(19)
(11)EP 2 961 857 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
13.05.2020 Bulletin 2020/20

(21)Application number: 14757416.4

(22)Date of filing:  25.02.2014
(51)International Patent Classification (IPC): 
C23C 14/34(2006.01)
H01J 37/34(2006.01)
C23C 14/35(2006.01)
(86)International application number:
PCT/US2014/018212
(87)International publication number:
WO 2014/134004 (04.09.2014 Gazette  2014/36)

(54)

SPUTTERING APPARATUS

SPUTTERVORRICHTUNG

APPAREIL DE PULVÉRISATION CATHODIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 01.03.2013 US 201361771460 P
06.09.2013 US 201314019877

(43)Date of publication of application:
06.01.2016 Bulletin 2016/01

(60)Divisional application:
20162666.0

(73)Proprietor: Bühler AG
9240 Uzwil (CH)

(72)Inventors:
  • CROWLEY, Daniel Theodore
    Owatonna, MN 55060 (US)
  • MORSE, Patrick Lawrence
    Tuscon, AZ 85745 (US)
  • GERMAN, John Robert
    Owatonna, MN 55060 (US)

(74)Representative: Gill Jennings & Every LLP 
The Broadgate Tower 20 Primrose Street
London EC2A 2ES
London EC2A 2ES (GB)


(56)References cited: : 
WO-A1-2009/138348
US-A1- 2002 148 725
US-A1- 2009 229 970
US-A1- 2010 243 428
JP-A- H1 161 403
US-A1- 2004 050 690
US-A1- 2009 283 400
US-A1- 2011 259 733
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    CROSS-REFERENCE TO RELATED APPLICATION



    [0001] This application claims the benefit of United States Provisional Patent Application Serial No. 61/771,460, filed on March 1, 2013.

    BACKGROUND



    [0002] Magnetron sputtering of rotating targets is well known and is used extensively for producing a wide variety of thin films on a wide variety of substrates. In the most basic form of rotating-target magnetron sputtering, the material to be sputtered is either formed in the shape of a tube or is adhered to the outer surface of a support tube made of a rigid material. A magnetron assembly is disposed within the tube and supplies magnetic flux, which permeates the target such that there is adequate magnetic flux at the outer surface of the target. The magnetic field produced by the magnetron assembly is designed in a way such that it retains electrons emitted from the target so as to increase the probability that they will have ionizing collisions with the working gas, hence enhancing the efficiency of the sputtering process.

    [0003] It is becoming increasingly important to compensate for target erosion effects because it is desirable to increase target thickness and operate sputter processes under more sensitive process conditions. The desire for thicker targets is largely driven by fabrication costs of ceramic targets, but is also desirable in order to have a greater inventory of usable material inside the sputter coater in order to run longer coating campaigns. The need to run processes in more sensitive process conditions is driven by the desire to get higher deposition rates, in reactive mode sputtering, and/or to finely control film chemistry.

    [0004] Fabrication cost for targets of some materials, in particular ceramic transparent conductive oxide (TCO) materials, are relatively high in comparison to the cost of the raw materials. To improve the economy of these targets, it is desirable to increase the thickness of the target material. In this way, the target will have significantly more usable material while adding only minimally to the overall cost of the target, as the fabrication cost does not change significantly. The only significant cost increase is due to the additional raw material used. In addition, thicker targets have the added benefit of allowing longer production campaigns between target changes.

    [0005] Increasing the target thickness too much, however, can result in inadequate magnetic flux at the target surface when using standard magnetron assemblies. Magnetron designs with higher magnetic flux have recently been introduced to provide the higher magnetic flux required for the thicker targets.

    [0006] In the case of reactive magnetron sputtering, metallic targets are sputtered in an atmosphere that contains reactive gas such as oxygen or nitrogen. The sputtered material reacts with the reactive gas in order to form a film comprised of compounds of the target material and the reactive gas. The reactive gas also reacts with the target surface, thereby forming reacted compounds on the target surface. The surface compounds greatly reduce the ablation rate. In order to improve the sputtering efficiency, the amount of reactive gas may be carefully controlled so as to minimize the target surface reactions while still achieving the desired film chemistry. In some cases, the processes need to be controlled such that the chemistry of the film is sub-stoichiometric.

    [0007] This fine control over the process gas makes the process sensitive to small perturbations. The industry has seen considerable technological advances in power delivery and process gas control that have minimized many of the process perturbations. Nevertheless, little has been done to minimize variations in the magnetic confinement of the plasma. As the target erodes, the working surface gets closer to the magnetic assembly and the magnetic field becomes stronger. This changes the confinement of the plasma, altering the dynamics of the sputtering process. This presents a challenge in maintaining long-term stability of the process.

    [0008] The typical magnetron assembly for rotating cathodes comprises three substantially parallel rows of magnets attached to a yoke of magnetically conductive material, such as steel, that helps complete the magnetic circuit. The direction of magnetization of the magnets is radial with respect to the major axis of the sputtering target. The center row of magnets has the opposite polarity of the two outer rows of magnets.

