(19)
(11)EP 2 964 063 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
20.05.2020 Bulletin 2020/21

(21)Application number: 14759624.1

(22)Date of filing:  05.03.2014
(51)Int. Cl.: 
A47J 37/07  (2006.01)
F23D 23/00  (2006.01)
F23D 14/10  (2006.01)
(86)International application number:
PCT/US2014/020884
(87)International publication number:
WO 2014/138294 (12.09.2014 Gazette  2014/37)

(54)

THIN PROFILE MULTI-TUBE BURNER FOR GAS GRILL

MEHRROHRIGER BRENNER MIT DÜNNEM PROFIL FÜR GASGRILL

BRÛLEUR À TUBES MULTIPLES À PROFIL MINCE POUR GRIL À GAZ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 05.03.2013 US 201361772828 P

(43)Date of publication of application:
13.01.2016 Bulletin 2016/02

(73)Proprietor: Char-Broil, LLC
Columbus, GA 31904 (US)

(72)Inventor:
  • AHMED, Mallik, R.
    Columbus, GA 31904 (US)

(74)Representative: Script IP Limited 
Turnpike House 18 Bridge Street
Frome Somerset BA11 1BB
Frome Somerset BA11 1BB (GB)


(56)References cited: : 
WO-A1-2010/045638
US-A1- 2003 213 484
US-B2- 7 959 433
US-A- 585 631
US-A1- 2009 165 774
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Background



    [0001] In the present art, most gas grills have very bulky fireboxes with several drawbacks: 1) they are heavy to handle and install, and the weight makes them expensive for shipping and handling, 2) they are expensive to make due to more materials, and 3) they are thermally inefficient because of the large volume of the firebox. When several types of present market grills were studied it was understood why the fireboxes were made so bulky. The main reason was the burner design. In the majority of the cases, a single tube burner was used under an average 968 cm2 (150 sq.in. / 17"L x 8-1/2"W) cooking area, although, in some cases, two tube burners with single control valves were used under a 1290 to 1548 cm2 (200 to 240 sq.in.) cooking area. These conventional burner designs require a large fire box to achieve sufficient heat for cooking and to pass combustion tests required for safe use.

    [0002] WO 2010/045638 A1 discloses a burner assembly for a gas barbecue grill having a gas supply comprising at least one burner tube with a front end, a back end and a plurality of gas outlet parts formed therein, a front manifold connected to the front end and a back manifold connected to the back end, both of the manifolds being in fluid communication with the burner tube to allow entry of a flammable gas/air mixture, a venturi tube connected to the front and back manifolds and to the gas supply for transferring gas to the burner assembly, and including at least one flow reducing aperture at the venturi tube / front manifold interface, to at least partially inhibit the entry of the gas/ air mixture.

    Summary



    [0003] The problem to be solved was how to make a firebox as thin as possible for a gas grill. To make a thinner firebox, the burner tube needs to be located closer to the cooking grate. The main challenge associated with this approach is the failure of the combustion test that is required for product certification. The limited number of ports on a single tube burner burns the gas with taller and stronger flames which impinge on the cooking grate or radiant element and fails the combustion test. To solve this issue, the burner needs to be designed with multiple tubes so that more burner ports can be accommodated to make flames shorter and weaker to avoid flame impingement. An additional venturi tube or tubes are added, to communicate with multiple manifolds, such as a front and rear manifold. Other adjustments are also made to equalize gas pressure in the form of flow restrictors.

    Brief Description of the Drawings



    [0004] 

    Figure 1 is a partial cutaway view of one type of prior art burner in a grill structure;

    Figure 2 is a perspective view of the type of prior art burner shown in Figure 1;

    Figure 3 is a perspective view of an example of a thin profile burner;

    Figure 4 is another perspective view of the burner shown in Figure 3;

    Figure 5 is a cross-sectional view taken along line 5-5 of Figure 4 with detail views A and B of the venturi-manifold interface;

    Figure 6 is a perspective view of an alternate example of a thin profile burner;

    Figure 7 is a cross-sectional view taken along line 7-7 of Figure 6 with detail views C and D of the venturi-manifold interface;

    Figure 8 is a diagrammatical view showing relative profiles of a prior art burner and the thin profile burner assembly according to the present invention;

    Figure 9 is a perspective view, shown partially in cross-section, of an embodiment of the burner assembly according to the present invention, with detail views A and B of the venturi-manifold interface;

    Figure 10 is an exploded, perspective view of another embodiment of the burner assembly according to the present invention; and

    Figure 11 is a perspective view of the burner shown in the preceding figure, here shown in an assembled condition.


