(19)
(11)EP 2 964 899 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
05.12.2018 Bulletin 2018/49

(21)Application number: 13870391.3

(22)Date of filing:  26.12.2013
(51)Int. Cl.: 
F01D 11/00  (2006.01)
F01D 25/28  (2006.01)
F01D 25/24  (2006.01)
(86)International application number:
PCT/US2013/077892
(87)International publication number:
WO 2014/158276 (02.10.2014 Gazette  2014/40)

(54)

STRUCTURE AND METHOD FOR PROVIDING COMPLIANCE AND SEALING BETWEEN CERAMIC AND METALLIC STRUCTURES

STRUKTUR UND VERFAHREN ZUR SCHAFFUNG EINER FEDERUNG UND EINER DICHTUNG ZWISCHEN KERAMISCHEN UND METALLISCHEN STRUKTUREN

STRUCTURE ET PROCÉDÉ PERMETTANT DE FOURNIR SUSPENSION ET ÉTANCHÉITÉ ENTRE DES STRUCTURES EN CÉRAMIQUE ET DES STRUCTURES MÉTALLIQUES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 05.03.2013 US 201361773096 P

(43)Date of publication of application:
13.01.2016 Bulletin 2016/02

(73)Proprietor: Rolls-Royce Corporation
Indianapolis, Indiana 46225-1103 (US)

(72)Inventors:
  • WESTPHAL, William, I.
    Avon, IN 46123 (US)
  • SMITH, Clayton, C.
    New Braunfels, TX 78132 (US)

(74)Representative: Ström & Gulliksson AB 
P O Box 4188
203 13 Malmö
203 13 Malmö (SE)


(56)References cited: : 
EP-A2- 1 775 421
WO-A2-99/64726
GB-A- 836 030
US-A1- 2004 047 726
EP-A2- 2 514 925
FR-A1- 2 951 494
GB-A- 2 344 140
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    CROSS-REFERENCE TO RELATED APPLICATIONS



    [0001] This application claims priority to U.S. Provisional Patent Application No. 61/773,096 filed March 5, 2013

    GOVERNMENT RIGHTS



    [0002] This invention was made with government support under N00019-04-C-0093 awarded by the United States Navy. The government has certain rights in the invention.

    FIELD OF TECHNOLOGY



    [0003] The disclosure relates to gas turbine engines, specifically to the use of ceramic matrix composites (CMC) therein. as for example disclosed in FR 2 951 494 A1.

    BACKGROUND



    [0004] Improvements in manufacturing technology and materials are the keys to increased performance and reduced costs for many articles. As an example, continuing and often interrelated improvements in processes and materials have resulted in major increases in the performance of aircraft gas turbine engines. One of the most demanding applications for materials can be found in the components used in aircraft jet engines. By operating at higher temperatures, the engine can be made more efficient in terms of lower specific fuel consumption while emitting lower emissions. Thus, improvements in the high temperature capabilities of materials designed for use in aircraft engines can result in improvements in the operational capabilities of the engine.

    [0005] Non-traditional high temperature materials such as ceramic matrix composites as structural components have been employed in gas turbine engines. For several decades, composites, such as CMC, have been investigated for a wide range of applications. One aspect of the investigation has been the means by which those composite materials can be accommodated in a metallic structure, given the inherent limitations of the composite materials with regard to high local contact stresses, and the substantial difference between composite and metallic structure thermal expansion coefficients. Carried out were development, analysis, fabrication, and testing activities for a range of composite materials and applications of same, including carbon-carbon, CMC, and mixed composition ceramics and ceramic composite materials, and development and demonstration of multiple methodologies that provided compliance and sealing between the composite and metallic structures.

    [0006] Such means would be in demand for the location and retention of, and sealing, advanced high temperature composite structures such as CMC. With no limitation, those means are believed to be useful in turbine blade tracks, where they provide a compliant interface between the composite structure and the metallic supporting structure and also provide locating features to maintain the position of said structure and secure sealing cooling air leakage between those components. GB2344140 discloses a prior art compliant structure.

