(19)
(11)EP 2 961 610 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.09.2020 Bulletin 2020/37

(21)Application number: 13876555.7

(22)Date of filing:  26.03.2013
(51)International Patent Classification (IPC): 
B41J 2/045(2006.01)
B41J 2/16(2006.01)
B41J 2/14(2006.01)
(86)International application number:
PCT/US2013/033865
(87)International publication number:
WO 2014/133563 (04.09.2014 Gazette  2014/36)

(54)

PRINTED CIRCUIT BOARD FLUID FLOW STRUCTURE AND METHOD FOR MAKING A PRINTED CIRCUIT BOARD FLUID FLOW STRUCTURE

LEITERPLATTENFLÜSSIGKEITSSTRÖMUNGSSTRUKTUR UND VERFAHREN ZUR HERSTELLUNG EINER LEITERPLATTENFLÜSSIGKEITSSTRÖMUNGSSTRUKTUR

STRUCTURE D'ÉCOULEMENT DE FLUIDE DE CARTE DE CIRCUIT IMPRIMÉ ET PROCÉDÉ DE FABRICATION D'UNE STRUCTURE D'ÉCOULEMENT DE FLUIDE DE CARTE DE CIRCUIT IMPRIMÉ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 28.02.2013 WO PCT/US2013/028207

(43)Date of publication of application:
06.01.2016 Bulletin 2016/01

(73)Proprietor: Hewlett-Packard Development Company, L.P.
Spring TX 77389 (US)

(72)Inventors:
  • CHEN, Chien-Hua
    Corvallis, Oregon 97330 (US)
  • CUMBIE, Michael W.
    Corvallis, Oregon 97330 (US)

(74)Representative: Burger, Markus et al
Schoppe, Zimmermann, Stöckeler Zinkler, Schenk & Partner mbB Patentanwälte Radlkoferstraße 2
81373 München
81373 München (DE)


(56)References cited: : 
WO-A1-2008/134202
WO-A1-2011/019529
US-A1- 2005 024 444
US-A1- 2007 153 070
US-A1- 2009 009 559
US-A1- 2011 037 808
US-B1- 6 188 414
WO-A1-2008/151216
US-A1- 2004 032 468
US-A1- 2005 122 378
US-A1- 2008 259 125
US-A1- 2009 225 131
US-A1- 2011 292 124
US-B1- 6 402 301
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] Each printhead die in an inkjet pen or print bar includes tiny channels that carry ink to the ejection chambers. Ink is distributed from the ink supply to the die channels through passages in a structure that supports the printhead die(s) on the pen or print bar. It may be desirable to shrink the size of each printhead die, for example to reduce the cost of the die and, accordingly, to reduce the cost of the pen or print bar. The use of smaller dies, however, can require changes to the larger structures that support the dies, including the passages that distribute ink to the dies.

    [0002] WO 2008/134202 A1 describes a microfluidic device including first and second glass substrates bonded together. The first glass substrate has first and second opposed surfaces. A die pocket is formed in the first opposed surface, and a through slot extends from the die pocket to the second opposed surface. The second glass substrate is bonded to the second opposed surface of the first glass substrate whereby an outlet of a channel formed in the second glass substrate substantially aligns with the through slot. The channel of the second glass substrate has an inlet that is larger than the outlet. Another example fluid flow structure is known from US 2011/292124 A1.

    DRAWINGS



    [0003] 

    Figs. 1-5 illustrate an inkjet print bar implementing one example of a new printhead flow structure.

    Figs. 6-11 illustrate one example of a process for making a printhead flow structure such as might be used in the print bar shown in Figs. 1-5.

    Figs. 12-18 illustrate another example of a process for making a printhead flow structure such as might be used in a print bar like the one shown in Figs. 1-5.



    [0004] The same part numbers designate the same or similar parts throughout the figures. The figures are not necessarily to scale. The relative size of some parts is exaggerated to more clearly illustrate the example shown.