    Detailed Description



    [0005] Referring now more specifically to the drawings and to Fig. 1 in particular, 10 designates generally a gas barbecue grill firebox. Firebox 10 is can be mounted on a cart assembly as is well known in the art, or it can be mounted in a stationary construction of appropriate material such as on a post or in an outdoor kitchen. The firebox has a front panel 11 with controls for the gas valves and also for ignition of the gas. Disposed in the firebox 10 is a parallel tube burner 12. Mounted above the burner 12 is a radiant material, such as ceramic glass or metal plate 13, which serves as the infrared emitter that is heated by the burner. Mounted above the emitter 13 is a cooking grate 14, upon which the food to be cooked is placed.

    [0006] It can be seen in the cut-away version that the burner 12 is formed in a grid like arrangement having generally parallel longitudinal members 15 that are connected at each end thereof by semi-circular conduits 16. The longitudinal members 15 can be formed continuously with the semi-circular conduits sections 16 or they can be separately formed and assembled into a gas manifold in the center, as shown in Figure 2. Gas is admitted to the burner tubes by methods known to the art and illustrated in Figures 1 and 2 involving a control knob operating a gas valve sending propane gas through suitable conduits to an aspirator where the gas is mixed with primary combustion air and sent to the manifold 21 for distribution to the gas burner tubes 12. In the prior art embodiment shown in Figures 1 and 2, no reduction in the depth of the burner system has been attempted and products of combustion are routed to the front and back of a flat plate re-radiating element.

    [0007] Ignition of the gas in the burner tubes may be accomplished by use of a spark generator arcing across an electrode (not shown), suitably placed in proximity to the burner 12, a hot surface igniter similarly placed, and other known methods. Figure 3 is a perspective view of one example of a thin profile burner 30. This burner has a front manifold 32, a rear manifold 34, and at least one elongated venturi tube 36, shown here in the center of the burner. The elongated venturi tube is in fluid communication with the front and rear manifolds. The burner tubes 38 are also in fluid communication with the front and rear manifolds. A suitable combustible gas is introduced into the burner via venturi tube 40. As the gas enters, it draws some, if not all of the air necessary for combustion through aspirator 42, in a manner known in the art. For ease of description, the combustible gas/air mixture will generally be referred to herein as the gas supply.

    [0008] As shown in Figures 4 and 5 with the detailed views A and B, the gas supply entering the front manifold is restricted with flow restriction means such as relatively small holes 39 or baffles (Detail view A) while there is no restriction in the back (Detail view B). In the prior art, the gas would normally have higher pressure in the front manifold 32 than in the rear manifold 34, if prior art burners were constructed with two manifolds, which they are not, by virtue of the gas supply first entering the front manifold. In the prior art burner shown in Figure 2, the gas has higher pressure in the portions of the burner tubes that are closest to the gas inlet. The baffles or holes 39 at least partially inhibit the entry of the gas supply. The flow restriction means are shown here in the venturi tube.

    [0009] Prior art constructions would result in relatively strong flames in the front burner tubes and relatively weaker flames in the rear burner tubes. Thus, even heating would be and is, difficult to achieve, with concomitant variations in evenness of cooking, hot spots, and generally inefficient performance. With the restriction holes in the front manifold supply interface 41 and no restriction in the rear manifold supply interface 43, gas is evenly distributed and the flames are of substantially equal height tall in the front and back.

