequenzbereichs ist; und

    Koppeln der ersten und der zweiten Abstimmschicht (120) an gegenüberliegende Seiten des strukturellen Kerns (110);

    wobei eine akustische Impedanz des strukturellen Kerns (110) größer als eine akustische Impedanz der Abstimmschichten (120) ist; und

    wobei die akustische Impedanz der ersten und der zweiten Abstimmschicht (120) größer als eine akustische Impedanz von Wasser ist.


     
    7. Verfahren nach Anspruch 6, wobei der strukturelle Kern (110) einen kohlenstofffaserverstärkten Verbund umfasst.
     
    8. Verfahren nach Anspruch 6 oder 7, wobei die Abstimmschicht (120) ein Epoxid umfasst.
     


    Revendications

    1. Fenêtre acoustique (100) destinée à être utilisée dans un équipement sonar, comprenant :

    un noyau structurel (110) comprenant une couche composite ;

    une première et une seconde couche d'accord non structurelles (120) couplées à chaque côté du noyau structurel (110) ;

    caractérisée en outre en ce que :
    une épaisseur du noyau structurel (110) est égale à un multiple d'une demi-longueur d'onde d'une onde sonore à l'intérieur du noyau structurel (110) pour une fréquence particulière ; et

    lesdites première et seconde couches d'accord non structurelles (120) ont une épaisseur égale à un multiple impair d'un quart de longueur d'onde de l'onde sonore à l'intérieur desdites couches d'accord non structurelles (120) pour la fréquence particulière ; et

    dans laquelle une impédance acoustique du noyau structurel (110) est supérieure à une impédance acoustique des couches d'accord non structurelles (120) ; et

    dans laquelle l'impédance acoustique des couches d'accord non structurelles (120) est supérieure à une impédance acoustique de l'eau.


     
    2. Fenêtre acoustique selon la revendication 1, dans laquelle le noyau structurel (110) comprend un stratifié composite.
     
    3. Fenêtre acoustique selon la revendication 1 ou 2, dans laquelle la couche d'accord non structurelle (120) comprend un époxy non renforcé.
     
    4. Fenêtre acoustique selon une quelconque revendication précédente, dans laquelle le noyau structurel (110) comprend un époxy renforcé de fibres de carbone.
     
    5. Fenêtre acoustique selon une quelconque revendication précédente, dans laquelle la fenêtre acoustique (100) est configurée pour être une partie d'un dôme sonar.
     
    6. Procédé de conception d'une fenêtre acoustique (100) destiné à être utilisé dans un équipement sonar, comprenant :

    la détermination d'une plage de fréquences souhaitée ;

    la sélection d'une épaisseur pour un noyau structurel (110) qui est approximativement égale à un multiple d'une demi-longueur d'onde d'une onde sonore dans le noyau structurel (110) pour une fréquence dans la plage de fréquences souhaitée ;

    la sélection d'un matériau pour le noyau structurel (110) qui comprend une couche composite ;

    la sélection d'une épaisseur pour les première et seconde couches d'accord (120) qui est un multiple impair d'un quart de longueur d'onde de l'onde sonore dans les première et seconde couches d'accord (120) pour la fréquence dans la plage de fréquences souhaitée ; et

    le couplage des première et seconde couches d'accord (120) aux côtés opposés du noyau structurel (110) ;

    dans lequel une impédance acoustique du noyau structurel (110) est supérieure à une impédance acoustique des couches d'accord (120) ; et

    dans lequel l'impédance acoustique des première et seconde couches d'accord (120) est supérieure à une impédance acoustique de l'eau.


     
    7. Procédé selon la revendication 6, dans lequel le noyau structurel (110) comprend un composite renforcé de fibres de carbone.
     
    8. Procédé selon l'une quelconque des revendications 6 ou 7, dans lequel la couche d'accord (120) comprend un époxy.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description