(19)
(11)EP 2 963 405 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
11.12.2019 Bulletin 2019/50

(21)Application number: 14175627.0

(22)Date of filing:  03.07.2014
(51)International Patent Classification (IPC): 
G01L 19/08(2006.01)
G01D 1/00(2006.01)
G01F 1/84(2006.01)
G01M 3/28(2006.01)

(54)

Pressure sensor device for utility network

Drucksensorvorrichtung für Versorgungsnetzwerk

Dispositif de capteur de pression pour réseau utilitaire


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
06.01.2016 Bulletin 2016/01

(73)Proprietor: KAMSTRUP A/S
8660 Skanderborg (DK)

(72)Inventors:
  • Skallebæk, Anders
    DK-8660 Skanderborg (DK)
  • Rokkjær, Kristian
    DK-8382 Hinnerup (DK)
  • Sørensen, Jens Lykke
    DK-8330 Beder (DK)

(74)Representative: Plougmann Vingtoft a/s 
Strandvejen 70
2900 Hellerup
2900 Hellerup (DK)


(56)References cited: : 
US-A- 5 388 445
US-A1- 2002 029 130
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The present invention relates to the field of pressure sensor devices. Especially, the invention provides a pressure sensor device arranged for mounting in a fluid pipe system, e.g. a pipe system forming part of a utility network.

    BACKGROUND OF THE INVENTION



    [0002] Pressure sensor devices capable of sensing a pressure in a utility network, such as a water distribution network, is known.

    [0003] Chinese Patent Application published as CN101308364 A discloses a method of transient analysis in a water distribution network, the method relating to pressure measurements, flow data and data on the network per se to estimate the state of the network.

    [0004] US patent published as US5388445A discloses a method for determining the time of arrival of a pressure wave travelling in the fluid of a pipeline, by doing a multiplum af pressure measurements and comparing a subset of the measurements to historical values.

    [0005] US patent application published as US2002/029130A1 discloses a flow diagnostic system wherein a pressure transmitter provides pressure data to a diagnostic application which is calculating the a difference between the pressure data and a moving average of the pressure data. The difference is utilized for diagnostic purposes of the system.

    [0006] Also networks of consumption meters with pressure sensors are known.

    [0007] Japanese Patent Application published as JP3076645 U discloses a system to monitor a water supply line in terms of parameters such as water supply flow, pressure, temperature, chlorine concentration, pH etc., and, upon receipt of data related to these parameters in a reception processing control unit, if necessary, to issue an alarm relating to leaks, bursts, excessive concentrations etc.

    [0008] These prior art devices, systems or methods are adapted to continuously monitor utility networks. Accordingly, they have high power consumption and require external power supply, or, if battery powered, have a short life time.

    SUMMARY OF THE INVENTION



    [0009] Thus, according to the above description, there is a need for pressure meters, which are capable of providing relevant information on the pressure conditions of the network, while keeping the power consumption at a minimum. In particular, there is a need for pressure meters, which are capable of providing relevant information relating to pressure transients, which are known to be a main contributor to water supply line wear, leaks and bursts.

    [0010] In a first aspect, the invention provides a pressure sensor device according to claim 1.

    [0011] By a 'statistical parameter' is understood a parameter represented by a value calculated according to a predefined algorithm in response to a plurality of measured values, each representing single pressure measurements, so as to provide a descriptive and condensed representation of the plurality of single pressure measurements. Simple examples are: peak value, average, and standard deviation. More complex algorithms involve e.g. a Fourier transform to provide e.g. distribution of frequencies of pressure data. In the following, further details regarding preferred statistical parameters to descripe the occurrence of pressure transients will be described.

    [0012] Such pressure sensor device is advantageous for use e.g. in a utility network, e.g. a water supply system, where it is desirable to monitor occurance of pressure transients at various locations in the supply pipe system, since such high pressure peaks can cause damage to the pipe system and components connected thereto, thus leading to leakages. The defined device is capable of providing transmission of pressure measured at remote locations in a pipe system. Due to the statistical parameter determined in the device, the number of data to be remotely transmitted, e.g. wirelessly, can be reduced. Thus, data traffic on the remote reading network is reduced. Further, compared to a device measuring and transmitting measured pressure values directly, electric power consumption can be reduced to the communication module, thus allowing battery powering of the communication module, even the entire device, and such battery can still provide power enough for a long period of operation without the need for service. Additionally, or alternatively, this allows for performing of many single pressure measurements with a short sample interval, and still the amount of data to be transmitted can be limited to one or a few statistical parameter values together with a time stamp. This can provide valuable information that allows e.g. tracking of equipment in the supply pipe system that causees high pressure transients or peaks.

    [0013] In the following a number of embodiments and additional features will be described.

    [0014] Preferably, the device is arranged for installation on a fluid pipe forming part of a utility network, thus allowing the pressure sensor to measure the pressure of the fluid distributed by the utility network.