    [0010] Referencing again Detail A in Figure 5, instead of the conventional, fully-open, venturi tube of the prior art, flow restrictors in the form of small holes 39 are built into the elongated venturi tube or the manifold itself, at the front venturi manifold interface 47. This contrasts with the fully-open interface 43 of the elongated venturi tube 36 and the rear manifold 34. This construction equalizes the gas pressure between the front and rear manifolds and, consequently, in the burner tubes, themselves. The resultant flames when the combustible gas-air mixture is ignited are relatively short and have lesser velocity than is seen in prior art designs. Thus, the burner can have a thinner profile and be located closer to an IR emitter or other radiant material placed between the burner and the cooking grate.

    [0011] Looking at the detail of Figure 5, it will be seen that the elongated venturi tube opens with its full diameter into the rear manifold and through a set of 32 small holes into the front manifold. The ratio of area at the front to area at the rear is 60%. In this case the opening to the rear manifold is at its maximum and cannot be further increased. It will be apparent to those skilled in the art that the difference in the flow resistance between entrance to the rear manifold and the entrance to the front manifold as shown in the detail of figure 5 is greater than that given by the ratio of areas. This is because, given the same initial conditions, the pressure drop across many small openings is much greater than the pressure drop across one large opening of the same area. This is a well known fact of fluid mechanics.

    [0012] Depending on the size of the burners, the desired flow rate, and the type of gas, variation of the area ratio may be necessary and can be changed by varying the number and size of the holes in the front and by introduction of the feature shown in Figure 7 in the rear where the area of openings into the rear manifold could be the same as the diameter of the diameter of the venturi tube but flow resistance will be greater. Alternatively, the area of the openings could be made smaller than the area of the venturi tube and still be larger than the openings to the front manifold.

    [0013] Given these possible variations, the ratio of areas of inlet to the front manifold to the areas of inlet to the back manifold could be from 50% to 70%. Or they could range from 40% to 75%. The object is to balance the pressure and flow in the front and rear manifolds to avoid the undesirable effects outlined previously.

    [0014] An alternate example is shown in Figures 6 and 7. Here, burner 60 has front manifold 62, rear manifold 64, and central elongated venturi tube 66. In this design, both ends of the venturi tube/front manifold interface 61 and the venturi tube/rear manifold interface 63 are constructed with flow reducing apertures. As shown in Detail views C and D, the apertures 65 at the front interface are smaller than the apertures 67 at the rear interface. The consequent reduction in gas pressure at the front results in equalization of gas pressure between the front and rear manifolds, and thus in the connected burner tubes, themselves.

    [0015] While the flow restrictors are shown and described as apertures, other means for restricting the gas flow are contemplated, such as slits, gates, valves, and other means known in the art may be utilized.

    [0016] Another example exhibits a construction wherein the port sizes in the burner tubes are varied to equalize the gas pressure. In this design, the burner ports nearer or at the center of the tubes are larger than those closer to the ends. This also accomplishes pressure equalization.

    [0017] The burners 30 and 60, shown in the appended figures, are shown with a central elongated venturi tube. This is not meant to be limiting and the additional one or more front-rear connecting venturi tubes can be located in a different position or positions, i.e. off-center, left, right, etc. The venturi tube/manifold conduit may be formed as a single fabrication or it may be separate pieces formed and connected in a fluid-tight manner.

    [0018] After having successful results with the combustion tests, the system was tested thoroughly and had some unexpected results:
    1. 1) Burner heats up the grate very evenly. Delta-T of this system was within 2.8 °C (5 degree Fahrenheit) versus the conventional systems which have that number from 13,9 to 27,8 °C (25 to 50 degree Fahrenheit).
    2. 2) System is very energy efficient. With minimum volume of the firebox, wastage of energy is reduced significantly and also as the cooking grate is very close to the burner flame, with a 1927 °C (3500 degree Fahrenheit) temperature, it gets a substantial amount of infrared energy directly from the flames. A conventional system is about 20% to 35% thermally efficient but the present system goes over 40% efficient, depending on the cooking grate used.
    3. 3) Preheat time is significantly reduced. A conventional grill takes 10 to 15 minutes to preheat, but the present system takes only 2 minutes to preheat. It literally heats up the grate instantly.
    4. 4) By virtue of the food being closer to the heat source, it receives a higher percentage of IR heat which keeps the food juicier.
    5. 5) With the present burner system, hot spots are eliminated and with the proper cooking grate system, flare-ups are eliminated as well.