    DESCRIPTION



    [0005] Inkjet printers that utilize a substrate wide print bar assembly have been developed to help increase printing speeds and reduce printing costs. Conventional substrate wide print bar assemblies include multiple parts that carry printing fluid from the printing fluid supplies to the small printhead dies from which the printing fluid is ejected on to the paper or other print substrate. While reducing the size and spacing of the printhead dies continues to be important for reducing cost, channeling printing fluid from the larger supply components to ever smaller, more tightly spaced dies requires complex flow structures and fabrication processes that can actually increase cost.

    [0006] A new fluid flow structure has been developed to enable the use of smaller printhead dies and more compact die circuitry to help reduce cost in substrate wide inkjet printers. A printhead structure implementing one example of the new flow structure includes multiple printhead dies glued or otherwise mounted in openings in a printed circuit board. Each opening forms a channel through which printing fluid may flow directly to a respective die. Conductive pathways in the printed circuit board connect to electrical terminals on the dies. The printed circuit board in effect grows the size of each die for making fluid and electrical connections and for attaching the dies to other structures, thus enabling the use of smaller dies. The ease with which printed circuit boards can be fabricated and processed also helps simply the fabrication of page wide print bars and other printhead structures as new, composite structures with built-in printing fluid channels, eliminating the difficulties of forming the printing fluid channels in a silicon substrate.

    [0007] The new fluid flow structure is not limited to print bars or other types of printhead structures for inkjet printing, but may be implemented in other devices and for other fluid flow applications. Thus, in one example, the new structure includes a micro device embedded in a printed circuit board having a channel therein through which fluid may flow to the micro device. The micro device, for example, could be an electronic device, a mechanical device, or a microelectromechanical system (MEMS) device. The fluid flow, for example, could be a cooling fluid flow into or onto the micro device or fluid flow into a printhead die or other fluid dispensing micro device.

    [0008] These and other examples shown in the figures and described below illustrate but do not limit the invention, which is defined in the Claims following this Description.

    [0009] As used in this document, a "printed circuit board" means a nonconductive substrate with conductive pathways for mechanically supporting and electrically connecting to an electronic device (printed circuit board is sometimes abbreviated "PCB"); a "micro device" means a device having one or more exterior dimensions less than or equal to 30mm; "thin" means a thickness less than or equal to 650µm; a "sliver" means a thin micro device having a ratio of length to width (L/W) of at least three; a "printhead" and a "printhead die" mean that part of an inkjet printer or other inkjet type dispenser that dispenses fluid from one or more openings. A printhead includes one or more printhead dies. "Printhead" and "printhead die" are not limited to printing with ink and other printing fluids but also include inkjet type dispensing of other fluids and/or for uses other than printing.

    [0010] Figs. 1-5 illustrate one example of a new inkjet printhead structure 10 in which printhead dies are embedded in a printed circuit board with fluid flow channels. In this example, printhead structure 10 is configured as an elongated print bar such as might be used in a single pass substrate wide printer. Referring first to Figs. 1 and 2, printheads 12 are embedded in an elongated printed circuit board 14 and arranged generally end to end in rows 16 in a staggered configuration in which the printheads 12 in each row overlap another printhead 12 in that row. Although four rows 16 of staggered printheads 12 are shown, for printing four different colors for example, other suitable configurations are possible. Figs. 3-5 are detail views of one of the die slivers 12 shown in Fig. 2. Referring now to Figs. 1-5, in the example shown, each printhead 12 includes a single printhead die sliver 18 with two rows of ejection chambers 20 and corresponding orifices 22 through which printing fluid is ejected from chambers 20. A channel 24 in printed circuit board 14 supplies printing fluid to each printhead die sliver 18. Other suitable configurations for each printhead 12 are possible. For example, more or fewer printhead die slivers 18 may be used with more or fewer ejection chambers 20 and channels 24 or larger dies 18 (not slivers) may be used.