    [0015] The measurement system may be arranged for performing measurements of pressure according to a predefined measurement time sequence. Especially, the predefined measurement time sequence of a duration of 5 seconds to 2 minutes, such as a duration of 10 seconds to 60 seconds. The predefined measurement time sequence is be selected so that pressure is measured at a measurement time at least once within a measurement time window, wherein the measurement time windows are randomly spaced in time. By a random temporal distribution of measurement time windows, a possible temporal locking to events on the fluid pipe system which occure at fixed time intervals can be avoided, thus ensuring such events to be measured. Especially, the measurement system is be arranged for measuring pressure at a plurality of measurement times, within the measurement time window, e.g. to perform a plurality of consecutive meaurements within the measurement time window. E.g. such as at least two, three, or more measurement times within the measurement time window, e.g. 10-100 measurement times within the measurement time window.

    [0016] The communication module may be arranged to transmit the data packets according to a predefined transmission time sequence. E.g. the predefined transmission time sequence may be selected so that a data packet is transmitted at a transmit time within a transmit time window, wherein the transmit time windows are periodically spaced in time. Alternatively, the transmit time windows are evenly spaced in time. Especially, the transmit time windows may have an average transmit frequency over time, and wherein measurement time windows have an average measurement frequency over time, and wherein the average transmit frequency over time is smaller than the average measurement frequency over time.

    [0017] The device may be arranged to include in the data packets a time stamp for indicating a time for performing the plurality of measurements of pressure associated with the respective at least one statistical parameter. This allows matching of the statistical pressure parameters with information about time of operation of associated equipment, e.g. operation of valves and pumps etc. which can cause pressure transients.

    [0018] The at least one statistical parameter may relate to pressure transients. Especially, the at least one statistical parameter may relate to temporal distribution of pressure transients, and/or pressure distribution of pressure transients.

    [0019] The data processing unit may be arranged to calculate a plurality of different statistical parameters in response to a sequence of pressure measurements, and to transmit data packets representing the plurality of different statistical parameters.

    [0020] Especially, the data processing unit may be arranged to calculate a Fast Fourier Transform (FFT) on values related to a sequence of pressure measurements, such as a sequence of 16-1024 pressure measurements, and to calculate at least one statistical parameter accordingly, e.g. to include in the data packets an entire output, or a reduced output, from a performed FFT.

    [0021] The device may be arranged for measuring an additional parameter in addition to pressure. Especially, such additional parameter being selected from the group of: parameters of flow rate, temperature, chlorine concentration, and pH.

    [0022] The device may be integrated with a consumption meter arranged for measuring a flow rate of the fluid, and for transmitting data packets comprising consumption data to an associated receiver. By integration means at least partly sharing processing circuits etc., and especially the consumption meter facility and the pressure measuring facility may use one common processor, and especially all component of the consumption meter and the pressure sensor device may be housed within one common housing. In a special embodiment, the communication module is arranged to transmit the data packets according to a predefined transmission time sequence within transmit time windows having an average transmit frequency over time, and wherein the device is arranged for transmitting data packets comprising consumption data to an associated receiver according to a predefined consumption data transmission time sequence, wherein the predefined consumption data transmission time sequence is selected so that a data packet comprising consumption data is transmitted at a consumption data transmit time within a consumption data transmit time window, the consumption data transmit time windows being periodically spaced in time, wherein the consumption data transmit time windows have an average consumption data transmit frequency over time, and wherein average transmit frequency over time is smaller than the average consumption data transmit frequency over time.

    [0023] The communication module may be arranged to receive data from an associated remote transmitter. The data from the remote transmitter may comprise control data, and wherein the device is arranged to change at least a parameter related to pressure measurement time sequence and/or a parameter related to data packet transmission time sequence. E.g., the device can be arranged for reprogramming with respect to various parameters related to sequences of measurement and transmission of data packets. Especially, the measurement system may be arranged to perform a pressure measurement in response to a request from the associated remote transmitter. E.g. such remote transmitter can be a portable device, e.g. a mobile phone or a dedicated device, carried by a service person who can operate the portable device to request pressure measurements from a specific pressure sensor device. Especially, the device may be arranged to store a plurality of statistical parameters corresponding to pressure measurements performed at respective measurement times, and to transmit said statistical parameters in data packets in response to a request received from the associated remote transmitter.

    [0024] As mentioned, the device is capable of saving power compared to prior art pressure sensor devices, and thus in a preferred embodiment, the device is battery powered.

    [0025] The pressure sensor can be a transducer operating to various principles and should be selected according to the fluid to measure etc. More details regarding different sensors will be given later. Especially, it may be preferred that the pressure sensor is arranged to measure a fluid pressure of at least 10 kPa. Preferably, the pressure sensor is arranged to measure a fluid pressure of at least 200 kPa, such as at least 500 kPa, or such as at least 1,000 kPa, or such as at least 2,000 kPa, or such as at least 4,000 kPa, or such as at least 8,000 kPa, or such as at least 10,000 kPa.

    [0026] The communication module may be arranged to transmit the data packets representing the at least one statistical parameter via a communication network arranged for remote reading of utility meters. Thus, such embodiment of the device is capable of utilizing an already existing data network for transmission of the data packets.

    [0027] The communication module may be arranged to transmit the data packets representing the at least one statistical parameter in response to a measured pressure value exceeding a predefined threshold and/or a determined statistical parameter value exceeding a predefined threshold. Hereby, the amount of data to be transmitted can be further reduced, since only values exceeding a predefined threshold are selected to be sent.