    [0009] Magnetic flux of the inner and outer rows of magnets is linked through the magnetically conductive yoke, on one side of the magnets. On the other side of the magnets, opposite the yoke, the magnetic flux is not contained in a magnetically conductive material. Hence, the magnetic flux permeates substantially unimpeded through the target, which is substantially non-magnetic. Thus, two arc-shaped magnetic fields are provided at and proximate to the working surface of the target. These fields retain the electrons and cause them to drift in a direction perpendicular to the magnetic field lines, which is parallel to the rows of magnets. This is known as the ExB drift. In an ordinary arrangement, this drift path is also parallel to the major axis of the target.

    [0010] Additionally, the outer rows of magnets are slightly longer that the inner row of magnets, and additional magnets, of the same polarity as the outer rows, are placed at the ends of the assembly between the two outer rows creating the so-called "turnaround" areas of the drift path. This has the effect of connecting the two drift paths, hence forming one continuous ovular "racetrack" drift path. This optimizes the retention of the electrons and therefore optimizes the efficiency of the sputtering process.

    [0011] As the target erodes, the working surface comes closer to the magnet assembly, and the intensity of the magnetic field, at the working surface, increases in a non-linear fashion. For finely controlled processes it very desirable to modify the magnetic field, as the target erodes, so as to minimize variability of the process, thereby making the process easier to control over the course of the target life.

    [0012] The need for changing the magnetic field as the target erodes is well known, and has been accomplished in the case of planar sputtering cathodes. The need for an adjustable magnetron for rotating cathodes has gone unsatisfied, however, because the geometry and mechanical structure of the cathodes make the task especially challenging.

    [0013] WO-A-2009/138348 describes a sputtering magnetron insertable in a rotatable target. The magnetron is designed around a single piece, multiwalled tube with compartments extending over the length of the tube. The multiwalled tube gives a much stiffer magnetron carrier structure compared to prior art magnetrons. As a result, the magnetic field generator can be mounted inside a compartment and the distance between magnets and target surface is easily adjustable as the tube is much stiffer than the generator. Additionally, the coolant channels can be incorporated inside the tube and close to the outer wall of the tube so that coolant can be supplied in the vicinity of the magnetic field generator. The increased stiffness of the magnetron allows the target tube to be carried by the magnetron - not the other way around - at least during part of the useful life of the target. As a result thin target carrier tubes can be used as they don't have to carry the magnetron anymore resulting in a longer use of the target. US-A-2009/0229970 describes a sputtering cathode whereby it is possible to increase the degree of freedom to adjust a distance between a target and a magnet unit. The sputtering cathode includes a plurality of magnet units arranged at positions opposite to the rear surface of the target and a distance adjusting mechanism for separately adjusting a distance between the target and a magnet unit for each magnet unit. In addition, the sputtering cathode includes a reciprocating movement mechanism for reciprocating a plurality of magnet units in parallel to the rear surface of the target. The plurality of magnet units, the distance adjusting mechanism and the reciprocating movement mechanism may be housed in a magnet chamber that can be evacuated.

    [0014] US-A-2011/0259733 describes that when a film is formed by using a sputter method, distribution variation due to a progress of target erosion generated during the film formation is suppressed, and film thickness distribution and resistance value distribution are corrected to an optimal state. In order to maintain the magnetic flux density formed on the target surface at a constant level, the distance between the target surface and the magnet surface (MT distance) is corrected in accordance with the progress of the target erosion. Further, two or more MT distances are set by a process recipe or the like while forming a thin film, and different distribution shapes are combined to form a near flat distribution shape.

    SUMMARY



    [0015] The invention concerns a rotary cathode assembly for a sputtering apparatus according to claim 1. Additional embodiments of the invention are defined by the dependent claims. A magnetron assembly for a rotary target cathode comprises a rigid support structure, a magnet bar structure movably attached to the rigid support structure, and at least one actuation mechanism coupled to the rigid support structure and configured to change a distance of the magnet bar structure from a surface of a rotatable target cylinder. The magnetron assembly also includes a position indicating mechanism operative to measure a position of the magnet bar structure relative to the surface of the rotatable target cylinder. A communications device is configured to receive command signals from outside of the magnetron assembly and transmit information signals to outside of the magnetron assembly.

    BRIEF DESCRIPTION OF DRAWINGS



    [0016] 

    Figure 1 is a perspective view of a magnetron assembly for a rotatable target cathode according to one embodiment;

    Figure 2 is an end view of the magnetron assembly of Figure 1;

    Figure 3 is a side view of the magnetron assembly of Figure 1;

    Figure 4 is a cross-sectional side view of the magnetron assembly taken along line 4-4 of Figure 2;

    Figure 5 is an enlarged sectional view of the magnetron assembly taken along line 5-5 of Figure 4;

    Figure 6 is a cross-sectional end view of the magnetron assembly taken along line 6-6 of Figure 3;

    Figure 7 is a cross-sectional side view of a magnetron assembly in a rotatable target cathode according to another embodiment;

    Figure 8 is an enlarged sectional view of the magnetron assembly taken along line 8-8 of Figure 7;

    Figure 9 is a partial cross-sectional side view of a sputtering apparatus according to one embodiment; and

    Figure 10 is a schematic illustration of a sputtering apparatus according to another embodiment.