    [0011] Printing fluid flows into each ejection chamber 20 from a manifold 26 extending lengthwise along each die sliver 18 between the two rows of ejection chambers 20. Printing fluid feeds into manifold 26 through multiple ports 28 that are connected to a printing fluid supply channel 24 at die surface 30. The idealized representation of a printhead die 18 in Figs. 1-5 depicts three layers 32, 34, 36 for convenience only to clearly show ejection chambers 20, orifices 22, manifold 26, and ports 28. An actual inkjet printhead die sliver 18 is a typically complex integrated circuit (IC) structure formed on a silicon substrate 32 with layers and elements not shown in Figs. 1-5. For example, a thermal ejector element or a piezoelectric ejector element formed (not shown) on substrate 32 at each ejection chamber 20 is actuated to eject drops or streams of ink or other printing fluid from orifices 22. Conductors 38 covered by a protective layer 40 and attached to electrical terminals 42 on substrate 32 carry electrical signals to ejector and/or other elements of printhead die sliver 18.

    [0012] Figs. 6-10 illustrate one example process which is not under the scope of the present invention according to the appended claims and which is for making a printhead structure 10 such as the one shown in Figs. 1-5. Fig. 11 is a flow diagram of the process illustrated in Figs. 6-10. Although a process for making a printhead structure 10 with printhead dies 18 is shown, the process may be used to form other fluid flow structures using other micro devices. Also, while only one printhead structure 10 is shown, the process may be used to simultaneously fabricate multiple printhead structures 10. Indeed, one of the advantages of embedding dies 18 in a printed circuit board 14 with channels 24 is the ease with which a print circuit board 14 may be made to different sizes to accommodate individual, group or wafer level fabrication.

    [0013] Referring first to Fig. 6, in preparation for receiving a printhead die, a slot 44 is sawn or otherwise formed in printed circuit board 14 and conductors 38 exposed inside slot 44 (steps 100 and 102 in Fig. 11). In Fig. 7, a patterned die attach film or other suitable adhesive 46 is applied to printed circuit board 14 and a PET (polyethylene terephthalate) film or other suitable barrier 50 applied over die attach film 46 (steps 104 and 106 in Fig. 11). Barrier 50 spanning slot 48 forms a cavity 52 for receiving printhead die 18 (step 108 in Fig. 11) and provides a mounting surface for attaching the in-process structure 54 shown in Fig. 8 to a wafer chuck 56 as shown in Fig. 9 (step 110 in Fig. 11).

    [0014] In Fig. 9, PCB conductors 38 are bonded to printhead die terminals 42 (step 112 in Fig. 11) and die attach adhesive 46 is flowed into the gaps around printhead die 18 (step 114 in Fig. 11). Die attach adhesive 46 forms the glue that holds printhead die 18 in slot 44. Die attach adhesive 46 also seals the embedded die 18 in channel 24. Accordingly, although any suitable adhesive may be used for die attach 46, including die attach films commercially available for semiconductor fabrication, the adhesive should resist the corrosive effect (if any) of the ink or other printing fluids in channel 24.

    [0015] In one example for bonding and flowing, solder or conductive adhesive is applied to one or both conductors 38 and terminals 42 before assembly (Fig. 8) and the structure heated after assembly (Fig. 9) to reflow the solder to bond conductors 38 and terminals 42 and to flow (or wick) adhesive 46 into the gaps around printhead die 18 as shown in Fig. 9. Printhead structure 10 is then released from chuck 56 and barrier 50 removed as shown in Fig. 10 (steps 116 and 118 in Fig. 11).