    [0028] At least part of the measurement system, the data processing unit, and at least part of the communication module are housed within one single housing. Thus, a compact device can be provided. Especially, said single housing can be formed by a monolithic polymer structure. Especially, said single housing may have a through-going opening arranged for fluid passage, and a cavity separated from the through-going opening, wherein the cavity is arranged for housing the at least part of the measurement system, the data processing unit, and the at least part of the communication module. Especially, said single housing may be shaped such that a space defined by the cavity and a plane covering an opening of the cavity houses the at least part of the measurement system, the data processing unit, and the at least part of the communication module. The device in such embodiment may comprise a cover arranged to fit to an opening to the cavity such that the cavity forms a watertight enclosure together with the cover. Especially, all of the measurement system, the data processing unit, and the communication module may be housed within said single housing, e.g. together with a battery for powering all of the electrically demanding components of the device. Thus, a very compact device can be provided.

    [0029] Alternative to a position of the pressure sensor within a housing with a through-going opening for connection to the fluid to measure, the pressure sensor may be mounted directly on a pipe of the fluid pipe system.

    [0030] Alternatively, the communication module may be arranged within a housing which forms a unit which is separate from the measurement system and the data processing unit. Especially, this may be combined with the measurement system and the data processing unit being arranged within one single housing.

    [0031] Especially, the device is arranged for measuring pressure in a fluid pipe system, wherein the fluid is one of: gas, water, a fluid for heating, a fluid for cooling.

    [0032] In a second aspect, the invention provides a pressure sensor system arranged for measurement of pressure in a fluid pipe system, such as a utilty network, the system comprising
    • a plurality of pressure sensor device according to the first aspect, arranged for measuring pressure at respective positions in the fluid pipe system, and
    • a receiver arranged to receive data packets representing the at least one statistical from the respective pressure sensor devices.


    [0033] Especially, the receiver may be arranged to receive the data packets representing the at least one statistical parameter via a communication network arranged for remote reading of utility meters, such as a wireless communication network.

    [0034] In a third aspect, the invention provides a method for monitoring pressure in a fluid pipe system according to claim 15.

    [0035] Especially, the data processing unit is arranged to provide an output representing said at least one statistical parameter. E.g. such output is preferably in a suitable for being received by an associated communication module arranged to transmit data packets containing data representing the at least one statistical parameter, e.g. in a wireless form.

    [0036] It is appreciated that the same advantages and embodiments described for the first aspect apply as well for the second and third aspects. Further, it is appreciated that the described embodiments can be intermixed in any way between all the mentioned aspects.

    BRIEF DESCRIPTION OF THE FIGURES



    [0037] The invention will now be described in more detail with regard to the accompanying figures of which

    Fig. 1 illustrates a block diagram of basic components of a device embodiment,

    Fig. 2 illustrates a more detailed block diagram of compoments of a device embodiment,

    Fig. 3 illustrates an example of timing of pressure measurements,

    Fig. 4 illustrates organisation of data packets with a plurality of statistical parameters each associated with a time stamp, and

    Figs. 5 and 6 illustrate 3D sketches of a specific embodiment where all components of the pressure sensor device are housed within one single housing.



    [0038] The figures illustrate specific ways of implementing the present invention and are not to be construed as being limiting to other possible embodiments falling within the scope of the attached claim set.

    DETAILED DESCRIPTION OF EMBODIMENTS



    [0039] Fig. 1 illustrates a pressure sensor device embodiment arranged for measuring a pressure in a fluid pipe system, e.g. a utility network. A measurement system MS comprises a pressure sensor and is arranged for performing measurements of pressure at a position in the fluid pipe system, e.g. according to a predefined measurement time sequence. The measurement system MS provides data representing measured pressure values to a data processing unit P.

    [0040] The data processing unit P is arranged for processing the measured pressure values or pressure samples, e.g. a predefined number of single pressure values measured within 10-60 seconds, according to a predefined algorithm so as to determine a statistical parameter SP in response to a plurality of measurements of pressure. E.g. the data processing system is arranged to process the measured pressure values according to a plurality of separate algorithms so as to arrive at one or more statistical parameters SP accordingly.

    [0041] A communication module CM, e.g. a wireless Radio Frequency transmission module, is arranged for transmitting data packets DP[SP] representing the determined statistical parameter(s) to an associated receiver. E.g. such data packets DP[SP] further contain a time stamp indicating when the corresponding pressure measurements are performed, and e.g. an identification number serving to identify the pressure sensor device which has transmitted the data packets DP[SP]. The communication module CM can transmit data packets DP[SP] according to a predefined transmit time sequence, or the device may be capable of storing a number of statistical parameters deteremined over a period of time, and then transmit data packets DP[SP] accordingly in response to a request received from a remote transmitter.

    [0042] Such device can provide valuable information about potentially harmful pressure transients locally in a piping system where liquid or gas is distributed in a pipe network, e.g. a utility network. Especially, the device may be arranged for remote wireless transmission of the statistical parameters together with a time stamp, that allows a remote receiver to perform further investigation regarding occurrence of pressure transients at a specific location where the pressure sensor device has measured the pressure of the fluid. Due to the on-board data processing that determines one or more statistical parameters of the measured pressure, the device only needs to transmit a rather sparse amount of data, thus allowing electrical power for the data transmission to be reduced, therefore allowing battery powering, and thus enabling the device to be mounted at remote locations without electrical power installations.