    [0019] Thus, the optimum design was achieved to have a thin firebox system. While it depends on the size of the system, on a conventional cooking size of 968 cm2 (150 sq.in. / 17"L x 8-1/2"W) the depth of the firebox 80, (from under the cooking grate to the bottom of the firebox) is usually 10,16 cm (4 inches), (reference dimension A in Figure 8). With the present burner system, the depth/thickness of the firebox 82 can be made to approximately 3,81 cm (1-1/2 inches) thick (reference dimension A' in Figure 8). To give an idea of how thin this system can be, both conventional and the present systems are shown diagrammatically in Figure 8. Note that although there are multiple tubes in the burner, the burner is controlled by only one valve. This, of course, can be varied depending on the size of the grill. This reduction in depth saves on manufacturing costs, replacement costs, and material costs, all while providing performance vastly superior to burners of the prior art.

    [0020] An embodiment of the burner assembly according to the present invention is shown in Figure 9. Burner 90 has a lower section 92 and an upper section 94. Each section has front and rear manifolds, 96 and 98 and 100 and 102, respectively. Lower section 92 has two burner tubes 104 and 106 that are in fluid communication with front and rear upper manifolds 100 and 102.

    [0021] The flammable gas/air mixture is supplied to the burner through lower and upper elongated venturi tubes 110 and 112, respectively. As shown in Detail view A, the front venturi tube/front manifold interface has relatively small flow restrictors or baffles 114. As shown in Detail view B, the rear venturi tube/rear manifold interface has relatively larger flow restrictors or baffles 116. Similar to the designs shown in Figures 6 and 7, this construction results in the equalization of gas pressure in the manifolds, and thus in the connected burner tubes.

    [0022] The structures shown in Figures 9-11 illustrate the burner assembly according to the invention constructed in a unique overlapping and interleaved burner structure, thus creating a two segment burner that operates with a dual outlet, single control valve. Such valves are known in the art and need not be described in further detail. The burner sections are secured to one another by means known in the art and may be separable, as for repair or replacement of certain elements, or they may be formed as a single unit, or they may be separate units that are substantially permanently secured together. The operation is such that, for example, the upper section 94, in Figure 9, can be operated in a low flow/low heat condition. When higher flow/higher temperature is demanded, additional gas/air flow is routed to the lower section 92. Alternately, the operation can be reversed, with the lower section operating as the main or normal burner and the upper section operated as an additional burner to provide a higher than normal heating rate for quickly warming up the grill, cooking in cold conditions, or for very quickly searing meat, among other purposes.

    [0023] Figures 10 and 11 illustrate a larger version of the burner assembly according to the invention shown in Figure 9. In the exploded Figure 10, lower section 120 has four lower burner tubes 122 that are in fluid communication with front and rear lower manifolds 124 and 126 respectively. Upper section 128 has two upper burner tubes 130, that are in fluid communication with front and rear upper manifolds 132 and 134, respectively.

    [0024] As can be seen in Figure 10 from the respective ends and walls of the upper and lower manifold sections, upon assembly into the burner element shown in Figure 11, the upper and lower manifolds are separate structures. The lower manifolds supply a gas/air mixture to the lower burner tubes 122 while the upper manifolds supply a gas/air mixture to the upper tubes 130. The burner is supplied with the gas/air mixture through a dual outlet, single control valve, as is known in the art.

    [0025] As with the operational description above, relative to the burner shown in Figure 9, the lower section can be used as the main, or normal burner, with the upper section used to provide a higher than normal heating rate. The relative functions can also be reversed. In addition, all of the burner tubes can be operated simultaneously, to provide a substantially high heat, fast cooking environment, or they can be used separately for slow cooking, warming food, or in combination with flavoring materials, such as wood chips, as in a smoker-type grill.

    [0026] While an embodiment of a thin profile, multi-manifold multi-tube burner assembly for gas grills and modifications thereof have been shown and described in detail herein, various additional changes and modifications may be made without departing from the scope of the present invention as defined in the appended claims.