    [0007] Some existing systems have various shortcomings, drawbacks, and disadvantages relative to certain applications. Accordingly, there remains a need in industry for the means which would allow for mitigating the high local stresses that can arise from contact between composite and metal structures. In the present novel disclosure, it is achieved via a spring arrangement resulting in load redistribution that leads to reduced local contact stresses, and by which sealing around the CMC structure to control cooling air leakage is provided.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0008] While the claims are not limited to a specific illustration, an appreciation of the various aspects is best gained through a discussion of various examples thereof. Referring now to the drawings, exemplary illustrations are shown in detail. Although the drawings represent the illustrations, the drawings are not necessarily to scale and certain features may be exaggerated to better illustrate and explain an innovative aspect of an example. Further, the exemplary illustrations described herein are not intended to be exhaustive or otherwise limiting or restricted to the precise form and configuration shown in the drawings and disclosed in the following detailed description. Exemplary illustrations are described in detail by referring to the drawings as follows:

    FIG. 1 depicts a schematic view of a gas turbine engine for which the present technical solution is preferably, but not exclusively, intended;

    FIG. 2 shows one configuration of a blade track assembly;

    FIG. 3 shows, in circumferential view, an exemplary CMC blade track assembly to provide compliance and sealing between the CMC blade track and metallic structures; and

    FIG. 4 shows a radial view of the FIG 3 assembly, taken along line 4-4 in FIG. 3.


    DETAILED DESCRIPTION



    [0009] Ceramic matrix composites have an inherent advantage over metallic structures with respect to their ability to be operated at high temperatures, typically in excess of temperatures at which metallic structures can be operated, and to their significantly lower density when compared with high temperature metallic alloys. For that reason, replacing some metallic components in pure metallic structures with ceramic equivalents can be beneficial. On the other hand, a contact between a composite component and a metallic component of the structure can result in surface damage to both components, whether through high contact stresses and/or via wear or fretting at the interfaces between the two materials, caused by relative movement arising from large differences in thermal expansion coefficients between the two classes of materials. Presented below is the means through the use of which a compliant structure is installed to prevent or reduce local high contact stresses, provide a centering mechanism to maintain the desired position of the composite structure in the assembly, and provide for controlled leakage of cooling air around said structures.

    [0010] The compliant structure comprises an interface between a turbine blade track, which is to be produced of CMC, and the metallic supporting component, with an additional component, which provides for locating the blade track axially and which also accommodates differential thermal expansion between the composite and metallic components. The compliant component is to be fabricated of a high temperature metallic alloy and to be produced in a requisite configuration using standard metal forming processes with the use of any applicable joining processes required to produce the final component.

    [0011] Presented in FIG. 1 is a gas turbine engine 10, which the above-mentioned compliant structure is preferably intended to be used for. However, it will be appreciated that while the exemplary embodiments are shown in the context of a gas turbine engine 10, that the novel compliant structure and its associated methodologies have applicability in other industries. Accordingly, a gas turbine engine 10 is discussed as one example of how the novel disclosure and method may be applied in an industry.

    [0012] The engine 10 generally comprises a fan 12, an intermediate pressure compressor 14 and a high pressure compressor 16, a combustor 18, a high pressure turbine 20, an intermediate pressure turbine 22, and a low pressure turbine 24. The high pressure compressor 16 is connected to a first rotor shaft 26 while the intermediate pressure compressor 14 is connected to a second rotor shaft 28 and the fan 12 is connected to a third rotor shaft 30. The shafts extend axially and are parallel to a longitudinal center line axis 32. Ambient air 34 enters the fan 12 and is directed across a fan rotor 36 in an annular duct 38, which in part is circumscribed by fan case 40. The bypass airflow 42 provides engine thrust while the primary gas stream 43 is directed to the combustor 18 and the high pressure turbine 20. It is in the turbines 20, 22, and 24 of the engine 10 that the compliant component particularly comprising a novel blade track assembly 48 is located.