    [0043] Fig. 2 shows a block diagram of more details regarding a possible implementation of the pressure measurement system MS, and the data processing unit P. A pressure sensor mounted to sense the fluid pressure provides an analog electrical signal in response to the sensed pressure, and this analog electrical signal is provided to a sampling circuit which samples the signal and converts samples into pressure values. The sampled pressures are stored in a raw data registry.

    [0044] An analyzing algorithm performs suitable statistical analysis on the raw data to extract the desired information described by a number of statistical parameters. The statistical parameters are stored in the parameter registry together with a timestamp indicating the point of time for the measurement. A communication module transmits the contents of the parameter registry, either with regular time intervals or when requested to do so via a communication network. Alternatively, the transmitter can be requested to perform a single set of pressure measurements or a number of sets of measurements via the communication network. A timing control serves to control timing of both data sampling and may, as indicated, be controlled in response to information from the communication module. The data processing unit P and part of the measurement system MS can be implemented by a micro controller, as shown.

    [0045] In the following, a description of various statistical parameters that can be determined by the data processing unit will be described. Especially, the pattern of pressure transients, measured in a time sequence of pressure samples, can be described by appropriate statistical parameters, such as:
    1. 1) The coefficients of a Fourier transform of the time series of measured pressure values. The resolution of the Fourier transform is chosen as a compromise between the amount of data to be transmitted and the amount of information about the transients desired to transmit. Computationally it is advantageous to use the fast Fourier transform technique (FFT).
    2. 2) The statistical moments of the probability distribution defined as:

      Here, the pressure excursion from the average is defined as xj = pj - <p>. The brackets <...> denote average over the ensemble of samples. Hence, the average pressure is merely <p>, and the first moment of x, µ1, is trivially zero. The more moments, that are calculated, the better description of the distribution function of pressure excursions can be obtained. For a normal distribution of the pressure excursions, it suffices to know the average and µ2, which is the standard deviation.
    3. 3) Maximum likelihood estimation, where an estimator is maximized with respect to one or more parameters of a probability distribution model. A likelihood function is defined as:

      Here, yk are a set of model parameters, characterizing the distribution function, and xj are the measured values, defined above. The joint probability distribution function f(yk|xj) is defined as:

      Above P(yk|xj) denote the probability that the sample xj is measured, given the parameters yk, and g(yk) is the probability density at the values yk. Now the task is to maximize W, given the dataset xj with respect to the parameters yk. As an example, consider a normal distribution, characterized by the mean, α, and the standard deviation, σ. If a set of pressure excursions, xj, are measured, we must now choose α and σ in a way that maximizes W.
    4. 4) Average and standard deviation. Most physical processes in nature gives rise to a probability distribution which is a normal distribution. This is completely characterized by its average and standard deviation, as mentioned above.
    5. 5) Histogram values. As a simplified form, a histogram can be used, representing the probability distribution function, by calculating the rate with which the measured values, xj, are falling within the set of intervals bk.


    [0046] The pressure of a fluid can be measured using a variety of pressure measurement techniques using various sensor or transducer principles. These include:
    1. 1) Piezoresistive semiconductors. The conductivity and hence resistivity of semiconductors such as silicon change when the component is subject to stresses. This can be utilized to making a pressure sensor, either by placing the semiconductor on a substrate and exposing it to the fluid pressure, or by making a semiconductor membrane, which can deform when one surface is exposed to the fluid pressure.
    2. 2) Piezoresistive metallic films. By applying a metallic film in an appropriate pattern onto a substrate, such as a ceramic, the strain following a stress will deform the pattern and hence change the resistivity of the film. This change can be measured by an electrical circuit to produce a measure of an external pressure.
    3. 3) Capacitive sensors. A membrane is deformed as a result of a pressure difference between its surfaces. The deformation gives rise to a change in the electrical capacitance of a parallel plate capacitor made up by the membrane and an additional stable conducting plate. The capacitance change can be measured by a circuit and converted into a pressure difference reading.
    4. 4) Mechanical spring compression. Pressure on a surface of well defined size serves to compress a spring with known spring constant. The resulting compression can be converted mechanically or electrically into a pressure measurement.
    5. 5) Inductive sensors. The mechanical work done by the pressure serves to change the inductance of a coil, which in turn can be measured and converted into a pressure reading.
    6. 6) Piezoelectric. A piezoelectric component is employed, for which a change in stress gives rise to a potential difference across its terminals. The voltage can be sampled and integrated to produce a pressure reading.
    7. 7) Optical sensors. Fiber optical strain gauges based on Bragg gratings inherent in the fiber can be employed. A stress giving rise to a strain stretches or compresses the Bragg grating with changed optical reflection as a result. The reflected light can be recorded to produce a pressure measurement.
    8. 8) Resonant sensors. One or more membranes set in oscillation around their resonance frequencies are having one side exposed to the fluid. A change in fluid pressure will result in a change in fluid density and hence a change in membrane resonance frequency. This change can be recorded and converted into a measure of the fluid pressure.


    [0047] Fig. 3 illustrates an example of a pressure sampling sequence. The pressure is sampled a number of times with time interval tsamp which may be such as 100 ms, e.g. selected depending on the chosen pressure sensor technology. This sampling is repeated after a delay of trep. It is to be understood that the number of samples in a measurement sequence can be selected according to the needs, as well as the time trep between the measurement sequences.

