(19)
(11)EP 2 962 310 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
17.06.2020 Bulletin 2020/25

(21)Application number: 14756868.7

(22)Date of filing:  21.02.2014
(51)Int. Cl.: 
H01B 5/00  (2006.01)
H01B 3/00  (2006.01)
H01B 3/46  (2006.01)
C25D 11/02  (2006.01)
C25D 11/06  (2006.01)
H01B 7/42  (2006.01)
H01B 3/02  (2006.01)
H01B 3/10  (2006.01)
H02G 7/00  (2006.01)
C25D 11/08  (2006.01)
C25D 7/06  (2006.01)
(86)International application number:
PCT/US2014/017736
(87)International publication number:
WO 2014/133898 (04.09.2014 Gazette  2014/36)

(54)

COATED OVERHEAD CONDUCTORS AND METHODS

BESCHICHTETE HÄNGESTROMSCHIENEN UND VERFAHREN

CONDUCTEURS AÉRIENS REVÊTUS ET PROCÉDÉS


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 26.02.2013 US 201361769492 P
20.02.2014 US 201414185429

(43)Date of publication of application:
06.01.2016 Bulletin 2016/01

(73)Proprietor: General Cable Technologies Corporation
Highland Heights, KY 41076 (US)

(72)Inventors:
  • RANGANATHAN, Sathish Kumar
    Indianapolis, Indiana 46214 (US)
  • MHETAR, Vijay
    Carmel, Indiana 46074 (US)
  • DAVIS, Cody R.
    Maineville, Ohio 45039 (US)
  • SIRIPURAPU, Srinivas
    Carmel, Indiana 46032 (US)

(74)Representative: Zambardino, Umberto et al
Botti & Ferrari S.r.l. Via Cappellini, 11
20124 Milano
20124 Milano (IT)


(56)References cited: : 
CN-B- 101 752 023
US-A- 5 372 886
US-A1- 2007 193 767
US-A1- 2010 252 241
US-B2- 7 820 300
US-A- 3 383 188
US-A1- 2005 279 527
US-A1- 2008 128 155
US-A1- 2012 267 141
US-B2- 8 361 630
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    CROSS-REFERENCE TO RELATED APPLICATION



    [0001] The present application claims priority of U.S. provisional application Serial No. 61/769,492, filed February 26, 2013.

    TECHNICAL FIELD



    [0002] The present disclosure generally relates to a coated overhead conductor which better radiates heat away, thereby reducing operating temperature.

    BACKGROUND



    [0003] As the need for electricity continues to grow, the need for higher capacity transmission and distribution lines grows as well. The amount of power a transmission line can deliver is dependent on the current-carrying capacity (ampacity) of the line. For a given size of the conductor, the ampacity of the line is limited by the maximum safe operating temperature of the bare conductor that carries the current. Exceeding this temperature can result in damage to the conductor or the accessories of the line. Moreover, the conductor gets heated by Ohmic losses and solar heat and cooled by conduction, convection and radiation. The amount of heat generated due to Ohmic losses depends on current (I) passing through the conductor and its electrical resistance (R) by the relationship - Ohmic losses=I2R. Electrical resistance (R) itself depends on temperature. Higher current and temperature lead to higher electrical resistance, which, in turn, leads to more electrical losses in the conductor.
    US 2005/0279527 A1 describes a cable for an overhead power transmission line and a method of making the cable.

    SUMMARY



    [0004] The present invention provides an overhead conductor as defined in claims 1-8. The present invention further provides a method for making the overhead conductor as defined in claims 9-14.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0005] Various embodiments will become better understood with regard to the following description, appended claims and accompanying drawings wherein:

    FIG. 1 is a cross-sectional view of an overhead conductor in accordance with one embodiment.

    FIG. 2 is a cross-sectional view of an overhead conductor in accordance with another embodiment.

    FIG. 3 is a cross-sectional view of an overhead conductor in accordance with yet another embodiment.

    FIG. 4 is a cross-sectional view of an overhead conductor in accordance with still another embodiment.

    FIG. 5 is a test setup to measure the temperature of coated and uncoated energized aluminum substrates, in accordance with an embodiment.


    DETAILED DESCRIPTION



    [0006] Selected embodiments are hereinafter described in detail in connection with the views and examples of FIGS 1-5.

    [0007] Metal oxide coated overhead conductors, when tested in under similar current and ambient conditions, can have a reduced operating temperature by at least 5°C compared to the temperature of the same conductor without the surface modification.

    [0008] Accordingly, it can be desirable to provide a modified overhead conductor that operates at significantly lower temperatures compared to an unmodified overhead conductor that operates under the same operating conditions, such as current and ambient conditions. Such a modified overhead conductor can have a coating of metal oxide other than aluminum oxide, such that when tested under similar current and ambient conditions, has a reduced operating temperature by at least 5°C compared to the operating temperature of the same conductor without the coating. At higher operating temperatures, e.g. above 100°C, a coated conductor can have a reduction of at least 10°C when compared to an uncoated conductor when tested under similar current and ambient conditions (e.g., operating conditions).