    [0013] Shown in FIG. 2 is an example of an enlarged sectional view of a configuration employing a metallic blade track assembly 44 over a blade 46. Positioned generally radially outward of the tips of a turbine blade 46, a blade track assembly 44 provides a sealing surface which, in conjunction with the tips of turbine blade 46 provides control (limitation) of combustion gas leakage between the blade track assembly 44 and the tips of the turbine blade 46 (where a reduction of the gap results in improved turbine performance). The replacement of the metallic blade track with the novel compliant blade track assembly 48 comprising a CMC blade track and its unique structure and method of assembly, will be further discussed in detail.

    [0014] With reference to FIG. 3, the novel blade track assembly 48 is depicted as a nonrotating structure, and it may be shaped into a configuration approximating that shown in FIG. 3, when viewed in the tangential direction, and in FIG. 4, when viewed from a radial perspective. FIG.4 is taken from the perspective of line 4-4 of FIG. 3.

    [0015] The compliant component blade track assembly 48 comprises a CMC component such as a blade track 50 that is fixed within a u-shaped pocket 52 of a metallic hanger 54 by means of a clip 56 and a wavy washer (such as a marcelled, serpentine-shaped spring) 58. Free ends 57, 59 of the clip 56 are preferably made curved to ease the installation of the CMC blade track 50 into the clip 56. The CMC blade track 50 is segmented circumferentially to accommodate the differential thermal expansion characteristics between CMCs and metallic component, such as the hanger 54 with the pocket 52. The wave washer 58 secures axial orientation of the track and is bonded to the clip 56 via brazing or other applicable joining method to produce an integral structure within the metallic hanger 54. The c-shaped spring clip 56 secures radial compliance of the blade track 50 within the metallic hanger 54. Providing sealing via contacts 60, 62 at both top and bottom surfaces as shown, the clip 56 will ensure controlled leakage of cooling air required to ensure that acceptable temperatures are maintained for the metallic structures. The angled surfaces of the clip 56 will provide a compliant structure between the composite blade track 50 and the pocket 52, into which the track-clip-washer assembly is installed. The compliance is realized by virtue of the angled surface 63 being in contact, at 60 and 62, with the inside walls 64 of the locating pocket 52, thereby preventing direct contact between the blade track structure 50 and the inner u-shaped geometry of the pocket 52 of the hanger 54.

    [0016] The metallic blade track assembly 44 in a gas turbine 10 can be replaced by the novel blade track assembly 48. The metallic hanger 54 is a part of the engine turbine section and expands or contracts radially and axially as a function of the metallic structure local temperatures. The novel blade track 50 has a forward end 51, a stepped portion 53, and a rearward end 55. The rearward end 55 is substantially parallel to a center line 66 and the forward end 51 is co-aligned with the centerline 66. The u-shaped pocket 52 has sufficient depth to accommodate a portion of the rearward end 55, the clip 56 and the washer 58. In positioning the ends 55-55' of the CMC component, the latter is forced into the clips 56-56' engaging the washers 58-58' sufficiently enough to cause the washers to impinge upon the pockets 52-52' of the hangers 54-54'.

    [0017] The CMC blade track 50 is carried radially by the metallic hanger 54 and is centered within the metallic hanger 54 via wave washers 58 that may be positioned on either end, forward or rearward, of the CMC blade track 50. Thus, the blade track 50 has a self-centering feature by virtue of the biasing forces that are generated by the wave washers 58 and the spring clip 56. The same configuration is applicable to the forward end 51 of the CMC blade track 50. The blade track 50 is therefore centered between the two locating pockets, i.e., the forward pocket 52' and a rearward pocket 52 by virtue of the spring clips 56-56' and wave washers 58-58' that are located in each pocket 52-52', respectively. Deflection of the wavy spring 58 will also accommodate the differential thermal expansion between the CMC blade track 50 and the metallic hanger 54. The clips 56-56' provide an air or fluid seal at the contacts 60-60' and 62-62' to minimize leakage of cooling air across the assembly 48. It will be appreciated that an exemplary blade 50 is shown in FIG. 3. Other blades having conical or cylindrical blade tips can alternatively be used with the CMC blade track assembly 48.