    [0016] Figs. 12-17 illustrate another example process which is under the scope of the present invention and which is for making a printhead structure 10. Fig. 18 is a flow diagram of the process illustrated in Figs. 12-17. In this example, the electrical connections are made after the printhead dies are embedded in printed circuit board 14 to conductors 38 exposed on the exterior of PCB 14 adjacent to slot 44. Referring to Fig. 12, in preparation for receiving a printhead die, a slot 44 is sawn or otherwise formed in printed circuit board 14 with conductors 38 exposed along the exterior surface of PCB 14 outside slot 44 (step 120 in Fig. 18). In this example, a printed circuit board 14 pre-impregnated ("pre-preg") with an epoxy resin or other suitable adhesive is used with a high temperature tape 50 to seal printhead die 18 in slot 44. A pre-preg tape 50 may be used as an alternative to or in addition to a pre-preg PCB 14. As shown in Fig. 13, tape 50 applied to printed circuit board 14 forms a cavity 52 for receiving printhead die 18 (steps 122 and 124 in Fig. 18) and provides a mounting surface for attaching the in-process structure 54 shown in Fig. 14 to a wafer chuck 56 as shown in Fig. 15 (step 126 in Fig. 18).

    [0017] In Fig. 15, the assembly is heated to flow pre-preg adhesive 46 into the gaps around printhead die 18 (step 128 in Fig. 18) to affix printhead die 18 in slot 44 and seal the embedded die 18 in channel 24. Printhead structure 10 is then released from chuck 56 and barrier 50 removed as shown in Fig. 16 (steps 130 and 132 in Fig. 18). In Fig. 17, wires 58 are bonded to conductors 38 on PCB 14 and terminals 42 on printhead 18 and the connections encapsulated in a protective covering 60 (steps 134 and 136 in Fig. 18).

    [0018] A PCB flow structure 10 enables the use of long, narrow and very thin printhead dies 18. For example, a 100µm thick printhead die 18 that is about 26mm long and 500µm wide can be embedded in a 1mm thick printed circuit board 14 to replace a conventional 500µm thick silicon printhead die. Not only is it cheaper and easier to form channels 24 in a printed circuit board compared to forming the feed channels in a silicon substrate, but it is also cheaper and easier to form printing fluid ports 28 in a thinner die 18. For example, ports 28 in a 100µm thick printhead die 18 may be formed by dry etching and other suitable micromachining techniques not practical for thicker substrates. Micromachining a high density array of through ports 28 in a thin silicon, glass or other substrate 32 rather than forming conventional slots leaves a stronger substrate while still providing adequate printing fluid flow.

    [0019] As noted at the beginning of this Description, the examples shown in the figures and described above illustrate but do not limit the invention. Other examples are possible. Therefore, the foregoing description should not be construed to limit the scope of the invention, which is defined in the following claims.


    Claims

    1. A method for making a fluid flow structure, comprising:

    pre-impregnating a printed circuit board (14) with an epoxy resin used with a high temperature tape (50);

    forming a slot (44) in the printed circuit board (14) with conductors (38) exposed along the exterior surface of the printed circuit board outside the slot (44)

    forming a cavity (52) by the slot (44) and the high temperature tape (50) by applying the high temperature tape (50) to the printed circuit board (14)

    forming a channel (24) in the pre-impregnated printed circuit board by

    mounting a micro device (18) in the slot (44) such that fluid can flow to directly to the micro device (18) through the channel (24); and

    connecting a conductor (38) in the printed circuit board (14) to a conductor on the micro device (18).


     
    2. The method of Claim 1, wherein forming a channel (24) by mounting a micro devices (18) in the channel (24) comprises forming slots through the printed circuit board (14) having a thickness greater than the thickness of the micro device (18) and gluing a micro device (18) into each slot.
     
    3. The method of Claim 2, wherein each micro device (18) comprises a micro device sliver and the method further comprises:

    applying a barrier over each slot;

    placing the micro device sliver against the high temperature tape (50) in each slot;

    flowing adhesive around the micro device slivers to glue the micro device slivers into the slots;

    bonding printed circuit board conductors (38) to electrical terminals on the micro device slivers; and

    removing the barrier covering each slot.


     
    4. A fluid flow structure manufactured by a method according to claims 1 to 3, comprising:

    a printed circuit board (14) pre-impregnated with an epoxy resin;

    a micro device (18) embedded in the printed circuit board (14),

    the printed circuit board (14) having:

    a channel (24) therein through which fluid may flow to the micro device(18); and

    a conductor (38) connected to a conductor on the micro device (18);

    wherein the micro device (18) is glued into an opening that forms the channel (24) in the board.