    [0009] Overhead conductors can be coated using a variety of techniques; however, one advantageous method includes coating the overhead conductor via electrochemical deposition with a metal oxide on the surface of the overhead conductor. The method can contain the steps of:
    1. a) Pretreatment: cleaning and preparing the surface of the overhead conductor;
    2. b) Coating: coating the surface of overhead conductor with metal oxide coating using electrochemical deposition;
    3. c) Rinsing (optional); and
    4. d) Drying: drying the coated overhead conductor in air or in an oven.


    [0010] Suitable pre-treatment for a surface of an overhead conductor can include hot water cleaning, ultrasonic, de-glaring, sandblasting, chemicals (like alkaline or acidic), and others or a combination of the above methods. The pre-treatment process can be used to remove dirt, dust, and oil for preparing the surface of the overhead conductor for electrochemical deposition.

    [0011] The overhead conductor can be made of conductive wires of aluminum or aluminum alloy. Aluminum and its alloys are advantageous for an overhead conductor due to their lighter weight.

    [0012] Electrochemical deposition of a metal oxide is one method for coating the surface of an overhead conductor. Electrochemical coating compositions using an electrochemical deposition process can include, for example, those found in U.S. Patent Nos. 8,361,630, 7,820,300, 6,797,147 and 6,916,414; U.S. Patent Application Publication Nos. 2010/0252241, 2008/0210567, 2007/0148479; and WO 2006/136335A1.

    [0013] One method for forming a metal oxide coated aluminum overhead conductor can include the steps of: providing an anodizing solution comprising an aqueous water soluble complex of fluoride and/or oxyfluoride of a metal ion selected from one or more of titanium, zirconium, zinc, vanadium, hafnium, tin, germanium, niobium, nickel, magnesium, berrilium, cerium, gallium, iron, yttrium and boron, placing a cathode in the anodizing solution, placing the surface of the overhead conductor as an anode in the anodizing solution, applying a current across the cathode and the anode through the anodizing solution for a period of time effective to coat the aluminum surface, at least partially, with a metal oxide on the surface of the surface of the conductor to form a coating. Such coatings having a metal oxide can include a ceramic coating.

    [0014] In one embodiment, electrochemical deposition of the coating includes maintaining an anodizing solution at a temperature between 0° C and 90° C; immersing at least a portion of the surface of the overhead conductor in the anodizing solution; and applying a voltage to the overhead conductor. The anodizing solution can be contained within a bath or a tank.

    [0015] The current passed through a cathode, anode and anodizing solution can include pulsed direct current, non-pulsed direct current and/or alternating current. When using pulsed current, an average voltage potential can generally be not in excess of 600 volts. When using direct current (DC), suitable range is 108 to 4306 A/m2 (10 to 400 Amps/square foot) and 150 to 600 volts. In a certain embodiment, the current is pulsed with an average voltage of the pulsed direct current is in a range of 150 to 600 volts; in a certain embodiment in a range of250 to 500 volts; in a certain embodiment in a range of 450 volts. Non-pulsed direct current is desirably used in the range of 200-600 volts.

    [0016] A number of different types of anodizing solutions can be used. For example, a wide variety of water-soluble or water-dispersible anionic species containing metal, metalloid, and/or non-metal elements are suitable for use as components of the anodizing solution. Representative elements can include, for example, titanium, zirconium, zinc, vanadium, hafnium, tin, germanium, niobium, nickel, magnesium, berrilium, cerium, gallium, iron, yttrium and boron and the like (including combinations of such elements). In certain embodiments, components of the anodizing solution are titanium and/or zirconium.

    [0017] In one embodiment, the anodizing solution can contain water and at least one complex fluoride or oxyfluoride of an element selected from the group consisting of titanium, zirconium, zinc, vanadium, hafnium, tin, germanium, niobium, nickel, magnesium, berrilium, cerium, gallium, iron, yttrium and boron. In certain embodiments such elements are titanium and/or zirconium. In certain embodiments, the coating can further contain IR reflective pigments.

    [0018] In another embodiment, a method for making an overhead conductor can include providing of a metal oxide coating. The method can include providing an anodizing solution containing water, a phosphorus containing acid and/or salt, and one or more additional components selected from the group consisting of: water-soluble complex fluorides, water-soluble complex oxyfluorides, water-dispersible complex fluorides, and water-dispersible complex oxyfluorides of elements selected from the group consisting of titanium and zirconium, placing a cathode in the anodizing solution, placing the overhead conductor having a surface of an aluminum or aluminum alloy as an anode in the anodizing solution, passing a pulsed current across the cathode and the anode through the anodizing solution for a period of time effective to form a titanium oxide or zirconium oxide coating on at least a surface of the overhead conductor.

    [0019] Electrochemical deposition of a metal oxide coating can be achieved either directly on the finished conductor or coating individual conductive wires separately before stranding the coated individual wires to make the overhead conductor. In certain embodiments, it is possible to have all of the wires of the conductor surface coated, or more economically, via another embodiment, only having the outer most wires of the conductor surface coated. In another embodiment, the electrochemical deposition coating can be applied only to the outer surface of the overhead conductor. Here, the conductor itself is stranded and made into final form before electrochemical deposition. Electrochemical deposition can be done by batch process, semi-continuous process, continuous process, or combinations of these processes.