    [0018] The compliant structure 48 disclosed herein provides radial and axial location of the CMC blade track 50, both locating the track radially and axially by centering same between the internal walls of the metallic hanger 54. The local contact loads/stresses in the CMC structure are reduced to an acceptable level via the compliant nature of the clip in both the radial and axial directions. The clip structure extending circumferentially around the assembly also provides sealing of the blade track to the metallic support structure in both the outward and inward radial directions and in the axial direction to minimize leakage of cooling air and to thus provide improved efficiency of the turbine.

    [0019] Even though the present disclosure has been described in detail with reference to specific embodiments, it will be appreciated that the various modifications and changes can be made to these embodiments without departing from the scope of the present disclosure as set forth in the claims. The specification and the drawings are to be regarded as illustrative instead of merely restrictive.


    Claims

    1. A compliant structure (48) of a gas turbine engine (10) comprising:

    a ceramic matrix composite (CMC) component (50);

    a metallic supporting component (54, 54'); and

    an interface component (56, 56', 58, 58') provided between the CMC component (50) and the metallic supporting component (54, 54'), the interface component (56, 56', 58, 58') comprising a clip (56, 56'), the clip (56, 56') positioning the CMC component (50) relative to the metallic supporting component (54, 54'),

    characterized in that the CMC component (50) is a blade track that is segmented circumferentially to accommodate thermal expansion between the CMC component (50) and the metallic supporting component (54, 54').
     
    2. The structure (48) according to claim 1, wherein the clip (56, 56') extends circumferentially around the CMC component (50) and creates a seal via contacts (60, 60', 62, 62') between the CMC component (50) and the metallic supporting component (54, 54').
     
    3. The structure (48) according to any of claims 1 to 2, wherein the clip (56, 56') minimizes local contact stresses between the CMC component (50) and the metallic supporting component (54, 54').
     
    4. The structure (48) according to any of the preceding claims, wherein the metallic supporting component comprises a hanger (54, 54').
     
    5. The structure (48) according to any of the preceding claims, wherein the metallic supporting component (54, 54') further includes a pocket (52, 52'), the clip (56, 56') being positioned within the pocket (52, 52').
     
    6. The structure (48) according to any of the preceding claims, wherein the interface component (56, 56', 58, 58') further comprises a washer (58, 58') that is positioned adjacent the clip (56, 56'), the washer (58, 58') aiding in axially orientating the CMC component (50).
     
    7. The structure (48) according to any of the preceding claims, wherein the interface component (56, 56', 58, 58') further comprises a serpentine-shaped spring (58, 58').
     
    8. The structure (48) according to any of the preceding claims, wherein the CMC component (50) has a first end (51), a stepped portion (53), and a second end (55), at least one of said ends (51, 55) engaging the clip (56, 56').
     
    9. The structure (48) according to any of the preceding claims, wherein the clip (56, 56') comprises a c-shaped spring clip having angled surfaces (63) contacting an inside wall (64) of the metallic supporting component (54, 54') to facilitate compliance between the CMC component (50) and the metallic supporting component (54, 54').
     
    10. The structure (48) according to claim 1, further comprising:

    a second metallic supporting component (54'); and

    a second interface component (56', 58') provided between the CMC component (50) and the second metallic supporting component (54'),

    wherein the second interface component (56', 58') comprises a second clip (56') which allows for centering the CMC component (50) relative to the second metallic supporting component (54'), the second clip (56') being operable to reduce stress of the CMC component (50).


     
    11. A method of positioning a ceramic matrix composite (CMC) component (50) relative to a metallic component (54, 54') for use in a gas turbine engine (10), the method comprising the steps of:

    providing the CMC component (50);

    providing the metallic supporting component (54, 54');

    providing an interface component (56, 56', 58, 58') for a compliant accommodation of the CMC component (50) relative to the metallic support component (54, 54');

    attaching the interface component (56, 56', 58, 58') to the metallic supporting component (54, 54'); and

    inserting the CMC component (50) into the interface component (54, 54', 58, 58');

    characterized in that the CMC component (50) is a blade track that is segmented circumferentially to accommodate thermal expansion between the CMC component (50) and the metallic supporting component (54, 54').
     
