(19)
(11)EP 2 968 962 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.07.2020 Bulletin 2020/31

(21)Application number: 14713920.8

(22)Date of filing:  12.03.2014
(51)International Patent Classification (IPC): 
A61N 1/39(2006.01)
G06K 7/10(2006.01)
(86)International application number:
PCT/IB2014/059650
(87)International publication number:
WO 2014/141081 (18.09.2014 Gazette  2014/38)

(54)

DEFIBRILLATOR WITH A BARCODE READER AND A METHOD FOR RECORDING DATA

DEFIBRILLATOR MIT EINEM BARCODE-LESEGERÄT UND EIN VERFAHREN ZUR DATENERFASSUNG

DÉFIBRILLATEUR AVEC UN LECTEUR DE CODES À BARRES ET UN PROCÉDÉ POUR L'ACQUISITION DE DONNÉES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 15.03.2013 US 201361790658 P

(43)Date of publication of application:
20.01.2016 Bulletin 2016/03

(73)Proprietor: Koninklijke Philips N.V.
5656 AG Eindhoven (NL)

(72)Inventors:
  • GUINEY, Patrick
    NL-5656 AE Eindhoven (NL)
  • GRUBE, William, Douglas
    NL-5656 AE Eindhoven (NL)

(74)Representative: Cohen, Julius Simon 
Philips Intellectual Property & Standards High Tech Campus 5
5656 AE Eindhoven
5656 AE Eindhoven (NL)


(56)References cited: : 
EP-A2- 0 653 723
US-A1- 2012 197 324
US-A1- 2012 191 476
US-B1- 6 889 903
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The invention relates generally to an apparatus and method for capturing information related to a medical treatment event, and for reviewing the information after the event.

    [0002] Emergency medical procedures have been studied by the medical establishment for many years. It is commonly understood that patient outcomes can be improved by modifying procedures, by eliminating harmful or unnecessary steps, or by training personnel who are not performing the procedures correctly. A typical study involves the assignment of an observer who records the time and manner of the actions taken under the medical event. In some cases, equipment which is used in the event automatically generates time-ordered logs of data as well.

    [0003] In a sudden cardiac arrest medical emergency, for example, the patient is stricken with a life threatening interruption to the normal heart rhythm, typically in the form of VF or VT that is not accompanied by spontaneous circulation (i.e., shockable VT). If normal rhythm is not restored within a time frame commonly understood to be approximately 8 to 10 minutes, the patient will die. Conversely, the quicker that circulation can be restored (via CPR and defibrillation) after the onset of VF, the better the chances that the patient will survive the event. It is thus a matter of great interest to the administrators who oversee the medical response organization that the rescuers perform the resuscitation quickly and effectively.

    [0004] Most EMS or hospital organizations prepare incident reports of medical treatment events in order to conduct post-event reviews. Incident reports are typically constructed from manual reports filled out by on-scene observers. The reports are sometimes augmented by data automatically collected by medical devices used at the scene. The data automatically provided by a defibrillator, for example, typically includes an ECG strip, a sensed time of defibrillator activation, the initiation of CPR, delivery of defibrillation shocks, and so on. In addition, an audio record ("voice strip") that documents the verbal remarks of the first responders is often recorded by the defibrillator.

    [0005] Automatically generated data, however, cannot capture all of the important information about the progress and effectiveness of the rescue. Hence there is a need for the manual report that is generated by an on-scene observer. The manual report may document information such as the names of the rescue team, the equipment used, the observed quality of CPR compressions and ventilations, drugs administered, patient responsiveness to rescue efforts, and the times of each of these events. This data must be collected and manually merged with the automatically generated data in order to provide an accurate measure of the event. All of this event data which is generated by the various sources is ideally merged together to form the incident report at a centralized computer using software such as the Event Review software, as manufactured by Koninklijke Philips, N.V., in Andover Massachusetts.