    [0020] FIGS 1, 2, 3, and 4 illustrate various bare overhead conductors according to various embodiments incorporating a coated surface.

    [0021] As seen in FIG 1, an overhead conductor 100 generally includes a core 110 of one or more wires, round conductive wires 130 around the core 110, and a coating layer 120. The core 110 can be formed from any of a variety of suitable materials including, for example, steel, invar steel, carbon fiber composite, or any other material providing strength to the conductor 100. The conductive wires 130 can be made from a conductive material, such as copper, copper alloy, aluminum, or aluminum alloy. Such aluminum alloys can include aluminum types 1350, 6000 series alloy aluminum, or aluminum - zirconium alloy, for example.

    [0022] As seen in FIG 2, an overhead conductor 200 can generally include round conductive wires 210 and a coating layer 220. Again, in certain embodiments, the conductive wires 210 can be made from aluminum, or aluminum alloy., Such aluminum alloys can include aluminum types 1350, 6000 series alloy aluminum, or aluminum - zirconium alloy, for example.

    [0023] As seen in FIG 3, an overhead conductor 300 can generally include a core 310 of one or more wires, trapezoidal shaped conductive wires 330 around the core 310, and a coating layer 320. The core 310 can be formed from any of a variety of suitable materials including, for example, steel (e.g. invar steel), aluminum alloy (e.g. 600 series aluminum alloy), carbon fiber composite, glass fiber composite, carbon nanotube composite, or any other material providing strength to the overhead conductor 300. Again, in certain embodiments, the conductive wires 330 can be made from a conductive material, such as aluminum, or aluminum alloy. Such aluminum alloys can include aluminum types 1350, 6000 series alloy aluminum, or aluminum - zirconium alloy, for example.

    [0024] As seen in FIG 4, an overhead conductor 400 is generally shown to include trapezoidal-shaped conductive wires 420 and a coating layer 410. Again, in certain embodiments, the conductive wires 420 can be made from a conductive material, such as aluminum, or aluminum alloy. Such aluminum alloys can include aluminum types 1350, 6000 series alloy aluminum, or aluminum - zirconium alloy, for example.

    [0025] Composite core conductors can beneficially provide lower sag at higher operating temperatures and higher strength to weight ratio. Reduced conductor operating temperatures due to surface modification can further lower sag of the conductors and lower degradation of polymer resin in the composite core.

    [0026] The surface modification described herein can also be applied in association with conductor accessories and overhead conductor electrical transmission related products and parts, for the purpose of achieving temperature reduction. Examples include deadends/termination products, splices/joints products, suspension and support products, motion control/vibration products (also called dampers), guying products, wildlife protection and deterrent products, conductor and compression fitting repair parts, substation products, clamps and other transmission and distribution accessories. Such products are commercially available from a number of manufacturers such as Preformed Line Products (PLP), Cleveland, OH, and AFL, Duncan, SC.

    [0027] The electrochemical deposition coating can have a desired thickness on the surface of the overhead conductor. In certain embodiments, this thickness can be from about 1 micron to about 100 microns; in certain embodiments from about 1 micron to about 25 microns; and in certain embodiments, from about 5 microns to about 20 microns. The thickness of the coating can be surprisingly even along the conductor. For example, in certain embodiments, the thickness can have a variation of about 3 microns or less; in certain embodiments, of about 2 microns or less; and in certain embodiments, of about 1 micron or less. Such electrochemical deposition coatings as described herein can be non-white in color. In certain embodiments, the color of the electrochemical deposition coatings can range in color from blue-grey and light grey to charcoal grey depending upon the coating thickness and relative amounts of metal oxides, such as titanium oxide and/or zinc oxide. In certain embodiments, such coatings can also be electrically non-conductive. As used herein, "electrically non-conductive" means volume resistivity greater than or equal to 1x104 ohm-cm.

    [0028] Without further description, it is believed that one of ordinary skill in the art can, using the preceding description and the following illustrative examples, make and utilize the coatings and overhead conductors as described herein and practice the claimed methods. The following examples are given to further illustrate the claimed invention. It should be understood that the claimed invention is not to be limited to the specific conditions or details described in the cited examples.

    Experimental set-up to measure effect of coating on operating temperature of conductor



    [0029] An experimental set-up to measure the effectiveness of an electrochemical deposition coating to reduce operating temperature of a conductor is prepared as described below. A current is applied through coated and uncoated samples. The coated sample can be a metal oxide coated aluminum or aluminum alloy substrate. The uncoated sample can be a similar aluminum or aluminum alloy substrate, but uncoated. The test apparatus is shown in FIG 5 and mainly includes a 60Hz AC current source, a true RMS clamp-on current meter, a temperature datalog recording device, and a timer. Testing was conducted within a 68" wide x 33" deep windowed safety enclosure to control air movement around the sample. An exhaust hood was located 64" above the test apparatus for ventilation.