    DETAILED DESCRIPTION



    [0017] An apparatus and technique for rotating-cathode magnetron sputtering is provided that deals with the variation in magnetic intensity at the sputtering surface as a target erodes, which results in changing process conditions. By magnetically compensating for target erosion effects, the present approach improves process stability.

    [0018] In some embodiments, adjustments in the position of a magnetron assembly can be made by pneumatic or hydraulic pressure that pushes against a spring loaded mechanical structure. The spring can push the magnetron assembly either towards the nearest or towards the furthest distance from the target's working surface while the pneumatic or hydraulic pressure pushes against the spring, in the opposite direction. The applied pressure will determine the position of the assembly. In such embodiments, the pressure-carrying line can be disposed within a central water tube, on which the magnetron assembly is generally mounted. This location is beneficial because the water tube remains static. Thus, no seals are required on moving parts and reliability is optimized.

    [0019] In one embodiment, energy is provided to a pneumatic actuator through a pressurized gas cylinder disposed within the target assembly. The high-pressure gas cylinder can be a commercially available carbon dioxide (CO2) cartridge, for example.

    [0020] In other embodiments, the motion for making adjustments can be provided by a cable, which also can be disposed within the water tube. In one example, the cable can be rotary, such as in a speedometer of a car. In another example, the cable can be push/pull, such as in a hand-brake cable on a bicycle.

    [0021] Depending on the specific design of the cathode being used, some embodiments of the present approach can provide motion directly by way of a rotary or linear shaft that is disposed within the water tube along the axis of the target assembly. The shaft passes from air to water through an air-to-water seal, such as a rotary seal. In the case of linear motion, the motion can be transmitted via a bellows, which provides complete air-to-water isolation and transfers motion through compression or expansion of the bellows.

    [0022] In some cathode designs, one end of the target assembly is attached to an end-block through which all functions pass, and the other end of the target is capped. This type of cathode is referred to as a single-ended cathode. The capped end may or may not be supported by a bearing. In this type of cathode design, the above mentioned bellows can be part of the end-cap design.

    [0023] Another method of providing a mechanical feed-through is magnetically. A magnetic assembly inside the target structure can magnetically couple to an assembly outside the target. The motion of the external assembly will translate, via the magnetic link, through a solid wall. Such an arrangement can most easily be implemented as part of the end-cap of a single-ended cathode design.

    [0024] In other embodiments, adjustments can be driven by taking advantage of the motion of the target rotation relative to the static magnetron/water-tube assembly. This can be done by providing a mechanical structure, such as gears, to harness the rotary motion of the target to drive the actuators used to make the adjustment. In another embodiment, adjustments can be driven by harnessing the water flow through the cathode, as by a turbine or water-wheel mechanism, such as when the water flows through the central water bar. In such cases as the target rotation or water flow driven embodiments, it is necessary to provide a structure for engaging and dis-engaging the mechanism from outside the coater, such as a switching mechanism, which can use any of the mechanical feed-through methods previously discussed.

    [0025] In further embodiments, adjustments can be made by internal motors such as servos or stepper motors contained within the target assembly, which can be either submergible or contained inside a water-tight housing. These motors can apply torque directly to an adjustment screw, or there can be intermediate mechanics. The intermediate mechanics can be worm gears, bevel gears, or rack and pinions, for example, which change the direction of motion. Such mechanics can also serve as gear reductions in order to adjust the relative torque between the output torque of the motor and the desired torque to be applied to the adjustment screw.

    [0026] In an alternative approach, piezo-electric motors can be utilized in the actuation mechanism. The piezo-electric motor provides a linear motion. This motion can be translated to rotary motion, to drive an adjustment screw, by applying tangential force to a gear that is affixed to the adjustment screw. Other linear motion options include electric solenoids, and pneumatic or hydraulic cylinders.

    [0027] While power for internal motors can be provided by wires that are run through the water bar assembly, difficulties can arise in shielding these wires from the electrical power applied to the cathode, and because of the extra connection required when assembling the target. Alternately, power can be routed in by brush contacts, especially on a capped end of a single-ended cathode.

    [0028] Another method of driving internal motors is by providing battery packs within the target cavity. In this approach, power can be switched on and off by any of the mechanisms previously discussed.

    [0029] In general, pneumatic embodiments of the actuator require less power than motorized embodiments.