    [0006] The collection of event data during cardiac emergencies comes with a cost, however. Monitor / Defibrillators do not currently come with barcode readers or optical character readers. The traditional practice for paramedics is to treat critically ill patients, transport them to a care facility and then afterwards take time to document the patient care record. During urgent care events, paramedics do not have time to manually enter or accurately record all the information mandated by government regulations, insurance carriers and agency policies. Paramedics may scribble notes on their latex gloves or scraps of paper as a memory aid for documenting the patient care record after transport. In many cases, paramedics must rely on their own memory of chaotic events for details such as identifying a drug administered to a patient at a specific time. In recent years, healthcare reform has prompted a greater need for fidelity of information. Accurate patient care records are a prerequisite for quality assurance / quality improvement efforts, billing and the litigation that results from some patient care events.

    [0007] Some solutions to the problem of accurately documenting a medical treatment have been offered. A back-of-the-ambulance data collection device is described in U.S. Patent Publication No. 2012/191476 entitled "Systems and Methods for Collection, Organization, and Display of EMS Information", in which a standard bar code reader may be used to obtain event data. Co-assigned U.S. Patent Application [Philips Docket Number 2012 PF00905] describes a software application for a hand-held computing device which may capture barcode information as well as video records of a rescue. Each of these inventions, however, requires the provider to carry equipment additional to the defibrillator monitor to the scene of the rescue. The attendant workings of the additional devices tend to distract from the rescue activities. On the other hand, U.S. Patent Publication No. 2012/197324 discloses a medical device for use with an accessory capable of collecting a parameter of a patient. The medical device comprises an optical reader to read data from the accessory and to determine whether the accessory is an authorized accessory.

    [0008] What is needed therefore to address each of these deficiencies in the prior art is a device and method which offers a simplified data entry interface for recording important information during a medical treatment event, especially a cardiac-related event which requires the use of a portable monitor defibrillator. The interface should be capable of quickly capturing important data related to the rescue, such as the administration of drugs, identification of equipment and expiration dates, and patient data. Such a device would be particularly useful in the documentation of cardiac-related treatments.

    [0009] This object is solved by the independent claims. Advantageous embodiments are defined by the dependent claims. A monitor defibrillator for recording parameters related to a medical treatment event in real time, in accordance with claim 1 overcomes the above-described problems. For example, the effort required to record identifying information into a patient record file on a prior art monitor defibrillator can require over 50 discrete actions in order to sequentially select the correct sequence of letters from a pull-down menus. In contrast, a barcode reader (BCR) or optical character reader (OCR) can acquire and decode identifying information in less than one second and in a single step. As a result, paramedics would require less time to document patient care records after transport, and utilize that time in other more efficient ways.

    [0010] Also, the inaccurate recording of time associated with marked events is avoided by use of the invention. The time recorded for important patient events (e.g. drugs administered) is often inaccurately reconstructed based on the paramedic's recall of the event or through a verbal miscommunication to a recording dispatcher via radio. A monitor defibrillator with a BCR or OCR to mark events (e.g. paramedic scans barcode of administered drug vial) can automatically save and associate a time stamp from the monitor defibrillator internal clock reference with each event in the patient record file.

    [0011] Also, many existing BCR formats include error correction that prevents common mistakes resulting from verbal miscommunication. For example, paramedics will have difficulty obtaining basic information (e.g. date of birth) from unresponsive patients or family members that speak a different language. A monitor / defibrillator with a BCR solves this problem by enabling the capture of basic information via a scan of a patient identification document, such as a driver's license, insurance card, etc. The device can also be enabled to immediately confirm accurate data entry.

    [0012] EMS personnel often must correctly deploy consumable materials when treating patients in critical care events. Potential problems include applying incorrect type defibrillating pads to patients (e.g. pediatric vs. adult), using pads that are beyond the expiration date, administering drugs that are beyond their expiration date or using incorrect drugs altogether. A monitor / defibrillator with a barcode or optical character reader would allow a paramedic quickly capture the identifying information, e.g. lot number, material type, expiration date, etc, on consumable materials to confirm their correct application.