    [0030] The sample to be tested was connected in series with the AC current source through a relay contact controlled by the timer. The timer was used to control the time duration of the test. The 60Hz AC current flowing through the sample was monitored by the true RMS clamp-on current meter. A thermocouple was used to measure the surface temperature of the sample. Using a spring clamp, the tip of the thermocouple was kept firmly in contact with the center surface of the sample. The thermocouple was monitored by the temperature datalog recording device to provide a continuous record of temperature.

    [0031] Both uncoated and coated substrate samples were tested for temperature rise on this experimental set-up under identical conditions. The current was set at a desired level and was monitored during the test to ensure that a constant current was flowing through the samples. The timer was set at a desired value; and the temperature datalog recording device was set to record temperature at a recording interval of one reading per second.

    [0032] The metal component for the uncoated and coated samples was from the same source material and lot of Aluminum 1350. The finished dimensions of the uncoated sample was 30.48cm (L)x1,27cm(W)x0.069cm(T) (12.0"(L)x0.50"(W)x0.027"(T)). The finished dimensions of the coated sample was 30.48cm (L)x1.27cm(W)x0.071cm(T) (12.0"(L)x0.50"(W)x0.028"(T)). The increase in thickness was due to the thickness of the applied coating.

    [0033] The uncoated sample was firmly placed into the test set-up and the thermocouple secured to the center portion of the sample. Once this was completed, the current source was switched on and was adjusted to the required ampacity load level. Once this was achieved the power was switched off. For the test itself, once the timer and the temperature datalog recording device were all properly set, the timer was turned on to activate the current source starting the test. The desired current flowed through the sample and the temperature started rising. The surface temperature change of the sample was automatically recorded by the temperature datalog recording device. Once the testing period was completed, the timer automatically shut down the current source ending the test.

    [0034] Once the uncoated sample was tested, it was removed from the set-up and replaced by the coated sample. The testing resumed making no adjustments to the AC current source. The same current level was passed through the uncoated and coated samples.

    [0035] The temperature test data was then accessed from the temperature datalog recording device and analyzed using a computer. Comparing the results from the uncoated sample test with that from the coated test was used to determine the comparative emissivity effectiveness of the coating material.

    Methodology to measure flexibility and thermal stability of coating



    [0036] To study thermal stability of an electrochemical deposition coating, coated samples were places in air circulation oven at a temperature of 325°C for a period of 1 day and 7 days. After the thermal aging was complete, the samples were placed at room temperature for a period of 24 hrs. The samples were then bent on different cylindrical mandrels sized from larger diameter to smaller diameter and the coatings were observed for any visible cracks at each of the mandrel sizes. Results were compared with the flexibility of the coating prior to thermal aging.

    Examples


    Comparative Example 1



    [0037] Uncoated strips of aluminum (ASTM grade 1350; Dimensions: 30.48cm (L)x1.27cm(W)x0.071cm(T) (12.0"(L)x0.50"(W)x0.028"(T)). were tested for operating temperature as per the test method described above. The test set up is illustrated in FIG 5.

    Inventive Example 1



    [0038] The same strips of aluminum described in Comparative Example 1 were coated with an electrochemical deposition coating of titanium oxide (commercially available as Alodine EC2 from Henkel Corporation). The sample dimensions prior to coating were 30.48cm (L)x1.27cm(W)x0.071cm(T) (12.0"(L)x0.50"(W)x0.028"(T)). The thickness of the coating was 12-15 microns. The sample was then tested for reduction in operating temperature by the test method described above. The titanium oxide coated sample was found to demonstrate significantly lower operating temperature compared to the uncoated sample (Comparative Example 1), as summarized in Table 1 below.
    Table 1. Operating temperature reduction data for coated & uncoated sample
     Comparative Example 1Inventive Example 1
    Substrate Aluminum 1350 Aluminum 1350
    Coating None Titanium Oxide
    Conductor Temperature at 95 Amp current (ºC) 127 103

    Comparative Example 2



    [0039] The same strips of aluminum described in Comparative Example 1 were anodized. The anodized layer thickness was 8-10 microns. The flexibility of the anodized coating was tested by performing the mandrel bend test as described above. The flexibility test was also conducted after thermal aging at 325°C for 1 day and 7 days.

    Comparative Example 3



    [0040] The same strips of aluminum described in Comparative Example 1 were coated with a coating containing 40% sodium silicate solution in water (75% by weight) and zinc oxide (25% by weight) by brush application. The coating thickness was about 20 microns. Flexibility of the coating was tested by performing the mandrel bend test as described above. The flexibility test was also conducted after thermal aging at 325°C for 1 day and 7 days.