    [0048] Fig. 4 shows an example of data registry transmitted from the pressure sensor device. The communication module can transmit a data packet containing a single timestamp with an associated number of statistical parameters, s1-s4, or the transmitter can less frequently transmit a data packet containing a register containing a number of timestamps each with associated statistical parameters s1-s4.

    [0049] Figs. 5 and 6 show a 3D cut away and a 3D view of a specific implementation where all of the components, including measurement system MS, data processing unit P, and communication module (not shown) are housed within one single housing formed by a monolithical composite material which serves to form a watertight enclosure for all of the mentioned components inside. As seen, the housing has threaded end portions of the through-going opening so as to allow mounting of the through-going opening in a fluid pipe system.

    [0050] A threaded cover with a sealing ring serves to provide a watertight covering of the cavity of the housing where the measurement system MS, data processing unit P, and communication module are located.

    [0051] E.g. the composite material forming the housing may be based on polysulphides, such as polyphenylenesulphide (PPS), such as PPS reinforced by glass and/or carbon fibers. In the specific implementation, the measurement system comprises a piezoresistive type of pressure sensor.

    [0052] Preferably, also a battery B is contained within the single housing, as shown, wherein the battery B is arranged to provide all necessary electrical power to power the measurement system, the data processing unit, and the communication module. In the specific implementation, the communication module is arranged for wireless communication of the data packets representing one or more statistical parameters calculated for a plurality of pressure measurements together with a time stamp. Preferably, an antenna of the communication module for transmitting a radio frequency signal accordingly, is also located within or with the single housing, thus the housing may contain an electrical feedthruogh for a Radio Frequency signal to be transmitted by an external antenna.

    [0053] It is to be understood that it may be preferred that the measurement system and the data processing system are housed within a housing forming a separate unit from the communication module, and wherein the communication module is in wired or wireless connection with the data processing unit.

    [0054] To sum up: the invention provides a pressure sensor device arranged for measuring a pressure in a fluid pipe system, e.g. a utility network. A measurement system with a pressure sensor serves to measure pressure in the fluid pipe system, and a a data processing unit determines at least one statistical parameter in response to a plurality of pressure measurements. Data packets with the statistical parameter is then transmitted by means of a communication module, e.g. via a data network which serves for remote reading of utilty meters. Such pressure sensor device in a battery driven form can be placed at remote locations in a fluid pipe system to monitor pressure transients, e.g. in a water distribution system. Especially, a time stamp may follow the statistical parameter(s) sent, such that it is possible to track pressure transient creating events on the fluid pipe system.

    [0055] Although the present invention has been described in connection with the specified embodiments, it should not be construed as being in any way limited to the presented examples. The scope of the present invention is to be interpreted in the light of the accompanying claim set. In the context of the claims, the terms "including" or "includes" do not exclude other possible elements or steps. Also, the mentioning of references such as "a" or "an" etc. should not be construed as excluding a plurality. The use of reference signs in the claims with respect to elements indicated in the figures shall also not be construed as limiting the scope of the invention.


    Claims

    1. A pressure sensor device arranged for measuring a pressure in a fluid pipe system, the device comprising

    - a measurement system (MS) comprising a pressure sensor arranged for performing measurements of pressure at a position in the fluid pipe system,

    - a data processing unit (P) arranged for processing data related to the measurements of pressure so as to determine at least one statistical parameter (SP) in response to a plurality of measurements of pressure as a measure of the occurrence of pressure transients in the fluid pipe system, and

    - a communication module (CM) arranged for transmitting data packets (DP) representing the at least one statistical parameter (SP) to an associated receiver,

    characterized in that
    the measurement system (MS) is arranged for performing the plurality of measurements of pressure according to a predefined measurement time sequence so that pressure is measured at a plurality of measurement times within a measurement time window, which is randomly spaced in time.
     
    2. Device according to claim 1, wherein the communication module (CM) is arranged to transmit the data packets (DP) according to a predefined transmission time sequence.
     
    3. Device according to any of the claims 1 and 2, wherein the device is arranged to include in the data packets a time stamp for indicating a time for performing the plurality of measurements of pressure associated with the respective at least one statistical parameter (SP).
     
    4. Device according to any of the preceding claims, being arranged for measuring an additional parameter, said additional parameter being selected from the group of: parameters of flow rate, temperature, chlorine concentration, and pH.
     
    5. Device according to any of the preceding claims, being integrated with a consumption meter arranged for measuring a flow rate of the fluid, and for transmitting data packets (DP) comprising consumption data to an associated receiver.
     
    6. Device according to claim 5, wherein the communication module (CM) is arranged to transmit the data packets (DP) according to a predefined transmission time sequence within transmit time windows having an average transmit frequency over time, and wherein the device is arranged for transmitting data packets (DP) comprising consumption data to an associated receiver according to a predefined consumption data transmission time sequence, wherein the predefined consumption data transmission time sequence is selected so that a data packet (DP) comprising consumption data is transmitted at a consumption data transmit time within a consumption data transmit time window, the consumption data transmit time windows being periodically spaced in time, wherein the consumption data transmit time windows have an average consumption data transmit frequency over time, and wherein average transmit frequency over time is smaller than the average consumption data transmit frequency over time.
     