    Claims

    1. A burner assembly (90) for a gas barbeque grill, said burner assembly comprising
    a plurality of burner tubes (122) with a front end, a back end and a plurality of gas outlet ports formed therein, a front manifold (124) connected to said front end and a back manifold (126) connected to said back end, both of said front and back manifolds (124, 126) being in fluid communication with said burner tubes (122) to allow entry of a flammable gas/air mixture, a venturi tube (110) connected to said front and back manifolds (124, 126) and to a gas supply for transferring gas to the burner assembly (90), flow restrictor being at least one of holes, baffles, flow reducing apertures, slits, gates, valves and varying port sizes at the venturi tube (110) / front manifold (124) interface, to at least partially inhibit the entry of the gas/air mixture; and
    a plurality of additional burner tubes (130) with an additional front end, an additional back end, and an additional plurality of gas outlet ports formed therein, an additional front manifold (132) connected to said additional front end and an additional back manifold (134) connected to said additional back end, both of said additional front and back manifolds (132, 134) being in fluid communication with said additional burner tubes (130) to allow entry of a flammable gas/air mixture, an additional venturi tube (112) connected to said additional front and back manifolds (132, 134) and to the gas supply for transferring gas to the burner assembly (90), and an additional flow restrictor being at least one of holes, baffles, flow reducing apertures, slits, gates, valves and varying port sizes at the additional venturi tube (112) / additional front manifold (132) interface,
    wherein said front manifold (124) and said additional front manifold (132) overlap, said back manifold (126) and said additional back manifold (134) overlap and said plurality of burner tubes (122) and said plurality of additional burner tubes (130) are interleaved and
    wherein one of said venturi tube (110) and said additional venturi tube (112) receives said gas supply from a dual outlet single control valve in a low flow/low heat condition and both of said venturi tube (110) and said additional venturi tube (112) receive said gas supply from said dual outlet single control valve in a higher flow/higher heat condition.
     
    2. The burner assembly of claim 1, wherein said venturi tube includes a first plurality of flow reducing apertures (114) as said flow restrictor at the venturi tube/front manifold interface, to at least partially inhibit the entry of the gas/air mixture and said additional venturi tube includes a plurality of flow reducing apertures as said flow restrictor at the additional venturi tube/front manifold interface to at least partially inhibit the entry of the gas air mixture.
     
    3. A burner assembly as defined in claim 2 in which said venturi tube includes a second plurality of flow reducing apertures (116) as said flow restrictor at the venturi tube/back manifold interface to at least partially inhibit the entry of the gas/air mixture.
     
    4. A burner assembly as defined in claim 3. wherein the first plurality of flow reducing apertures are relatively smaller than the second plurality of flow reducing apertures.
     
    5. A burner assembly as defined in claim 2 in which said additional venturi tube includes a fourth plurality of flow reducing apertures (116) as said flow restrictor at the additional venturi tube/back manifold interface to at least partially inhibit the entry of the gas/air mixture.
     
    6. A burner assembly as defined in claim 1, wherein said front manifold includes a first baffle as said flow restrictor to at least partially inhibit the entry of the gas/air mixture.
     
    7. A burner assembly as defined in claim 6 in which said back manifold includes a second baffle as said flow restrictor to at least partially inhibit the entry of the gas/air mixture.
     
    8. A burner assembly as defined in claim 6, wherein the first baffle comprises relatively smaller openings and the second baffle comprises relatively larger openings.
     
    9. A burner assembly as defined in claim 6, wherein said additional front manifold includes a third baffle as said flow restrictor to at least partially inhibit the entry of the gas air mixture.
     
    10. A burner assembly as defined in claim 9 in which said additional back manifold includes a fourth baffle as said flow restrictor to at least partially inhibit the entry of the gas/air mixture.
     
    11. A burner assembly as defined in claim 10, wherein the third baffle comprises relatively smaller openings and the fourth baffle comprises relatively larger openings.
     