    [0041] The flexibility test data is summarized in Table 2 below. The sample with the electrochemically deposited titanium oxide coating showed significantly better flexibility compared to each of the anodized coating and the sodium silicate with ZnO brush coating. Moreover there was no change in the flexibility of the titanium oxide coating with thermal aging at 325°C for 1 and 7 days.
    Table 2. Flexibility and thermal stability data for differently coated samples
     Comparative Example 2Comparative Example 3Inventive Example 1
    Substrate Aluminum 1350 Aluminum 1350 Aluminum 1350
    Coating Anodized Sodium silicate + Zinc Oxide Titanium Oxide
    Application of Coating Anodized Brushed Electrochemical Deposition
    Before ageing (Initial) 8" mandrel Cracks observed 4" mandrel Cracks observed 1" mandrel Pass - no cracks observed
    After heat ageing at 325ºC for 1 day 8" mandrel Cracks observed 4" mandrel Cracks o b serve d 1" mandrel Pass - no cracks observed
    After heat ageing at 325ºC for 7 days 8" mandrel Cracks observed 4" mandrel Cracks o b serve d 1" mandrel Pass - no cracks observed


    [0042] While particular embodiments have been chosen to illustrate the claimed invention, it will be understood by those skilled in the art that various changes and modifications can be made therein without departing from the scope of the claimed invention as defined in the appended claims.


    Claims

    1. An overhead conductor comprising an assembly including one or more conductive wires formed of aluminum or aluminum alloy, wherein the assembly comprises an outer surface coated with an electrochemical deposition coating forming an outer layer and comprising a first metal oxide, wherein the first metal oxide is not aluminum oxide..
     
    2. The overhead conductor of claim 1, wherein the first metal oxide comprises titanium oxide, zirconium oxide, zinc oxide, niobium oxide, vanadium oxide, molybdenum oxide, copper oxide, nickel oxide, magnesium oxide, beryllium oxide, cerium oxide, boron oxide, gallium oxide, hafnium oxide, tin oxide, iron oxide, yttrium oxide or combinations thereof and preferably wherein the first metal oxide comprises titanium oxide, zirconium oxide or combinations thereof.
     
    3. The overhead conductor of claim 1, wherein the electrochemical deposition coating further comprises a second metal oxide, wherein the second metal oxide is aluminum oxide.
     
    4. The overhead conductor of claim 1, wherein the one or more conductive wires are formed from an aluminum alloy selected from the group consisting of 1350 alloy aluminum, 6000-series alloy aluminum, aluminum-zirconium alloy, and combinations thereof.
     
    5. The overhead conductor of claim 1, wherein the electrochemical deposition coating has a thickness of about 1 micron or more, or wherein the electrochemical deposition coating has a thickness of about 5 microns to about 25 microns, or wherein the electrochemical deposition coating has a thickness variation of about 3 microns or less.
     
    6. The overhead conductor of claim 1, wherein at least some of the one or more conductive wires have trapezoidal cross-sections.
     
    7. The overhead conductor of claim 1, wherein the one or more conductive wires surround a core comprised of steel, carbon fiber composite, glass fiber composite, carbon nanotube composite, or aluminum alloy, or wherein each of the conductive wires is individually coated with the electrochemical deposition coating, or wherein a portion of each of the conductive wires is coated with the electrochemical deposition coating or wherein the electrochemical deposition coating is electrically non-conductive.
     
    8. The overhead conductor of claim 1, wherein the electrochemical deposition coating is electrically non-conductive.
     
    9. A method for making the overhead conductor of claim 1, the method comprising

    a. providing the assembly; and

    b. performing electrochemical deposition of the first metal oxide on the outer surface of the assembly to form the electrochemical deposition coating.


     
    10. The method of claim 9, wherein the first metal oxide is titanium oxide, zirconium oxide, zinc oxide, niobium oxide, vanadium oxide, molybdenum oxide, copper oxide, brass oxide, nickel oxide, magnesium oxide, beryllium oxide, cerium oxide, boron oxide, gallium oxide, hafnium oxide, tin oxide, iron oxide, yttrium oxide, or combinations thereof, and preferably wherein the first metal oxide is titanium oxide or zirconium oxide.
     
    11. The method of claim 9, wherein the electrochemical deposition coating has a thickness of about 1 micron to about 25 microns, and wherein the electrochemical deposition coating has a thickness variation of about 3 microns or less.
     
    12. The method of claim 9, wherein the assembly comprises a plurality of conductor wires made from aluminum, or aluminum alloy, and preferably wherein the plurality of conductive wires are formed from an aluminum alloy comprising 1350 alloy aluminum, 6000-series alloy aluminum, or aluminum-zirconium alloy.
     
    13. The method of claim 9, wherein the assembly comprises a plurality of conductive wires, wherein at least some of the plurality of conductive wires have a trapezoidal cross-section, or wherein the assembly comprises a plurality of conductive wires stranded around a core, and wherein the core comprises steel, carbon fiber composite, glass fiber composite, carbon nanotube composite, or aluminum alloy, or wherein the assembly is formed of a plurality of conductive wires, and wherein the electrochemical deposition coats only an outer surface of the assembly, or wherein the assembly comprises a plurality of conductive wires, and wherein the electrochemical deposition coats each of the conductive wires, or wherein the electrochemical deposition coats only a portion of the assembly, or wherein the electrochemical deposition coating is electrically non-conductive.
     