    [0030] In another embodiment, an electronic internal control module can be located within the target assembly. Command and feedback communications between the operator and the internal control module can be done by a variety of methods that do not require significant alteration of the cathode.

    [0031] One method for remote communicating with the internal control module is by a power-line overlay signal. In this case, the communications signal is transmitted through the same conductance path as the power applied to the target. However, communications frequencies must be chosen to be very different from any power frequency of the sputtering power supply. Additionally, it may be necessary to send redundant signals to compensate for electrical noise that is occasionally generated by the sputtering process. This method of communication has the advantages of being easily implemented in most rotary cathode designs with virtually no modifications to the cathode structure and requires no special feed-through.

    [0032] Alternate methods of communicating with the control module include transmitting signals through a window in the cathode or target assembly. The most convenient place for such a window is as the center of the end cap of the single-ended type cathode. Exemplary types of signals that can be sent through this window include radio, Wi-Fi, Bluetooth, optical, magnetic induction, or the like. Digital optical communications have the advantage of being immune to interference from electromagnetic noise produced by the sputtering process, but the communication path needs reasonable shielding from light. Radio and Wi-Fi signals need shielding from electro-magnetic noise. Magnetic induction communication involve two inductive coils in close proximity, where a first coil is activated by an electric current and a second coil acts as a pick-up coil that generates a voltage signal in response to the magnetic field produced by the first coil. All of these methods can provide two-way communications. A variation of the magnetic induction method is to replace one of the coils with a Hall sensor, but this limits communications to one-way.

    [0033] Another alternative for remote communication is by use of a pair of ultrasonic transceivers. Ultrasonic communication has the advantage in that there is more versatility in where the transceivers are mounted, since they do not require line-of-sight or any special window through which to transmit. Additionally, ultrasonic transceivers do not suffer from any electro-magnetic noise, optical noise, or optical impedance. The advantages of ultrasonic communication make it easier to retrofit cathodes produced by a variety of manufacturers.

    [0034] A method of sensing the position of the magnet assembly, relative the target working surface, is also provided. In one approach, direct measurement is performed using an analog or digital linear motion indicator. If the motion is driven by servos or stepper motors, a feedback signal is available from these motors. An alternate method for sensing position is to measure gas pressure inside the pneumatic elements. Another method is to have a magnet and a Hall probe mounted in the apparatus such that they move relative to one another as adjustments are made. The Hall probe will have a different voltage output depending on its distance from the magnet.

    [0035] The various techniques disclosed herein can be used to position the entire magnet assembly as a single unit, or to position multiple points along the length of the magnet assembly, independently, so as to make it possible to also adjust uniformity of the process.

    [0036] Figures 1-3 and 6 illustrate various views of a magnetron assembly 100 for a rotatable target cylinder according to one embodiment. In general, magnetron assembly 100 includes a rigid support structure 102 such as a coolant tube, a magnet bar structure 104 movably attached to support structure 102, and one or more actuation mechanisms 108 coupled to support structure 102. The actuation mechanisms 108 are configured to change a distance of magnet bar structure 104 from a surface of the rotatable target cylinder.

    [0037] The actuation mechanisms 108 are covered by an actuator housing 109. A position indicating mechanism is located in actuator housing 109 and is operative to measure the position of magnet bar structure 104 relative to the surface of the rotatable target cylinder. The magnet bar structure 104 includes an array of substantially parallel rows of magnets 110 attached to a yoke 112, as shown in Figure 6. The yoke 112 is comprised of a magnetically conductive material such as steel, which helps to complete a magnetic circuit.

    [0038] A control housing 106 partially surrounds support structure 102 and contains a communications device configured to receive command signals from outside of magnetron assembly 100 and transmit information signals to outside of magnetron assembly 100. The control housing 106 also encloses an electronic controller in operative communication with actuation mechanisms 108. The communications device can be a transceiver that is operatively coupled to the electronic controller. The transceiver can be a radio frequency (RF) transceiver, an optical transceiver, or an ultrasonic transceiver, for example. As shown in Figure 1, control housing 106 defines a position feedback connection port 114 and one or more actuation connection ports 116.

    [0039] The position indicating mechanism can be implemented as a built-in position sensor in each actuation mechanism 108. The position sensor can measure the position of magnet bar structure 104 either by direct sensing or by an indirect metric. For example, the position indicating mechanism can be implemented with a Hall probe and a magnet in an analog sensor. Alternatively, the position indicating mechanism can be implemented with a digital indicator, such as a plunger style digital indicator, which transmits data directly to an operator without additional processing.

    [0040] In addition, a power source is provided to energize actuator mechanisms 108 and the electronic controller. The power source is fully self-contained within the volume of the magnetron assembly. For example, a power supply such as a battery pack can be located in control housing 106.

    [0041] The actuation mechanisms 108 can be implemented in various ways. For example, the actuation mechanisms 108 can include a spring-loaded pneumatic structure or a spring loaded hydraulic structure. Alternatively, the actuation mechanisms 108 can include a rotary cable or a push/pull cable.