    Ansprüche

    1. Brenneranordnung (90) für einen Gasgrill, wobei die Brenneranordnung umfasst
    eine Vielzahl von Brennerrohren (122) mit einem vorderen Ende, einem hinteren Ende und einer Vielzahl von darin gebildeten Gasaustrittanschlüssen, einen vorderen Verteiler (124), der mit dem vorderen Ende verbunden ist und einen hinteren Verteiler (126), der mit dem hinteren Ende verbunden ist, wobei sowohl der vordere als auch der hintere Verteiler (124, 126) in fluider Verbindung mit den Brennerrohren (122) stehen, um einen Eintritt eines brennbaren Gas/Luft-Gemisches zu ermöglichen, ein Venturi-Rohr (110), das zum Übertragen von Gas zu der Brenneranordnung (90) mit dem vorderen und dem hinteren Verteiler (124, 126) und einer Gasversorgung verbunden ist, einen Strömungsbegrenzer, der zumindest eines ist von Löchern, Ablenkplatten, strömungsverringernden Aperturen, Schlitzen, Toren, Ventilen und variierenden Anschlussgrößen an der Schnittstelle vom Venturi-Rohr (110)/vorderen Verteiler (124), um den Eintritt des Gas/Luft-Gemisches zumindest teilweise zu verhindern; und
    eine Vielzahl von zusätzlichen Brennerrohren (130) mit einem zusätzlichen vorderen Ende, einem zusätzlichen hinteren Ende und einer zusätzlichen Vielzahl von darin gebildeten Gasaustrittanschlüssen, einen zusätzlichen vorderen Verteiler (132), der mit dem zusätzlichen vorderen Ende verbunden ist und einen zusätzlichen hinteren Verteiler (134), der mit dem zusätzlichen hinteren Ende verbunden ist, wobei sowohl der zusätzliche vordere als auch der zusätzliche hintere Verteiler (132, 134) in fluider Verbindung mit den zusätzlichen Brennerrohren (130) stehen, um einen Eintritt eines brennbaren Gas/Luft-Gemisches zu ermöglichen, ein zusätzliches Venturi-Rohr (112), das zum Übertragen von Gas zu der Brenneranordnung (90) mit dem zusätzlichen vorderen und dem zusätzlichen hinteren Verteiler (132, 134) und der Gasversorgung verbunden ist, und einen zusätzlichen Strömungsbegrenzer, der zumindest eines ist von Löchern, Ablenkplatten, strömungsverringernden Aperturen, Schlitzen, Toren, Ventilen und variierenden Anschlussgrößen an der Schnittstelle vom zusätzlichen Venturi-Rohr (112)/zusätzlichen vorderen Verteiler (132),
    wobei der vordere Verteiler (124) und der zusätzliche vordere Verteiler (132) sich überlappen, der hintere Verteiler (126) und der zusätzliche hintere Verteiler (134) sich überlappen und die Vielzahl von Brennerrohren (122) und die Vielzahl von zusätzlichen Brennerrohren (130) verschachtelt sind, und
    wobei eines von dem Venturi-Rohr (110) und dem zusätzlichen Venturi-Rohr (112) in einem Zustand niedriger Strömung/niedriger Wärme die Gasversorgung von einem einzelnen Steuerventil mit dualem Auslass empfängt und sowohl das dem Venturi-Rohr (110) als auch das zusätzliche Venturi-Rohr (112) in einem Zustand höherer Strömung/höherer Wärme die Gasversorgung von dem einzelnen Steuerventil mit dualem Auslass empfangen.
     
    2. Brenneranordnung nach Anspruch 1, wobei das Venturi-Rohr eine erste Vielzahl von strömungsverringernden Aperturen (114) als den Strömungsbegrenzer an der Schnittstelle vom Venturi-Rohr/vorderen Verteiler aufweist, um den Eintritt des Gas/Luft-Gemisches zumindest teilweise zu verhindern, und wobei das zusätzliche Venturi-Rohr eine Vielzahl von strömungsverringernden Aperturen als den Strömungsbegrenzer an der Schnittstelle vom zusätzlichen Venturi-Rohr/zusätzlichen vorderen Verteiler aufweist, um den Eintritt des Gas/Luft-Gemisches zumindest teilweise zu verhindern.
     