     
    5. The structure of Claim 4, wherein the micro device (18) includes a fluid flow passage connected directly to the channel (24).
     
    6. The structure of Claim 4, wherein the channel (24) comprises an open channel (24) exposed to an external surface of the micro device (18).
     
    7. The structure of Claim 4, wherein the opening comprises a slot and the micro device (18) comprises a micro device sliver glued into the slot in the board.
     
    8. The structure of Claim 7, wherein the micro device (18) comprises an arrangement of printhead die slivers each glued into a corresponding slot in the board.
     
    9. A printhead structure, comprising multiple printhead dies (18) being a micro device (18) mounted in a printed circuit board (14) of one of claims 4 to 8.
     
    10. The structure of Claim 9, wherein the printed circuit board (14) comprises an elongated printed circuit board (14) in which the dies are mounted in slots that form the channels (24) in the board and the dies are arranged generally end to end along a length of the board.
     
    11. The structure of Claim 10, wherein each die comprises a die sliver glued into a respective slot in the board.
     
    12. The structure of Claim 11, wherein:
    each conductor (38) is connected indirectly to a terminal on a printhead die sliver through a wire bonded to the conductor (38) and to the die terminal.
     
    13. The structure of Claim 11, wherein each printhead die sliver includes:

    multiple holes connected to the channel (24) such that printing fluid can flow from the channel (24) directly into the holes;

    a manifold connected to the holes such that printing fluid can flow from the holes directly into the manifold; and

    multiple ejection chambers connected to the manifold such that printing fluid can flow from the manifold into the ejection chambers.


     


    Ansprüche

    1. Verfahren zur Herstellung einer Fluidflussstruktur, das Folgendes umfasst:

    Vorimprägnieren einer Leiterplatte (14) mit einem Epoxidharz, das mit einem Hochtemperaturband (50) verwendet wird;

    Ausbilden eines Schlitzes (44) in der Leiterplatte (14) mit Leitern (38), die entlang der Außenfläche der Leiterplatte außerhalb des Schlitzes (44) freiliegen;

    Ausbilden eines Hohlraums (52) durch den Schlitz (44) und das Hochtemperaturband (50) durch Aufbringen des Hochtemperaturbandes (50) auf die Leiterplatte (14);

    Ausbilden eines Kanals (24) in der vorimprägnierten Leiterplatte durch

    Anbringen eines Mikrobauteils (18) in dem Schlitz (44), so dass Fluid durch den Kanal (24) direkt zum Mikrobauteil (18) fließen kann; und

    Verbinden eines Leiters (38) in der Leiterplatte (14) mit einem Leiter auf dem Mikrobauteil (18).


     
    2. Verfahren nach Anspruch 1, wobei das Ausbilden eines Kanals (24) durch Anbringen eines Mikrobauteils (18) in dem Kanal (24) ein Ausbilden von Schlitzen durch die Leiterplatte (14) mit einer Dicke, die größer als die Dicke des Mikrobauteils (18) ist, und ein Kleben eines Mikrobauteils (18) in jeden Schlitz umfasst.
     
    3. Verfahren nach Anspruch 2, wobei jedes Mikrobauteil (18) ein Mikrobauteil-Band umfasst und wobei das Verfahren ferner Folgendes umfasst:

    Aufbringen einer Barriere über jeden Schlitz;

    Platzieren des Mikrobauteil-Bands gegen das Hochtemperaturband (50) in jedem Schlitz;

    Einfließen von Klebstoff um die Mikrobauteil-Bänder, um die Mikrobauteil-Bänder in die Schlitze zu kleben;

    Bonden von Leiterplattenleitern (38) an elektrische Anschlüsse auf den Mikrobauteil-Bändern; und

    Entfernen der Barriere, die jeden Schlitz abdeckt.