    14. The method of claim 9, wherein the performance of the electrochemical deposition comprises:

    i. providing an aqueous solution containing at least one of water-soluble complex metal fluorides, water-dispersible complex metal fluorides, water-soluble complex metal oxyfluorides, and water-dispersible metal oxyfluorides;

    ii. providing a cathode in contact with said aqueous solution;

    iii. placing the assembly in the aqueous solution as an anode;

    iv. passing a current between the anode and the cathode through the aqueous solution to form the electrochemical deposition coating on the outer surface of the assembly; and

    v. removing the coated overhead conductor from the aqueous solution, optionally wherein the current is pulsed, or wherein the current is from about 108 A/m2 to about 4306 A/m2 (about 10Amps/square foot to about 400 Amps/square foot) and preferably wherein the metal is titanium or zirconium.


     


    Ansprüche

    1. Ein Überlandleiter, umfassend eine Anordnung, die einen oder mehrere leitende Drähte aus Aluminium oder Aluminiumlegierung enthält, wobei die Anordnung eine äußere Oberfläche umfasst, die mit einem elektrochemischen Abscheidungsüberzug beschichtet ist, der eine äußere Schicht bildet und ein erstes Metalloxid umfasst, wobei das erste Metalloxid nicht Aluminiumoxid ist.
     
    2. Der Überlandleiter nach Anspruch 1, wobei das erste Metalloxid Titanoxid, Zirkoniumoxid, Zinkoxid, Nioboxid, Vanadiumoxid, Molybdänoxid, Kupferoxid, Nickeloxid, Magnesiumoxid, Berylliumoxid, Ceroxid, Boroxid, Galliumoxid, Hafniumoxid, Zinnoxid, Eisenoxid, Yttriumoxid oder Kombinationen davon umfasst und wobei vorzugsweise das erste Metalloxid Titanoxid, Zirkoniumoxid oder Kombinationen davon umfasst.
     
    3. Der Überlandleiter nach Anspruch 1, wobei die elektrochemische Abscheidungsbeschichtung weiterhin ein zweites Metalloxid umfasst, wobei das zweite Metalloxid Aluminiumoxid ist.
     
    4. Der Überlandleiter nach Anspruch 1, wobei der eine oder die mehreren leitenden Drähte aus einer Aluminiumlegierung gebildet sind, die aus der Gruppe ausgewählt ist, die aus Aluminiumlegierung 1350, Aluminiumlegierung der Serie 6000, Aluminium-Zirkonium-Legierung und Kombinationen davon besteht.
     
    5. Der Überlandleiter nach Anspruch 1, wobei die elektrochemische Abscheidungsbeschichtung eine Dicke von etwa 1 Mikrometer oder mehr aufweist, oder wobei die elektrochemische Abscheidungsbeschichtung eine Dicke von etwa 5 Mikrometer bis etwa 25 Mikrometer aufweist, oder wobei die elektrochemische Abscheidungsbeschichtung eine Dickenvariation von etwa 3 Mikrometer oder weniger aufweist.
     
    6. Der Überlandleiter nach Anspruch 1, wobei mindestens einige des einen oder der mehreren leitenden Drähte trapezförmige Querschnitte haben.
     
    7. Der Überlandleiter nach Anspruch 1, bei der ein oder mehrere leitende Drähte einen Kern umgeben, der aus Stahl, Kohlenstofffaser-Verbundwerkstoff, Glasfaser-Verbundwerkstoff, Kohlenstoff-Nanoröhrchen-Verbundwerkstoff oder Aluminiumlegierung besteht, oder bei der jeder der leitenden Drähte einzeln mit der Beschichtung durch elektrochemische Abscheidung beschichtet ist, oder bei der ein Teil jedes der leitenden Drähte mit der Beschichtung durch elektrochemische Abscheidung beschichtet ist, oder bei der die Beschichtung durch elektrochemische Abscheidung elektrisch nicht leitend ist.
     
    8. Der Überlandleiter nach Anspruch 1, wobei die elektrochemische Abscheidungsbeschichtung elektrisch nicht leitend ist.
     
    9. Verfahren zur Herstellung des Überlandleiters nach Anspruch 1, wobei das Verfahren umfasst

    a. Bereitstellung der Anordnung; und

    b. Durchführen einer elektrochemischen Abscheidung des ersten Metalloxids auf der Außenfläche der Baugruppe, um die elektrochemische Abscheidungsschicht zu bilden.


     
    10. Verfahren nach Anspruch 9, wobei das erste Metalloxid Titanoxid, Zirkoniumoxid, Zinkoxid, Nioboxid, Vanadiumoxid, Molybdänoxid, Kupferoxid, Messingoxid, Nickeloxid, Magnesiumoxid, Berylliumoxid, Ceroxid, Boroxid, Galliumoxid, Hafniumoxid, Zinnoxid, Eisenoxid, Yttriumoxid oder Kombinationen davon ist und wobei vorzugsweise das erste Metalloxid Titanoxid oder Zirkoniumoxid ist.
     