    12. The method according to claim 11, wherein the step of attaching the interface component comprises inserting a clip (56, 56') into a pocket (52, 52') of the metallic supporting component (54, 54').
     
    13. The method according to claim 12, wherein the CMC component (50) is inserted into the clip (56, 56'), and further comprising creating a seal via contacts (60, 60', 62, 62') between the metallic supporting component (54, 54') component and the CMC component (50).
     
    14. The method according to claim 11, wherein the step of inserting the CMC component (50) into the interface component (56', 56', 58, 58') includes forcing the CMC component (50) into a clip (56, 56'), the clip (56, 56') engaging a washer (58, 58') sufficiently to cause the washer (58, 58') to impinge upon a pocket (52, 52') of the metallic supporting component (54, 54').
     


    Ansprüche

    1. Federnde Struktur (48) eines Gasturbinentriebwerks (10), umfassend:

    eine keramische Matrixverbundstoff(ceramic matrix composite, CMC)-Komponente (50);

    eine metallische Trägerkomponente (54, 54'); und

    eine Grenzflächenkomponente (56, 56', 58, 58'), die zwischen der CMC-Komponente (50) und der metallischen Trägerkomponente (54, 54') bereitgestellt ist, wobei die Grenzflächenkomponente (56, 56', 58, 58') eine Klemme (56, 56') umfasst, wobei die Klemme (56, 56') die CMC-Komponente (50) relativ zu der metallischen Trägerkomponente (54, 54') positioniert,

    dadurch gekennzeichnet, dass die CMC-Komponente (50) eine Blattspur ist, die umfänglich segmentiert ist, um Wärmeausdehnung zwischen der CMC-Komponente (50) und der metallischen Trägerkomponente (54, 54') auszugleichen.
     
    2. Struktur (48) nach Anspruch 1, wobei sich die Klemme (56, 56') umfänglich um die CMC-Komponente (50) erstreckt und eine Dichtung durch Kontakte (60, 60', 62, 62') zwischen der CMC-Komponente (50) und der metallischen Trägerkomponente (54, 54') herstellt.
     
    3. Struktur (48) nach einem der Ansprüche 1 bis 2, wobei die Klemme (56, 56') lokale Kontaktspannungen zwischen der CMC-Komponente (50) und der metallischen Trägerkomponente (54, 54') minimiert.
     
    4. Struktur (48) nach einem der vorhergehenden Ansprüche, wobei die metallische Trägerkomponente einen Aufhänger (54, 54') umfasst.
     
    5. Struktur (48) nach einem der vorhergehenden Ansprüche, wobei die metallische Trägerkomponente (54, 54') ferner eine Aufnahme (52, 52') beinhaltet, wobei die Klemme (56, 56') innerhalb der Aufnahme (52, 52') positioniert ist.
     
    6. Struktur (48) nach einem der vorhergehenden Ansprüche, wobei die Grenzflächenkomponente (56, 56', 58, 58') ferner eine Unterlegscheibe (58, 58') umfasst, die an die Klemme (56, 56') angrenzend positioniert ist, wobei die Unterlegscheibe (58, 58') die axiale Orientierung der CMC-Komponente (50) unterstützt.
     
    7. Struktur (48) nach einem der vorhergehenden Ansprüche, wobei die Grenzflächenkomponente (56, 56', 58, 58') ferner eine schlangenförmige Feder (58, 58') umfasst.
     
    8. Struktur (48) nach einem der vorhergehenden Ansprüche, wobei die CMC-Komponente (50) ein erstes Ende (51), eine Abstufung (53) und ein zweites Ende (55) aufweist, wobei mindestens eines der Enden (51, 55) in die Klemme (56, 56') eingreift.
     
    9. Struktur (48) nach einem der vorhergehenden Ansprüche, wobei die Klemme (56, 56') eine c-förmige Federklemme mit angewinkelten Oberflächen (63) umfasst, die eine Innenwand (64) der metallischen Trägerkomponente (54, 54') berühren, um Federung zwischen der CMC-Komponente (50) und der metallischen Trägerkomponente (54, 54') zu ermöglichen.
     