    [0042] In one embodiment, each actuation mechanism 108 can include a spring-loaded pneumatic bellows, bladders, or cylinders. In this approach, adjustment points are spring loaded with the pressure in the pneumatic element pushing in the opposite direction. Reserve energy for making adjustments can be stored in a compressed gas supply such as a CO2 gas cartridge. Adjustments can be made by adjustment valves that either release compressed gas from the CO2 gas cartridge into the pneumatic elements, or release gas from the pneumatic elements into cooling water inside the target.

    [0043] Further details of one embodiment of actuation mechanisms 108 with built-in position sensing are depicted in Figures 4 and 5. In this embodiment, the actuation mechanisms 108 include a sensor port 120 for a Hall probe, a pneumatic actuation port 122 configured to receive a compressed gas, and a bellows 124 such as a welded bellows in communication with pneumatic actuation port 122. A control shaft 130 is coupled to bellows 124 and yoke 112 of magnet bar structure 104. A return spring 128 is coupled to control shaft 130, and a magnet 126 is located in control shaft 130 for Hall probe feedback. The Hall probe/magnet in this embodiment is an analog detector for position sensing. Figure 6 illustrates exemplary locations within control housing 106 for a control board 113 for the controller, one or more solenoid valves 115, transceivers 117, a CO2 gas cartridge 118 in fluid communication with the solenoid valves, and a battery 119 to run the control board, which are used with the actuation mechanisms 108 of Figures 4 and 5.

    [0044] As discussed previously, the actuation mechanisms can alternatively be implemented with a motorized structure, such as a servo, a stepper motor, or a piezoelectric motor. Any number of mechanical configurations can be used for the drive motion. One example is a screw jack, which may additionally incorporate right-angle gears or reduction gears. In these embodiments, position sensing of the magnet bar can be carried out through feedback from the motorized structures.

    [0045] Figures 7 and 8 illustrate a magnetron assembly 140 implemented with a motorized structure in a rotatable target cathode 170 according to one embodiment. In general, magnetron assembly 140 is disposed inside of a target cylinder 172 and includes a rigid support structure 142, a magnet bar structure 144 movably attached to support structure 142, and a plurality of motorized actuation mechanisms 146 coupled to support structure 142. The motorized actuation mechanisms 146 include geared stepper motors 148, which can have a 100: 1 gear reduction, for example. A set of bevel gears 150 is operatively coupled to stepper motors 148. The bevel gears 150 can have a 4: 1 gear reduction, for example. A threaded housing 152 is mated with each of bevel gears 150. A threaded post 154 is coupled between magnet bar structure 144 and threaded housing 152. An actuator housing 155 encloses each of motorized actuation mechanisms 146.

    [0046] The magnetron assembly 140 also includes an electronic controller 156 in operative communication with motorized actuation mechanisms 146. A communications device such as an ultrasonic transceiver/transducer 158 is operatively coupled to electronic controller 156. Power for stepper motors 148 and electronic controller 156 can be provided by a battery pack 160. A control housing 162 encloses electronic controller 156 and battery pack 160.

    [0047] The target cylinder 172 is rotatably attached to an end block 174 as shown in Figure 7. An ultrasonic transceiver/transducer 176 is mounted on end block 174 and is in communication with ultrasonic transceiver/transducer 158.

    [0048] Figure 9 illustrates a sputtering apparatus 200 according to another embodiment that is configured for two-way optical communications. A rotatable cathode target cylinder 210 is disposed within a vacuum chamber 212 having an outer wall 215. The target cylinder 210 is operatively coupled to a motor 213 mounted on outer wall 215 outside of vacuum chamber 212. A magnetron assembly 100, such as described previously with respect to Figures 1-3, is located within target cylinder 210.

    [0049] As depicted in Figure 9, an optical communications box 214 is located outside of vacuum chamber 212 on outer wall 215. A first fiber optic cable 216 in atmosphere is optically coupled to a first optical transceiver in optical communications box 214. The fiber optic cable 216 is also coupled to a vacuum coupler 218, which provides a feedthrough from atmosphere to vacuum for fiber optic cable 216. A second fiber optic cable 224 is coupled to a second optical transceiver inside control housing 106 through a cathode water cooling circuit of target cylinder 210. A fiber optic window 220 in an end cap 222 of target cylinder 210 allows an optical signal to be transmitted between fiber optic cable 216 and fiber optic cable 224.

    [0050] Figure 10 is a schematic illustration of a sputtering apparatus 300 according to another embodiment, which is configured for two-way ultrasonic communications between a magnetron assembly 310, located within a rotary cathode assembly 320 in a vacuum chamber 340, and an external controller 344 outside of vacuum chamber 340. The magnetron assembly 310 includes a magnet bar structure 312, and a plurality of motorized actuation mechanisms 314 mechanically coupled magnet bar structure 312. An internal electronic controller 316 is in operative communication with motorized actuation mechanisms 314, such as through motor control cables 318 that can include two sets of twisted pairs. A battery pack housed with electronic controller 316 provides power to motorized actuation mechanisms 314 and electronic controller 316.