    11. Verfahren nach Anspruch 9, wobei die elektrochemische Abscheidungsbeschichtung eine Dicke von etwa 1 Mikrometer bis etwa 25 Mikrometer aufweist und wobei die elektrochemische Abscheidungsbeschichtung eine Dickenvariation von etwa 3 Mikrometer oder weniger aufweist.
     
    12. Verfahren nach Anspruch 9, wobei die Anordnung eine Vielzahl von Leiterdrähten aus Aluminium oder einer Aluminiumlegierung umfasst und wobei die Vielzahl von Leiterdrähten vorzugsweise aus einer Aluminiumlegierung gebildet ist, die Aluminiumlegierung 1350, Aluminium der 6000er-Serie oder Aluminium-ZirkoniumLegierung umfasst.
     
    13. Verfahren nach Anspruch 9, wobei die Anordnung eine Vielzahl von leitfähigen Drähten umfasst, wobei mindestens ein Teil der Vielzahl von leitfähigen Drähten einen trapezförmigen Querschnitt aufweist, oder wobei die Anordnung eine Vielzahl von leitfähigen Drähten umfasst, die um einen Kern herum verseilt sind und wobei der Kern Stahl, Kohlenstofffaser-Verbundwerkstoff, Glasfaser-Verbundwerkstoff, Kohlenstoff-Nanoröhrchen-Verbundwerkstoff oder Aluminiumlegierung umfasst, oder wobei die Anordnung aus einer Vielzahl von leitfähigen Drähten gebildet ist und wobei die elektrochemische Abscheidung nur eine äußere Oberfläche der Anordnung beschichtet, oder wobei die Anordnung eine Vielzahl von leitfähigen Drähten umfasst und wobei die elektrochemische Abscheidung jeden der leitfähigen Drähte beschichtet, oder wobei die elektrochemische Abscheidung nur einen Teil der Anordnung beschichtet, oder wobei die elektrochemische Abscheidungsbeschichtung elektrisch nicht leitfähig ist.
     
    14. Verfahren nach Anspruch 9, wobei die Durchführung der elektrochemischen Abscheidung umfasst:

    i. Bereitstellen einer wässrigen Lösung, die mindestens eines von wasserlöslichen komplexen Metallfluoriden, wasserdispergierbaren komplexen Metallfluoriden, wasserlöslichen komplexen Metalloxyfluoriden und wasserdispergierbaren Metalloxyfluoriden enthält;

    ii. Bereitstellen einer Kathode in Kontakt mit der wässrigen Lösung;

    iii. Einbringen der Anordnung in die wässrige Lösung als Anode;

    iv. Durchleiten eines Stroms zwischen der Anode und der Kathode durch die wässrige Lösung zur Bildung der elektrochemischen Abscheidungsbeschichtung auf der Außenfläche der Baugruppe; und

    v. Entfernen des beschichteten Überlandleiters aus der wässrigen Lösung, wobei der Strom wahlweise gepulst ist oder wobei der Strom von etwa 108 A/m2 bis etwa 4306 A/m2 (etwa 10 Ampere pro Quadratfuß bis etwa 400 Ampere pro Quadratfuß) und wobei das Metall vorzugsweise Titan oder Zirkonium ist.


     


    Revendications

    1. Conducteur aérien comprenant un ensemble incluant un ou plusieurs fils conducteurs formés d'aluminium ou d'un alliage d'aluminium, dans lequel l'ensemble comprend une surface externe revêtue d'un revêtement de dépôt électrochimique formant une couche externe et comprenant un premier oxyde métallique, dans lequel le premier oxyde métallique n'est pas un oxyde d'aluminium.
     
    2. Conducteur aérien selon la revendication 1, dans lequel le premier oxyde métallique comprend un oxyde de titane, un oxyde de zirconium, un oxyde de zinc, un oxyde de niobium, un oxyde de vanadium, un oxyde de molybdène, un oxyde de cuivre, un oxyde de nickel, un oxyde de magnésium, un oxyde de béryllium, un oxyde de cérium, un oxyde de bore, un oxyde de gallium, un oxyde de hafnium, un oxyde d'étain, un oxyde de fer, un oxyde d'yttrium ou des combinaisons de ceux-ci et de préférence dans lequel le premier oxyde métallique comprend un oxyde de titane, un oxyde de zirconium ou des combinaisons de ceux-ci.
     
    3. Conducteur aérien selon la revendication 1, dans lequel le revêtement de dépôt électrochimique comprend en outre un second oxyde métallique, dans lequel le second oxyde métallique est un oxyde d'aluminium.
     
    4. Conducteur aérien selon la revendication 1, dans lequel les un ou plusieurs fils conducteurs sont formés à partir d'un alliage d'aluminium sélectionné dans le groupe consistant en un alliage d'aluminium 1350, un alliage d'aluminium série 6000, un alliage d'aluminium-zirconium et les combinaisons de ceux-ci.
     