    10. Struktur (48) nach Anspruch 1, ferner umfassend:

    eine zweite metallische Trägerkomponente (54'); und

    eine zweite Grenzflächenkomponente (56', 58'), die zwischen der CMC-Komponente (50) und der zweiten metallischen Trägerkomponente (54') bereitgestellt ist,

    wobei die zweite Grenzflächenkomponente (56', 58') eine zweite Klemme (56') umfasst, die das Zentrieren der CMC-Komponente (50) relativ zu der zweiten metallischen Trägerkomponente (54') ermöglicht, wobei die zweite Klemme (56') dazu dient, Spannung der CMC-Komponente (50) zu reduzieren.


     
    11. Verfahren zum Positionieren einer keramischen Matrixverbundstoff(CMC)-Komponente (50) relativ zu einer metallischen Komponente (54, 54') zur Verwendung in einem Gasturbinentriebwerk (10), wobei das Verfahren die folgenden Schritte umfasst:

    Bereitstellen der CMC-Komponente (50);

    Bereitstellen der metallischen Trägerkomponente (54, 54');

    Bereitstellen einer Grenzflächenkomponente (56, 56', 58, 58') zum federnden Aufnehmen der CMC-Komponente (50) relativ zu der metallischen Trägerkomponente (54, 54');

    Befestigen der Grenzflächenkomponente (56, 56', 58, 58') an der metallischen Trägerkomponente (54, 54'); und

    Einführen der CMC-Komponente (50) in die Grenzflächenkomponente (54, 54', 58, 58');

    dadurch gekennzeichnet, dass die CMC-Komponente (50) eine Blattspur ist, die umfänglich segmentiert ist, um Wärmeausdehnung zwischen der CMC-Komponente (50) und der metallischen Trägerkomponente (54, 54') auszugleichen.


     
    12. Verfahren nach Anspruch 11, wobei der Schritt des Befestigens der Grenzflächenkomponente das Einführen einer Klemme (56, 56') in eine Aufnahme (52, 52') der metallischen Trägerkomponente (54, 54') umfasst.
     
    13. Verfahren nach Anspruch 12, wobei die CMC-Komponente (50) in die Klemme (56, 56') eingeführt wird, und ferner umfassend das Herstellen einer Dichtung durch Kontakte (60, 60', 62, 62') zwischen der metallischen Trägerkomponente (54, 54') und der CMC-Komponente (50).
     
    14. Verfahren nach Anspruch 11, wobei der Schritt des Einführens der CMC-Komponente (50) in die Grenzflächenkomponente (56', 56', 58, 58') das Zwingen der CMC-Komponente (50) in eine Klemme (56, 56') beinhaltet, wobei die Klemme (56, 56') ausreichend in eine Unterlegscheibe (58, 58') eingreift, um zu bewirken, dass die Unterlegscheibe (58, 58') auf eine Aufnahme (52, 52') der metallischen Trägerkomponente (54, 54') einwirkt.
     


    Revendications

    1. Structure élastique (48) d'un moteur à turbine à gaz (10) comprenant :

    un composant composite à matrice céramique (CMC) (50) ;

    un composant de support métallique (54, 54') ; et

    un composant d'interface (56, 56', 58, 58') prévu entre le composant CMC (50) et le composant de support métallique (54, 54'), le composant d'interface (56, 56', 58, 58') comprenant une fixation (56, 56'), la fixation (56, 56') positionnant le composant CMC (50) par rapport au composant de support métallique (54, 54'),

    caractérisé en ce que le composant CMC (50) est un chemin de pales qui est segmenté circonférentiellement pour permettre une dilatation thermique entre le composant CMC (50) et le composant de support métallique (54, 54').


     
    2. Structure (48) selon la revendication 1, dans laquelle la fixation (56, 56') s'étend circonférentiellement autour du composant CMC (50) et crée un joint via des contacts (60, 60', 62, 62') entre le composant CMC (50) et le composant de support métallique (54, 54').
     