    [0051] The rotary cathode assembly 320 includes a target cylinder 322, which can be filled with water, rotatably coupled to an end block 324. A first ultrasonic transceiver 326 is mounted inside of target cylinder 322 and is in signal communication with electronic controller 316, such as through an ultrasonic communication wire 328 that can include one twisted pair. A second ultrasonic transceiver 330 is mounted on end block 324 over an insulator 332 and is in ultrasonic communication with ultrasonic transceiver 326. The external controller 344, which can be operated by a user, is in signal communication with ultrasonic transceiver 330, such as through an ultrasonic communication wire 334 that passes through a vacuum coupler 336, which provides a feedthrough from atmosphere to vacuum chamber 340.

    [0052] In one implementation, electronic controller 316 is capable of controlling up to twelve (12) axes of motion for magnet bar structure 312, with only one motor of a motorized actuation mechanism 314 being controlled at any one time. The control theory for electronic controller 316 can be adapted to move each motor a small amount in a given sequence. Controlling only one motor at a time simplifies the control system and reduces the battery requirements as there is a lower instantaneous power draw. In addition, the control lines can be routed with a communications bus on the magnet bar side of an I-beam support. A water sealed electrical connection can be used between each controlled unit and the communications bus.

    [0053] In another embodiment, a system for two-way transmission of information between a magnetron assembly contained within a cathode target assembly and outside of a vacuum chamber can also be provided. For example, two-way communications can be carried out by two RF transceivers strategically placed, with one transceiver inside the target assembly and one transceiver outside the target assembly but inside the vacuum chamber. The transceiver inside the target assembly is directly connected to the electronic controller. The transceiver in the vacuum chamber is connected to the outside via an electrical feed-through in the chamber wall. It is necessary to provide a window between transceiver antennas that is transparent to the communication signal. The window can be located as part of the end cap of the single-ended cathode.

    [0054] While a number of embodiments have been described, it will be understood that the described embodiments are to be considered only as illustrative and not restrictive, and that various modifications to the described embodiments may be made without departing from the scope of the invention. The scope of the invention is therefore indicated by the appended claims rather than by the foregoing description.


    Claims

    1. A rotary cathode assembly for a sputtering apparatus, the rotary cathode assembly comprising:

    a rotatable target cylinder (172, 210) having an inner surface that defines an interior passageway; and

    a magnetron assembly (140) disposed inside the target cylinder (172, 210), the magnetron assembly (140) comprising:

    a rigid support structure (102, 142) positioned within the interior passageway of the target cylinder;

    a magnet bar structure (104, 144) movably attached to the rigid support structure (102, 142) within the interior passageway;

    a plurality of actuation mechanisms (108, 146) coupled to the rigid support structure (102, 142) and configured to change a distance of the magnet bar structure (104, 144) from the inner surface of the target cylinder (172, 210);

    a plurality of position indicating mechanisms each associated with a respective one of the actuation mechanisms (108, 146) and operative to measure a position of the magnet bar structure (104, 144) relative to the inner surface of the target cylinder (172, 210); and

    an electronic controller (156) in the target cylinder (172, 210) and in operative communication with the actuation mechanisms (108, 146);
    the rotary cathode assembly further comprising:

    a first transceiver located in the target cylinder (172, 210) and operatively coupled to the electronic controller (156); and

    a second transceiver located outside of the target cylinder (172, 210) and in signal communication with the first transceiver;

    wherein the actuation mechanisms (108, 146) are operable to adjust the position of the magnet bar structure (104, 144) with respect to the inner surface of the target cylinder (172, 210) in response to control signals from the electronic controller (156), as the target cylinder (172, 210) erodes during operation of the sputtering apparatus;

    characterised in that the rotary cathode assembly further comprises a power source (119, 160) fully self-contained within the volume of the magnetron assembly (140) and coupled to the electronic controller (156) and configured to supply energy to the actuation mechanisms (108, 146).


     
    2. The rotary cathode assembly of claim 1, wherein the first and second transceivers comprise optical transceivers.
     
    3. The rotary cathode assembly of claim 2, further comprising a first fibre optic cable coupled to the first transceiver and in optical communication with a second fibre optic cable coupled to the second transceiver.
     
    4. The rotary cathode assembly of claim 1, wherein the power source (119, 160) comprises a battery pack (160).
     
    5. The rotary cathode assembly of claim 1, wherein the actuation mechanisms (108, 146) each include a motorized structure comprising a servo, a stepper motor, or a piezo-electric motor.
     