     
    4. Fluidflussstruktur, hergestellt durch ein Verfahren nach den Ansprüchen 1 bis 3, die folgende Merkmale umfasst:

    eine mit Epoxidharz vorimprägnierte Leiterplatte (14);

    ein in die Leiterplatte (14) eingebettetes Mikrobauteil (18),

    wobei die Leiterplatte (14) Folgendes aufweist:

    einen darin befindlichen Kanal (24), durch den Fluid zum Mikrobauteil (18) fließen kann; und

    einen Leiter (38), der mit einem Leiter auf dem Mikrobauteil (18) verbunden ist;

    wobei das Mikrobauteil (18) in eine Öffnung geklebt ist, die den Kanal (24) in der Platte bildet.


     
    5. Struktur nach Anspruch 4, wobei das Mikrobauteil (18) einen Fluidflusskanal aufweist, der direkt mit dem Kanal (24) verbunden ist.
     
    6. Struktur nach Anspruch 4, wobei der Kanal (24) einen offenen Kanal (24) umfasst, der zu einer äußeren Oberfläche des Mikrobauteils (18) hin freiliegt.
     
    7. Struktur nach Anspruch 4, wobei die Öffnung einen Schlitz aufweist und das Mikrobauteil (18) ein in den Schlitz in der Platte eingeklebtes Mikrobauteil-Band umfasst.
     
    8. Struktur nach Anspruch 7, wobei das Mikrobauteil (18) eine Anordnung von Druckkopfmatritzdenbändern umfasst, die jeweils in einen entsprechenden Schlitz in der Platte geklebt sind.
     
    9. Druckkopfstruktur, die mehrere Druckkopfmatritzen (18) umfasst, bei denen es sich um ein Mikrobauteil (18) handelt, das in einer Leiterplatte (14) nach einem der Ansprüche 4 bis 8 montiert ist.
     
    10. Struktur nach Anspruch 9, wobei die Leiterplatte (14) eine längliche Leiterplatte (14) umfasst, in der die Matritzen in Schlitzen angebracht sind, die die Kanäle (24) in der Platte bilden, und wobei die Matritzen im Allgemeinen Ende an Ende entlang einer Länge der Platte angeordnet sind.
     
    11. Struktur nach Anspruch 10, wobei jede Matritzen ein Matritzenband umfasst, das in einen entsprechenden Schlitz in der Platte geklebt ist.
     
    12. Struktur nach Anspruch 11, wobei:
    jeder Leiter (38) indirekt mit einem Anschluss auf einem Druckkopfmatritzenband durch einen mit dem Leiter (38) verbundenen Draht und mit dem Matritzenanschluss verbunden ist.
     
    13. Struktur nach Anspruch 11, wobei jedes Druckkopfmatritzenband Folgendes umfasst:

    mehrere Löcher, die derart mit dem Kanal (24) verbunden sind, dass Druckfluid aus dem Kanal (24) direkt in die Löcher fließen kann;

    einen Verteiler, der mit den Löchern derart verbunden ist, dass Druckfluid aus den Löchern direkt in den Verteiler fließen kann; und

    mehrere Ausstoßkammern, die mit dem Verteiler derart verbunden sind, dass Druckfluid aus dem Verteiler in die Ausstoßkammern fließen kann.


     


    Revendications

    1. Procédé d'élaboration d'une structure d'écoulement de fluide, comprenant :

    la pré-imprégnation d'une carte de circuit imprimé (14) au moyen d'une résine époxy utilisée avec un ruban haute température (50) ;

    la formation d'une fente (44) dans la carte de circuit imprimé (14), des conducteurs (38) étant exposés le long de la surface extérieure de la carte de circuit imprimé à l'extérieur de la fente (44) la formation d'une cavité (52) à proximité de la fente (44) et du ruban haute température (50) en appliquant le ruban haute température (50) sur la carte de circuit imprimé (14) la formation d'un canal (24) dans la carte de circuit imprimé pré-imprégnée en montant un micro-dispositif (18) dans la fente (44) de telle sorte que du fluide puisse s'écouler directement jusqu'au micro-dispositif (18) par le canal (24) ; et

    la connexion d'un conducteur (38) dans la carte de circuit imprimé (14) à un conducteur sur le micro-dispositif (18).