    3. Structure (48) selon l'une quelconque des revendications 1 et 2, dans laquelle la fixation (56, 56') minimise les tensions de contact locales entre le composant CMC (50) et le composant de support métallique (54, 54').
     
    4. Structure (48) selon l'une quelconque des revendications précédentes, dans laquelle le composant de support métallique comprend un étrier (54, 54').
     
    5. Structure (48) selon l'une quelconque des revendications précédentes, dans laquelle le composant de support métallique (54, 54') comporte en outre une poche (52, 52'), la fixation (56, 56') étant positionnée à l'intérieur de la poche (52, 52').
     
    6. Structure (48) selon l'une quelconque des revendications précédentes, dans laquelle le composant d'interface (56, 56', 58, 58') comprend en outre une rondelle (58, 58') qui est positionnée de manière adjacente à la fixation (56, 56'), la rondelle (58, 58') aidant à orienter axialement le composant CMC (50).
     
    7. Structure (48) selon l'une quelconque des revendications précédentes, dans laquelle le composant d'interface (56, 56', 58, 58') comprend en outre un ressort en forme de serpentin (58, 58').
     
    8. Structure (48) selon l'une quelconque des revendications précédentes, dans laquelle le composant CMC (50) a une première extrémité (51), une partie étagée (53) et une seconde extrémité (55), au moins une desdites extrémités (51, 55) se mettant en prise avec la fixation (56, 56').
     
    9. Structure (48) selon l'une quelconque des revendications précédentes, dans laquelle la fixation (56, 56') comprend une fixation à ressort en c ayant des surfaces inclinées (63) en contact avec une paroi intérieure (64) du composant de support métallique (54, 54') pour assurer une élasticité entre le composant CMC (50) et le composant de support métallique (54, 54').
     
    10. Structure (48) selon la revendication 1, comprenant en outre :

    un second composant de support métallique (54') ; et

    un second composant d'interface (56', 58') prévu entre le composant CMC (50) et le second composant de support métallique (54'),

    dans lequel le second composant d'interface (56', 58') comprend une seconde fixation (56') qui permet de centrer le composant CMC (50) par rapport au second composant de support métallique (54'), la seconde fixation (56') étant utilisable pour réduire la tension du composant CMC (50).


     
    11. Procédé de positionnement d'un composant composite à matrice céramique (CMC) (50) par rapport à un composant métallique (54, 54') pour utilisation dans un moteur à turbine à gaz (10), le procédé comprenant les étapes suivantes :

    la fourniture du composant CMC (50) ;

    la fourniture du composant de support métallique (54, 54') ;

    la fourniture d'un composant d'interface (56, 56', 58, 58') pour une adaptation élastique du composant CMC (50) par rapport au composant de support métallique (54, 54'),

    la fixation du composant d'interface (56, 56', 58, 58') au composant de support métallique (54, 54') ; et

    l'insertion du composant CMC (50) dans le composant d'interface (54, 54', 58, 58') ;

    caractérisé en ce que le composant CMC (50) est un chemin de pales qui est segmenté circonférentiellement pour permettre une dilatation thermique entre le composant CMC (50) et le composant de support métallique (54, 54').


     
    12. Procédé selon la revendication 11, dans lequel l'étape de fixation du composant d'interface comprend l'insertion d'une fixation (56, 56') dans une poche (52, 52') du composant de support métallique (54, 54').
     
    13. Procédé selon la revendication 12, dans lequel le composant CMC (50) est inséré dans la fixation (56, 56') et comprenant en outre la création d'un joint via des contacts (60, 60', 62, 62') entre le composant de support métallique (54, 54') et le composant CMC (50).
     
    14. Procédé selon la revendication 11, dans lequel l'étape d'insertion du composant CMC (50) dans le composant d'interface (56, 56', 58, 58') comporte le fait d'introduire de force le composant CMC (50) dans une fixation (56, 56'), la fixation (56, 56') se mettant en prise avec une rondelle (58, 58') de manière suffisante pour amener la rondelle (58, 58') à venir en contact avec une poche (52, 52') du composant de support métallique (54, 54').
     




    Drawing









    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description