    6. The rotary cathode assembly of claim 1, wherein the actuation mechanisms (108, 146) each comprise:

    a sensor port (120) for a Hall probe;

    a pneumatic actuation port (122) configured to receive a compressed gas;

    a bellows (124) in communication with the pneumatic actuation port;

    a control shaft (130) coupled to the bellows and the magnet bar structure;

    a return spring (128) coupled to the control shaft; and

    a magnet (126) in the control shaft for Hall probe feedback.


     
    7. The rotary cathode assembly of claim 1, wherein the position indicating mechanism comprises a Hall probe and a magnet.
     
    8. The rotary cathode assembly of claim 1, wherein the electronic controller is in operative communication with the actuation mechanisms through control signals comprising optical signals, radio signals, Wi-Fi signals, Bluetooth signals, or magnetic induction signals.
     


    Ansprüche

    1. Drehkathodenanordnung für eine Sputtereinrichtung, wobei die Drehkathodenanordnung Folgendes umfasst:

    einen drehbaren Targetzylinder (172, 210) mit einer Innenoberfläche, die einen inneren Durchgang definiert; und

    eine Magnetronanordnung (140), die innerhalb des Targetzylinders (172, 210) eingerichtet ist, wobei die Magnetronanordnung (140) Folgendes umfasst:

    eine starre Stützstruktur (102, 142), die im Inneren des inneren Durchgangs des Targetzylinders positioniert ist;

    eine Magnetstabstruktur (104, 144), die beweglich an der starren Stützstruktur (102, 142) im Inneren des inneren Durchgangs befestigt ist;

    mehrere Betätigungsmechanismen (108, 146), die mit der starren Stützstruktur (102, 142) gekoppelt und konfiguriert sind, um einen Abstand der Magnetstabstruktur (104, 144) von der Innenoberfläche des Targetzylinders (172, 210) zu ändern;

    mehrere Positionsanzeigemechanismen, von denen jeder mit einem jeweiligen einen der Betätigungsmechanismen (108, 146) verknüpft ist und wirksam ist, um eine Position der Magnetstabstruktur (104, 144) relativ zu der Innenoberfläche des Targetzylinders (172, 210) zu messen; und

    eine elektronische Steuervorrichtung (156) in dem Targetzylinder (172, 210) und in wirksamer Kommunikation mit den Betätigungsmechanismen (108, 146);

    wobei die Drehkathodenanordnung ferner Folgendes umfasst:

    einen ersten Sendeempfänger, der sich in dem Targetzylinder (172, 210) befindet und

    mit der elektronischen Steuervorrichtung (156) wirkgekoppelt ist; und

    einen zweiten Sendeempfänger, der sich außerhalb des Targetzylinders (172, 210) befindet und in Signalkommunikation mit dem ersten Sendeempfänger ist;

    wobei die Betätigungsmechanismen (108, 146) wirksam sind, um die Position der Magnetstabstruktur (104, 144) in Bezug auf die Innenoberfläche des Targetzylinders (172, 210) als Reaktion auf Steuersignale von der elektronischen Steuervorrichtung (156) anzupassen, wenn der Targetzylinder (172, 210) eines Betriebs der Sputtereinrichtung erodiert;

    dadurch gekennzeichnet, dass die Drehkathodenanordnung ferner eine Stromquelle (119, 160) umfasst, die vollständig im Inneren des Volumens der Magnetronanordnung (140) in sich geschlossen und mit der elektronischen Steuervorrichtung (156) gekoppelt und konfiguriert ist, um den Betätigungsmechanismen (108, 146) Energie zuzuführen.


     
    2. Drehkathodenanordnung nach Anspruch 1, wobei der erste und zweite Sendeempfänger optische Sendeempfänger umfassen.
     
    3. Drehkathodenanordnung nach Anspruch 2, ferner umfassend ein erstes Glasfaserkabel, das mit dem ersten Sendeempfänger gekoppelt ist und in optischer Kommunikation mit einem zweiten Glasfaserkabel ist, das mit dem zweiten Sendeempfänger gekoppelt ist.
     
    4. Drehkathodenanordnung nach Anspruch 1, wobei die Stromquelle (119, 160) einen Akkupack (160) umfasst.
     
    5. Drehkathodenanordnung nach Anspruch 1, wobei die Betätigungsmechanismen (108, 146) jeweils eine motorisierte Struktur beinhalten, die einen Servomotor, einen Schrittmotor, oder einen piezoelektrischen Motor umfasst.
     
    6. Drehkathodenanordnung nach Anspruch 1, wobei die Betätigungsmechanismen (108, 146) jeweils Folgendes umfassen:

    eine Sensoröffnung (120) für eine Hallsonde;

    eine pneumatische Betätigungsöffnung (122), die konfiguriert ist, um ein Druckgas aufzunehmen;

    einen Blasebalg (124) in Kommunikation mit der pneumatischen Betätigungsöffnung;

    eine Steuerwelle (130), die mit dem Blasebalg und der Magnetstabstruktur gekoppelt ist;

    eine Rückstellfeder (128), die mit der Steuerwelle gekoppelt ist; und

    einen Magneten (126) in der Steuerwelle für eine Hallsondenrückkopplung.