    7. Device according to any of the preceding claims, wherein the communication module (CM) is arranged to receive data from an associated remote transmitter.
     
    8. Device according to claim 7, wherein the measurement system may be arranged to perform a pressure measurement in response to a request from the associated remote transmitter.
     
    9. Device according to any of the preceding claims, wherein the communication module (CM) is arranged to transmit the data packets (DP) representing the at least one statistical parameter (SP) via a communication network arranged for remote reading of utility meters.
     
    10. Device according to any of the preceding claims, wherein the communication module (CM) is arranged to transmit the data packets (DP) representing the at least one statistical parameter (SP) in response to a measured pressure value exceeding a predefined threshold and/or a determined statistical parameter value exceeding a predefined threshold.
     
    11. Device according to any of the preceding claims, wherein at least part of the measurement system (MS), the data processing unit (P), and at least part of the communication module (CM) are housed within one single housing.
     
    12. Device according to claim 11, wherein all of the measurement system (MS), the data processing unit (P), and the communication module (CM) are housed within said single housing.
     
    13. Device according to any of claims 1-10, wherein the communication module (CM) is arranged within a housing which forms a unit which is separate from the measurement system (MS) and the data processing unit (P).
     
    14. A pressure sensor system arranged for measurement of pressure in a fluid pipe system, the system comprising

    - a plurality of pressure sensor device according to any of claims 1-13, arranged for measuring pressure at respective positions in the fluid pipe system, and

    - a receiver arranged to receive data packets representing the at least one statistical parameter (SP) from the respective pressure sensor devices.


     
    15. A method for monitoring pressure in a fluid pipe system, the method comprising

    - performing pressure measurements with a pressure sensor arranged at a position in the fluid pipe system,

    - determining at least one statistical parameter (SP) in response to a plurality of pressure measurements as a measure of the occurrence of pressure transients in the fluid pipe system, and

    - transmitting data packets (DP) representing the at least one statistical parameter (SP) to an associated receiver,

    characterized in that
    the measurement system (MS) is arranged for performing the plurality of measurements of pressure according to a predefined measurement time sequence so that pressure is measured at a plurality of measurement times within a measurement time window, which is randomly spaced in time.
     


    Ansprüche

    1. Drucksensorvorrichtung, angeordnet zum Messen eines Drucks in einem Fluidleitungssystem, wobei die Vorrichtung Folgendes umfasst:

    - ein Messsystem (MS), umfassend einen Drucksensor, der zum Durchführen von Messungen von Druck an einer Position in dem Fluidleitungssystem angeordnet ist,

    - eine Datenverarbeitungseinheit (P), angeordnet zum Verarbeiten von daten in Bezug auf Messungen von Druck, um so zumindest einen statistischen Parameter (SP) als Reaktion auf eine Vielzahl von Messungen von Druck als ein maß des Auftretens von Drucktransienten in dem Fluidleitungssystem zu bestimmen, und

    - ein Kommunikationsmodul (CM), angeordnet zum Übertragen von Datenpaketen (DP), die den zumindest einen statistischen Parameter (SP) darstellen, an einen assoziierten Empfänger,

    dadurch gekennzeichnet, dass
    das Messsystem (MS) zum Durchführen der Vielzahl von Messungen von Druck gemäß einer vorbestimmten Messzeitsequenz angeordnet ist, sodass der Druck zu einer Vielzahl von Messzeiten innerhalb eines Messzeitfensters mit zufälligem Zeitabstand gemessen wird.
     
    2. Vorrichtung nach Anspruch 1, wobei das Kommunikationsmodul (CM) dazu angeordnet ist, die Datenpakete (DP) gemäß einer vordefinierten Übertragungszeitsequenz zu übertragen.
     
    3. Vorrichtung nach einem der Ansprüche 1 und 2, wobei die Vorrichtung dazu angeordnet ist, in den Datenpaketen einen Zeitstempel zum Angeben einer Zeit zum Durchführen der Vielzahl von Messungen von Druck, die mit dem zumindest einen statistischen Parameter (SP) assoziiert sind, zu beinhalten.
     
    4. Vorrichtung nach einem der vorhergehenden Ansprüche, angeordnet zum Messen eines zusätzlichen Parameters, wobei der zusätzliche Parameter aus der folgenden Gruppe ausgewählt ist: Parameter von Durchflussrate, Temperatur, Chlorkonzentration und pH.
     
    5. Vorrichtung nach einem der vorhergehenden Ansprüche, integriert in ein Verbrauchsmessgerät, das zum Messen einer Durchflussrate des Fluids und zum Übertragen von Datenpaketen (DP), die Verbrauchsdaten umfassen, an einen assoziierten Empfänger angeordnet ist.
     