    3. Brenneranordnung nach Anspruch 2, wobei das Venturi-Rohr eine zweite Vielzahl von strömungsverringernden Aperturen (116) als den Strömungsbegrenzer an der Schnittstelle vom Venturi-Rohr/hinteren Verteiler aufweist, um den Eintritt des Gas/Luft-Gemisches zumindest teilweise zu verhindern.
     
    4. Brenneranordnung nach Anspruch 3, wobei die eine erste Vielzahl von strömungsverringernden Aperturen relativ kleiner ist als die zweite Vielzahl von strömungsverringernden Aperturen.
     
    5. Brenneranordnung nach Anspruch 2, wobei das zusätzliche Venturi-Rohr eine vierte Vielzahl von strömungsverringernden Aperturen (116) als den Strömungsbegrenzer an der Schnittstelle vom zusätzlichen Venturi-Rohr/zusätzlichen hinteren Verteiler aufweist, um den Eintritt des Gas/Luft-Gemisches zumindest teilweise zu verhindern.
     
    6. Brenneranordnung nach Anspruch 1, wobei der vordere Verteiler eine erste Ablenkplatte als den Strömungsbegrenzer aufweist, um den Eintritt des Gas/LuftGemisches zumindest teilweise zu verhindern.
     
    7. Brenneranordnung nach Anspruch 6, wobei der hintere Verteiler eine zweite Ablenkplatte als den Strömungsbegrenzer aufweist, um den Eintritt des Gas/LuftGemisches zumindest teilweise zu verhindern.
     
    8. Brenneranordnung nach Anspruch 6, wobei die erste Ablenkplatte relativ kleinere Öffnungen umfasst und die zweite Ablenkplatte relativ größere Öffnungen umfasst.
     
    9. Brenneranordnung nach Anspruch 6, wobei der zusätzliche vordere Verteiler eine dritte Ablenkplatte als den Strömungsbegrenzer aufweist, um den Eintritt des Gas/Luft-Gemisches zumindest teilweise zu verhindern.
     
    10. Brenneranordnung nach Anspruch 9, wobei der zusätzliche hintere Verteiler eine vierte Ablenkplatte als den Strömungsbegrenzer aufweist, um den Eintritt des Gas/Luft-Gemisches zumindest teilweise zu verhindern.
     
    11. Brenneranordnung nach Anspruch 10, wobei die dritte Ablenkplatte relativ kleinere Öffnungen umfasst und die vierte Ablenkplatte relativ größere Öffnungen umfasst.
     


    Revendications

    1. Ensemble de brûleurs (90) pour un barbecue au gaz, ledit ensemble de brûleurs comprenant
    une pluralité de tubes de brûleur (122) avec une extrémité avant, une extrémité arrière et une pluralité de lumières de sortie de gaz formées à l'intérieur, un collecteur avant (124) raccordé à ladite extrémité avant et un collecteur arrière (126) raccordé à ladite extrémité arrière, lesdits collecteurs avant et arrière (124, 126) étant tous deux en communication fluidique avec lesdits tubes de brûleur (122) pour permettre une entrée d'un mélange gaz/air inflammable, un tube venturi (110) raccordé auxdits collecteurs avant et arrière (124, 126) et à une alimentation en gaz pour transférer du gaz à l'ensemble de brûleurs (90), un limiteur de débit qui est au moins l'un de trous, déflecteurs, orifices de réduction de débit, fentes, grilles, vannes et faisant varier des tailles de lumière au niveau de l'interface tube venturi (110)/collecteur avant (124), pour empêcher au moins partiellement l'entrée du mélange gaz/air ; et
    une pluralité de tubes de brûleur supplémentaires (130) avec une extrémité avant supplémentaire, une extrémité arrière supplémentaire, et une pluralité de lumières de sortie de gaz supplémentaires formées à l'intérieur, un collecteur avant supplémentaire (132) raccordé à ladite extrémité avant supplémentaire et un collecteur arrière supplémentaire (134) raccordé à ladite extrémité arrière supplémentaire, lesdits collecteurs avant et arrière supplémentaires (132, 134) étant tous deux en communication fluidique avec lesdits tubes de brûleur supplémentaires (130) pour permettre une entrée d'un mélange gaz/air inflammable, un tube venturi supplémentaire (112) raccordé auxdits collecteurs avant et arrière supplémentaires (132, 134) et à l'alimentation en gaz pour transférer du gaz à l'ensemble de brûleurs (90), et un limiteur de débit supplémentaire étant au moins l'un de trous, déflecteurs, orifices de réduction de débit, fentes, grilles, vannes et faisant varier des tailles de lumière au niveau de l'interface tube venturi supplémentaire (112)/collecteur avant supplémentaire (132),
    dans lequel ledit collecteur avant (124) et ledit collecteur avant supplémentaire (132) se chevauchent, ledit collecteur arrière (126) et ledit collecteur arrière supplémentaire (134) se chevauchent et ladite pluralité de tubes de brûleur (122) et ladite pluralité de brûleurs supplémentaires (130) sont entrelacés et
    dans lequel l'un dudit tube venturi (110) et dudit tube venturi supplémentaire (112) reçoit ladite alimentation en gaz depuis une vanne de commande unique à double sortie dans une condition de faible débit/faible chaleur et ledit tube venturi (110) et ledit tube venturi supplémentaire (112) reçoivent tous deux ladite alimentation en gaz depuis ladite vanne de commande unique à double sortie dans une condition de débit plus élevé/chaleur plus élevée.
     