     
    2. Procédé selon la revendication 1, dans lequel la formation d'un canal (24) en montant des micro-dispositifs (18) dans le canal (24) comprend la formation de fentes à travers la carte de circuit imprimé (14) possédant une épaisseur supérieure à l'épaisseur du micro-dispositif (18) et le collage d'un micro-dispositif (18) dans chaque fente.
     
    3. Procédé selon la revendication 2, dans lequel chaque micro-dispositif (18) comprend une bande de micro-dispositif et le procédé comprend en outre :

    l'application d'une barrière sur chaque fente ;

    la mise en place de la bande de micro-dispositif contre le ruban haute température (50) dans chaque fente ;

    l'écoulement d'adhésif autour des bandes de micro-dispositif pour coller les bandes de micro-dispositif dans les fentes ;

    la liaison de conducteurs de carte de circuit imprimé (38) à des bornes électriques sur les bandes de micro-dispositif ; et

    le retrait de la barrière recouvrant chaque fente.


     
    4. Structure d'écoulement de fluide fabriquée par un procédé selon les revendications 1 à 3, comprenant :

    une carte de circuit imprimé (14) pré-imprégnée d'une résine époxy ;

    un micro-dispositif (18) intégré dans la carte de circuit imprimé (14), la carte de circuit imprimé (14) possédant :

    un canal (24) situé en son sein, par lequel du fluide peut s'écouler jusqu'au micro-dispositif (18) ; et

    un conducteur (38) connecté à un conducteur sur le micro-dispositif (18) ;

    le micro-dispositif (18) étant collé dans une ouverture qui forme le canal (24) dans la carte.


     
    5. Structure selon la revendication 4, dans laquelle le micro-dispositif (18) comporte une voie d'écoulement de fluide reliée directement au canal (24).
     
    6. Structure selon la revendication 4, dans laquelle le canal (24) comprend un canal ouvert (24) exposé à une surface externe du micro-dispositif (18).
     
    7. Structure selon la revendication 4, dans laquelle l'ouverture comprend une fente et le micro-dispositif (18) comprend une bande de micro-dispositif collée dans la fente dans la carte.
     
    8. Structure selon la revendication 7, dans laquelle le micro-dispositif (18) comprend un agencement de bandes de matrice de tête d'impression collées chacune dans une fente correspondante dans la carte.
     
    9. Structure de tête d'impression, comprenant plusieurs matrices de tête d'impression (18) constituant un micro-dispositif (18) monté dans une carte de circuit imprimé (14) selon l'une des revendications 4 à 8.
     
    10. Structure selon la revendication 9, dans laquelle la carte de circuit imprimé (14) comprend une carte de circuit imprimé allongée (14) dans laquelle les matrices sont montées dans des fentes qui forment les canaux (24) dans la carte et les matrices sont globalement agencées bout à bout sur une longueur de la carte.
     
    11. Structure selon la revendication 10, dans laquelle chaque matrice comprend une bande de matrice collée dans une fente respective dans la carte.
     
    12. Structure selon la revendication 11, dans laquelle :
    chaque conducteur (38) est connecté indirectement à une borne sur une bande de matrice de tête d'impression par un fil lié au conducteur (38) et à la borne de matrice.
     
    13. Structure selon la revendication 11, dans laquelle chaque bande de matrice de tête d'impression comporte :

    de multiples trous reliés au canal (24) de sorte que du fluide d'impression peut s'écouler à partir du canal (24) directement dans les trous ;

    un collecteur relié aux trous de sorte que le fluide d'impression peut s'écouler à partir des trous directement dans le collecteur ; et

    de multiples chambres d'éjection reliées au collecteur de sorte que du fluide d'impression peut s'écouler à partir du collecteur dans les chambres d'éjection.


     




    Drawing



































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description