    6. Vorrichtung nach Anspruch 5, wobei das Kommunikationsmodul (CM) dazu angeordnet ist, die Datenpakete (DP) gemäß einer vordefinierten Übertragungszeitsequenz innerhalb von Übertragungszeitfenstern mit einer mittleren Übertragungsfrequenz im Zeitverlauf zu übertragen, und wobei die Vorrichtung zum Übertragen von Datenpaketen (DP), die Verbrauchsdaten umfassen, an einen assoziierten Empfänger gemäß einer vordefinierten Verbrauchsdatenübertragungszeitsequenz angeordnet ist, wobei die vordefinierte Verbrauchsdatenübertragungszeitsequenz so ausgewählt ist, dass ein Datenpaket (DP), das Verbrauchsdaten umfasst, zu einer Verbrauchsdatenübertragungszeit innerhalb eines Verbrauchsdatenübertragungszeitfensters übertragen wird, wobei die Verbrauchsdatenübertragungszeitfenster zeitlich periodisch beabstandet sind, wobei die Verbrauchsdatenübertragungszeitfenster eine mittlere Verbrauchsdatenübertragungsfrequenz im Zeitverlauf aufweisen und wobei die mittlere Übertragungsfrequenz im Zeitverlauf kleiner als die mittlere Verbrauchsdatenübertragungsfrequenz im Zeitverlauf ist.
     
    7. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei das Kommunikationsmodul (CM) dazu angeordnet ist, Daten von einem assoziierten entfernten Sender zu empfangen.
     
    8. Vorrichtung nach Anspruch 7, wobei das Messsystem dazu angeordnet sein kann, eine Druckmessung als Reaktion auf eine Anfrage von dem assoziierten entfernten Sender durchzuführen.
     
    9. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei das Kommunikationsmodul (CM) dazu angeordnet ist, die Datenpakete (DP), die den zumindest einen statistischen Parameter (SP) darstellen, über ein Kommunikationsnetz, das zum entfernten Lesen von Verbrauchsmessgeräten angeordnet ist, zu übertragen.
     
    10. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei das Kommunikationsmodul (CM) dazu angeordnet ist, die Datenpakete (DP), die den zumindest einen statistischen Parameter (SP) darstellen, als Reaktion darauf zu übertragen, dass ein gemessener Druck einen vordefinierten Schwellenwert übersteigt und/oder ein bestimmter Wert des statistischen Parameters einen vordefinierten Schwellenwert übersteigt.
     
    11. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei zumindest ein Teil des Messsystems (MS), die Datenverarbeitungseinheit (P) und zumindest ein Teil des Kommunikationsmoduls (CM) innerhalb eines einzelnen Gehäuses untergebracht sind.
     
    12. Vorrichtung nach Anspruch 11, wobei alle von dem Messsystem (MS), der Datenverarbeitungseinheit (P) und des Kommunikationsmoduls (CM) innerhalb des einzelnen Gehäuses untergebracht sind.
     
    13. Vorrichtung nach einem der Ansprüche 1-10, wobei das Kommunikationsmodul (CM) innerhalb eines Gehäuses angeordnet ist, das eine Einheit bildet, die von dem Messsystem (MS) und der Datenverarbeitungseinheit (P) getrennt ist.
     
    14. Drucksensorsystem, angeordnet zur Messung von Druck in einem Fluidleitungssystem, wobei das System Folgendes umfasst:

    - eine Vielzahl von Drucksensorvorrichtungen nach einem der Ansprüche 1-13, angeordnet zum Messen von Druck an entsprechenden Positionen in dem Fluidleitungssystem, und

    - einen Empfänger, angeordnet, um Datenpakete, die den zumindest einen statistischen Parameter (SP) darstellen, von den jeweiligen Drucksensorvorrichtungen zu empfangen.


     
    15. Verfahren zum Überwachen von Druck in einem Prozesssteuerungssystem, wobei das Verfahren Folgendes umfasst:

    - Durchführen von Druckmessungen mit einem Drucksensor, der an einer Position in dem Fluidleitungssystem angeordnet ist,

    - Bestimmen von zumindest einem statistischen Parameter (SP) als Reaktion auf eine Vielzahl von Druckmessungen als ein Maß des Auftretens von Drucktransienten in dem Fluidleitungssystem, und

    - Übertragen von Datenpaketen (DP), die den zumindest einen statistischen Parameter (SP) darstellen, an einen assoziierten Empfänger,

    dadurch gekennzeichnet, dass
    das Messsystem (MS) zum Durchführen der Vielzahl von Messungen von Druck gemäß einer vorbestimmten Messzeitsequenz angeordnet ist, sodass der Druck zu einer Vielzahl von Messzeiten innerhalb eines Messzeitfensters mit zufälligem Zeitabstand gemessen wird.
     


    Revendications

    1. Dispositif de capteur de pression agencé pour mesurer une pression dans un système de conduite de fluide, le dispositif comprenant

    - un système de mesure (MS) comprenant un capteur de pression agencé pour effectuer des mesures de pression à un emplacement dans le système de conduite de fluide,

    - une unité de traitement de données (P) agencée pour traiter des données liées aux mesures de pression de façon à déterminer au moins un paramètre statistique (SP) en réponse à une pluralité de mesures de pression en tant que mesure de l'occurrence de transitoires de pression dans le système de conduite de fluide, et

    - un module de communication (CM) agencé pour transmettre des paquets de données (DP) représentant l'au moins un paramètre statistique (SP) à un récepteur associé,

    caractérisé en ce que
    le système de mesure (MS) est agencé pour effectuer la pluralité de mesures de pression en fonction d'une séquence de temps de mesure prédéfinie de façon à ce que la pression soit mesurée à une pluralité de temps de mesure dans une fenêtre de temps de mesure, qui est espacée aléatoirement dans le temps.
     