    2. Ensemble de brûleurs selon la revendication 1, dans lequel ledit tube venturi comprend une première pluralité d'orifices de réduction de débit (114) en tant que dit limiteur de débit au niveau de l'interface tube venturi/collecteur avant, pour empêcher au moins partiellement l'entrée du mélange gaz/air et ledit tube venturi supplémentaire comporte une pluralité d'orifices de réduction de débit en tant que dit limiteur de débit au niveau de l'interface tube venturi supplémentaire/collecteur avant pour empêcher au moins partiellement l'entrée du mélange gaz-air.
     
    3. Ensemble de brûleurs selon la revendication 2, dans lequel ledit tube venturi comporte une seconde pluralité d'orifices de réduction de débit (116) en tant que dit limiteur de débit au niveau de l'interface tube venturi/collecteur arrière, pour empêcher au moins partiellement l'entrée du mélange gaz/air.
     
    4. Ensemble de brûleurs selon la revendication 3, dans lequel la première pluralité d'orifices de réduction de débit sont relativement plus petits que la seconde pluralité d'orifices de réduction de débit.
     
    5. Ensemble de brûleurs selon la revendication 2, dans lequel ledit tube venturi supplémentaire comporte une quatrième pluralité d'orifices de réduction de débit (116) en tant que dit limiteur de débit au niveau de l'interface tube venturi supplémentaire/collecteur arrière pour empêcher au moins partiellement l'entrée du mélange gaz/air.
     
    6. Ensemble de brûleurs selon la revendication 1, dans lequel ledit collecteur avant comporte un premier déflecteur en tant que dit limiteur de débit pour empêcher au moins partiellement l'entrée du mélange gaz/air.
     
    7. Ensemble de brûleurs selon la revendication 6, dans lequel ledit collecteur arrière comporte un deuxième déflecteur en tant que dit limiteur de débit pour empêcher au moins partiellement l'entrée du mélange gaz/air.
     
    8. Ensemble de brûleurs selon la revendication 6, dans lequel le premier déflecteur comprend des ouvertures relativement plus petites et le deuxième déflecteur comprend des ouvertures relativement plus grandes.
     
    9. Ensemble de brûleurs selon la revendication 6, dans lequel ledit collecteur avant supplémentaire comporte un troisième déflecteur en tant que dit limiteur de débit pour empêcher au moins partiellement l'entrée du mélange gaz-air.
     
    10. Ensemble de brûleurs selon la revendication 9, dans lequel ledit collecteur arrière supplémentaire comporte un quatrième déflecteur en tant que dit limiteur de débit pour empêcher au moins partiellement l'entrée du mélange gaz/air.
     
    11. Ensemble de brûleurs selon la revendication 10, dans lequel le troisième déflecteur comprend des ouvertures relativement plus petites et le quatrième déflecteur comprend des ouvertures relativement plus grandes.
     




    Drawing






























    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description