    5. Conducteur aérien selon la revendication 1, dans lequel le revêtement de dépôt électrochimique présente une épaisseur d'environ 1 micron ou plus, ou dans lequel le revêtement de dépôt électrochimique présente une épaisseur d'environ 5 microns à environ 25 microns, ou dans lequel le revêtement de dépôt électrochimique présente une variation d'épaisseur d'environ 3 microns ou moins.
     
    6. Conducteur aérien selon la revendication 1, dans lequel au moins certains des un ou plusieurs fils conducteurs présentent des sections transversales trapézoïdales.
     
    7. Conducteur aérien selon la revendication 1, dans lequel les un ou plusieurs fils conducteurs entourent une âme composée d'un acier, d'un composite de fibres de carbone, d'un composite de fibres de verre, d'un composite de nanotubes de carbone ou d'un alliage d'aluminium, ou dans lequel chacun des fils conducteurs est individuellement revêtu du revêtement de dépôt électrochimique, ou dans lequel une partie de chacun des fils conducteurs est revêtue du revêtement de dépôt électrochimique ou dans lequel le revêtement de dépôt électrochimique est électriquement non conducteur.
     
    8. Conducteur aérien selon la revendication 1, dans lequel le revêtement de dépôt électrochimique est électriquement non conducteur.
     
    9. Procédé de fabrication du conducteur aérien selon la revendication 1, le procédé comprenant :

    a. la fourniture de l'ensemble ; et

    b. la réalisation d'un dépôt électrochimique du premier oxyde métallique sur la surface externe de l'ensemble pour former le revêtement de dépôt électrochimique.


     
    10. Procédé selon la revendication 9, dans lequel le premier oxyde métallique est un oxyde de titane, un oxyde de zirconium, un oxyde de zinc, un oxyde de niobium, un oxyde de vanadium, un oxyde de molybdène, un oxyde de cuivre, un oxyde de laiton, un oxyde de nickel, un oxyde de magnésium, un oxyde de béryllium, un oxyde de cérium, un oxyde de bore, un oxyde de gallium, un oxyde de hafnium, un oxyde d'étain, un oxyde de fer, un oxyde d'yttrium ou des combinaisons de ceux-ci, et de préférence dans lequel le premier oxyde métallique est un oxyde de titane ou un oxyde de zirconium.
     
    11. Procédé selon la revendication 9, dans lequel le revêtement de dépôt électrochimique présente une épaisseur d'environ 1 micron à environ 25 microns, et dans lequel le revêtement de dépôt électrochimique présente une variation d'épaisseur d'environ 3 microns ou moins.
     
    12. Procédé selon la revendication 9, dans lequel l'ensemble comprend une pluralité de fils conducteurs faits d'aluminium ou d'un alliage d'aluminium, et de préférence dans lequel la pluralité de fils conducteurs sont formés à partir d'un alliage d'aluminium comprenant un alliage d'aluminium 1350, un alliage d'aluminium série 6000 ou un alliage d'aluminium-zirconium.
     
    13. Procédé selon la revendication 9, dans lequel l'ensemble comprend une pluralité de fils conducteurs, dans lequel au moins certains de la pluralité de fils conducteurs présentent une section transversale trapézoïdale, ou dans lequel l'ensemble comprend une pluralité de fils conducteurs toronnés autour d'une âme, et dans lequel l'âme comprend un acier, un composite de fibres de carbone, un composite de fibres de verre, un composite de nanotubes de carbone ou un alliage d'aluminium, ou dans lequel l'ensemble est formé d'une pluralité de fils conducteurs, et dans lequel le dépôt électrochimique ne recouvre qu'une surface externe de l'ensemble, ou dans lequel l'ensemble comprend une pluralité de fils conducteurs, et dans lequel le dépôt électrochimique recouvre chacun des fils conducteurs, ou dans lequel le dépôt électrochimique ne recouvre qu'une partie de l'ensemble, ou dans lequel le revêtement de dépôt électrochimique est électriquement non conducteur.
     
    14. Procédé selon la revendication 9, dans lequel la réalisation du dépôt électrochimique comprend :

    i. la fourniture d'une solution aqueuse contenant au moins l'un parmi les fluorures métalliques complexes hydrosolubles, les fluorures métalliques complexes dispersibles dans l'eau, les oxyfluorures métalliques complexes hydrosolubles et les oxyfluorures métalliques dispersibles dans l'eau ;

    ii. la fourniture d'une cathode en contact avec ladite solution aqueuse ;

    iii. le placement de l'ensemble dans la solution aqueuse en tant qu'anode ;

    iv. le passage d'un courant entre l'anode et la cathode à travers la solution aqueuse pour former le revêtement de dépôt électrochimique sur la surface externe de l'ensemble ; et

    v. le retrait du conducteur aérien revêtu de la solution aqueuse,
    facultativement dans lequel le courant est pulsé, ou dans lequel le courant est d'environ 108 A/m2 à 4306 A/m2 (environ 10 ampères/pied carré à environ 400 ampères/pied carré), et de préférence dans lequel le métal est le titane ou le zirconium.


     




    Drawing









    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description