    2. Dispositif selon la revendication 1, dans lequel le module de communication (CM) est agencé pour transmettre les paquets de données (DP) en fonction d'une séquence de temps de transmission prédéfinie.
     
    3. Dispositif selon l'une quelconque des revendications 1 et 2, dans lequel le dispositif est agencé pour inclure dans les paquets de données un horodatage destiné à indiquer un temps pour effectuer la pluralité de mesures de pression associées à l'au moins un paramètre statistique (SP) respectif.
     
    4. Dispositif selon l'une quelconque des revendications précédentes, étant agencé pour mesurer un paramètre supplémentaire, ledit paramètre supplémentaire étant sélectionné parmi le groupe de : paramètre de débit d'écoulement, température, concentration de chlore, et pH.
     
    5. Dispositif selon l'une quelconque des revendications précédentes, étant intégré à un compteur de consommation agencé pour mesurer un débit d'écoulement du fluide, et pour transmettre des paquets de données (DP) comprenant des données de consommation à un récepteur associé.
     
    6. Dispositif selon la revendication 5, dans lequel le module de communication (CM) est agencé pour transmettre les paquets de données (DP) en fonction d'une séquence de temps de transmission prédéfinie dans des fenêtres de temps de transmission ayant une fréquence de transmission moyenne dans le temps, et dans lequel le dispositif est agencé pour transmettre des paquets de données (DP) comprenant des données de consommation à un récepteur associé en fonction d'une séquence de temps de transmission de données de consommation prédéfinie, dans lequel la séquence de temps de transmission de données de consommation prédéfinie est sélectionnée de façon à ce qu'un paquet de données (DP) comprenant des données de consommation soit transmis à un temps de transmission de données de consommation dans une fenêtre de temps de transmission de données de consommation, les fenêtres de temps de transmission de données de consommation étant espacées périodiquement dans le temps, dans lequel les fenêtres de temps de transmission de données de consommation ont une fréquence de transmission de données de consommation moyenne dans le temps, et dans lequel la fréquence de transmission moyenne dans le temps est inférieure à la fréquence de transmission de données de consommation moyenne dans le temps.
     
    7. Dispositif selon l'une quelconque des revendications précédentes, dans lequel le module de communication (CM) est agencé pour recevoir des données depuis un émetteur distant associé.
     
    8. Dispositif selon la revendication 7, dans lequel le système de mesure peut être agencé pour effectuer une mesure de pression en réponse à une requête depuis l'émetteur distant associé.
     
    9. Dispositif selon l'une quelconque des revendications précédentes, dans lequel le module de communication (CM) est agencé pour transmettre les paquets de données (DP) représentant l'au moins un paramètre statistique (SP) via un réseau de communication agencé pour lire à distance des compteurs de service.
     
    10. Dispositif selon l'une quelconque des revendications précédentes, dans lequel le module de communication (CM) est agencé pour transmettre les paquets de données (DP) représentant l'au moins un paramètre statistique (SP) en réponse à une valeur de pression mesurée dépassant un seuil prédéfini et/ou une valeur de paramètre statistique déterminée dépassant un seuil prédéfini.
     
    11. Dispositif selon l'une quelconque des revendications précédentes, dans lequel au moins une partie du système de mesure (MS), l'unité de traitement de données (P), et au moins une partie du module de communication (CM) sont logés dans un boîtier unique.
     
    12. Dispositif selon la revendication 11, dans lequel l'ensemble du système de mesure (MS), l'unité de traitement de données (P), et le module de communication (CM) sont logés dans ledit boîtier unique.
     
    13. Dispositif selon l'une quelconque des revendications 1 à 10, dans lequel le module de communication (CM) est agencé dans un boîtier qui forme une unité qui est séparée du système de mesure (MS) et de l'unité de traitement de données (P).
     
    14. Système de capteur de pression agencé pour une mesure de pression dans un système de conduite de fluide, le système comprenant

    - une pluralité de dispositifs de capteurs de pression selon l'une quelconque des revendications 1 à 13, agencés pour mesurer une pression au niveau d'emplacements respectifs dans le système de conduite de fluide, et

    - un récepteur agencé pour recevoir des paquets de données représentant l'au moins un paramètre statistique (SP) depuis les dispositifs de capteurs de pression respectifs.


     
    15. Procédé de surveillance de pression dans un système de conduite de fluide, le procédé comprenant :

    - la réalisation de mesures de pression avec un capteur de pression agencé à un emplacement dans le système de conduite de fluide,

    - la détermination d'au moins un paramètre statistique (SP) en réponse à une pluralité de mesures de pression en tant que mesure de l'occurrence de transitoires de pression dans le système de conduite de fluide, et

    - la transmission de paquets de données (DP) représentant l'au moins un paramètre statistique (SP) à un récepteur associé,

    caractérisé en ce que
    le système de mesure (MS) est agencé pour effectuer la pluralité de mesures de pression en fonction d'une séquence de temps de mesure prédéfinie de façon à ce que la pression soit mesurée à une pluralité de temps de mesure dans une fenêtre de temps de mesure, qui est espacée aléatoirement dans le temps.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description