     
    7. Drehkathodenanordnung nach Anspruch 1, wobei der Positionsanzeigemechanismus eine Hallsonde und einen Magneten umfasst.
     
    8. Drehkathodenanordnung nach Anspruch 1, wobei die elektronische Steuervorrichtung in wirksamer Kommunikation mit den Betätigungsmechanismen durch Steuersignale ist, die optische Signale, Funksignale, Wi-Fi-Signale, Bluetooth-Signale, oder magnetische Induktionssignale umfassen.
     


    Revendications

    1. Ensemble de cathode rotative pour un appareil de pulvérisation cathodique, l'ensemble de cathode rotative comprenant :

    un cylindre cible rotatif (172, 210) ayant une surface intérieure qui définit un passage intérieur ; et

    un ensemble magnétron (140) disposé à l'intérieur du cylindre cible (172, 210), l'ensemble magnétron (140) comprenant :

    une structure de support rigide (102, 142) positionnée à l'intérieur du passage intérieur du cylindre cible ;

    une structure de barre magnétique (104, 144) fixée de manière amovible à la structure de support rigide (102, 142) à l'intérieur du passage intérieur ;

    une pluralité de mécanismes d'actionnement (108, 146) accouplés à la structure de support rigide (102, 142) et conçus pour changer une distance de la structure de barre magnétique (104, 144) depuis la surface intérieure du cylindre cible (172, 210) ;

    une pluralité de mécanismes d'indication de position associés chacun à un mécanisme respectif des mécanismes d'actionnement (108, 146) et fonctionnant pour mesurer une position de la structure de barre magnétique (104, 144) par rapport à la surface intérieure du cylindre cible (172, 210) ; et

    un dispositif de commande électronique (156) dans le cylindre cible (172, 210) et en communication fonctionnelle avec les mécanismes d'actionnement (108, 146) ;

    l'ensemble de cathode rotative comprenant en outre :

    un premier émetteur-récepteur situé dans le cylindre cible (172, 210) et couplé fonctionnellement au dispositif de commande électronique (156) ; et

    un second émetteur-récepteur situé à l'extérieur du cylindre cible (172, 210) et en communication par signal avec le premier émetteur-récepteur ;

    les mécanismes d'actionnement (108, 146) pouvant fonctionner pour régler la position de la structure de barre magnétique (104, 144) par rapport à la surface intérieure du cylindre cible (172, 210) en réponse aux signaux de commande du dispositif de commande électronique (156), lorsque le cylindre cible (172, 210) s'érode pendant le fonctionnement de l'appareil de pulvérisation ;

    caractérisé en ce que l'ensemble de cathode rotative comprend en outre une source d'alimentation (119, 160) entièrement autonome à l'intérieur du volume de l'ensemble magnétron (140) et couplée au dispositif de commande électronique (156) et conçue pour fournir de l'énergie aux mécanismes d'actionnement (108, 146).


     
    2. Ensemble de cathode rotative selon la revendication 1, dans lequel les premier et second émetteurs-récepteurs comprennent des émetteurs-récepteurs optiques.
     
    3. Ensemble de cathode rotative selon la revendication 2, comprenant en outre un premier câble à fibre optique couplé au premier émetteur-récepteur et en communication optique avec un second câble à fibre optique couplé au second émetteur-récepteur.
     
    4. Ensemble de cathode rotative selon la revendication 1, dans lequel la source d'alimentation (119, 160) comprend un bloc-batterie (160).
     
    5. Ensemble de cathode rotative selon la revendication 1, dans lequel les mécanismes d'actionnement (108, 146) comprennent chacun une structure motorisée comprenant un servomoteur, un moteur pas à pas ou un moteur piézoélectrique.
     
    6. Ensemble de cathode rotative selon la revendication 1, dans lequel les mécanismes d'actionnement (108, 146) comprennent chacun :

    un orifice de capteur (120) pour une sonde à effet Hall ;

    un orifice d'actionnement pneumatique (122) conçu pour recevoir un gaz comprimé ;

    un soufflet (124) en communication avec l'orifice d'actionnement pneumatique ;

    un arbre de commande (130) accouplé au soufflet et à la structure de barre magnétique ;

    un ressort de rappel (128) accouplé à l'arbre de commande ; et

    un aimant (126) dans l'arbre de commande pour le retour de la sonde Hall.


     
    7. Ensemble de cathode rotative selon la revendication 1, dans lequel le mécanisme d'indication de position comprend une sonde à effet Hall et un aimant.
     
    8. Ensemble de cathode rotative selon la revendication 1, dans lequel le dispositif de commande électronique est en communication fonctionnelle avec les mécanismes d'actionnement par le biais de signaux de commande comprenant des signaux optiques, des signaux radio, des signaux Wi-Fi, des signaux Bluetooth ou des signaux d'induction magnétique.
     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description