    [0013] In accordance with the principles of the present invention, a monitor / defibrillator is described that includes a dedicated optical image sensor that is configured as a barcode reader (BCR) module or optical character reader (OCR) module. The monitor defibrillator optical image sensor may be a camera or an image sensor such as a digital camera integrated circuit to capture images of barcodes or printed characters on items at the rescue scene. The monitor defibrillator preferably includes application software which automatically decodes images of barcodes or printed characters, and alerts the user when those images have been decoded and/or identified. The BCR module, the OCR module or the image sensor may reside within the main monitor defibrillator housing. Preferably, the optical image sensor resides within a second housing that is communicatively linked to the main housing with a data link via cable or wireless radio.

    [0014] The object of the invention is also solved by a method for recording data related to a medical treatment event in real time, in accordance with claim 11.

    [0015] IN THE DRAWINGS:

    FIGURE 1 is an illustration of a defibrillator for use with a patient suffering from a cardiac condition.

    FIGURE 2 illustrates the employment of a defibrillator according to one embodiment of the present invention.

    FIGURE 3 illustrates one embodiment of a scan barcode screen.

    FIGURE 4 is a view of a functional block diagram of a defibrillator monitor including an integrated optical image sensor for recording data during a medical treatment event.

    FIGURE 5 is a view of a functional block diagram of a defibrillator monitor including a separable integrated optical image sensor for recording data during a medical treatment event.

    FIGURE 6 illustrates one embodiment of a method for recording data related to a medical treatment event in real time.

    FIGURE 7 illustrates another method for recording data related to a medical treatment event in real time.

    FIGURE 8 illustrates an embodiment of a medical event review software application display including both cardiac data captured from a defibrillator monitor patient monitoring circuit and data obtained from an associated optical image sensor.



    [0016] Now turning to the figures, FIGURE 1 illustrates a defibrillator monitor 100 which is intended for use with a patient suffering from a cardiac condition. This embodiment of defibrillator 100 includes two main parts. Components within a first housing 102 include a connector 104 for electrically connecting external patient electrodes to internal patient monitoring and therapy circuitry. First housing 102 may include a display and an audio output 106 that provides the user with guidance and event status.

    [0017] A second housing 112 on defibrillator monitor 100 is intended for use by the rescuer during the emergency and so is lightweight and portable. Second housing 112 is separately attached to first housing 102 in a stowage location on the back of housing 102. Second housing 112 includes an optical image sensor 114. An optional display 116 may be included on the housing to display the images and data captured by sensor 114. An optional light source 118 may be included and disposed adjacent to sensor 114 to provide illumination of target images in low light settings.

    [0018] As can be seen in FIGURE 1, the second housing 112 is arranged as a tablet-like device. The arrangement enables simple activation and use of the optical image sensor 114. As such, the second housing 112 can also contain other elements which can assist the user, such as video capture capability, a global positioning sensor (GPS), and/or wireless internet (Wi-Fi) connectivity.

    [0019] The barcode reader or image sensor contained within the monitor / defibrillator housing can be of a number of different configurations. Several companies, such as Welch Allyn, Motorola, and others, manufacture dedicated optical image scanner modules that image and decode barcodes or printed characters. Dedicated scanners are small, embedded subsystems including a camera, illumination, microcontroller and firmware to acquire and decode images from barcodes or printed characters. An alternative to a dedicated BCR or OCR scanner module is a camera or discrete image sensor, such as a CMOS integrated circuit (IC) with lens for imaging, a discrete LED for illumination and software running on the monitor defibrillator processor to acquire and decode images from the barcodes or printed characters.

    [0020] Now turning to FIGURE 2, shown is the employment of a defibrillator according to one embodiment of the present invention. A rescuer 12, here shown as a paramedic, deploys the monitor defibrillator 100 for use with a patient 14 in an out-of-hospital setting. The configuration of monitor defibrillator 100 shown here is similar to that described in FIGURE 1. The rescuer 12 has separated the second housing of defibrillator monitor 100 from the main housing, and is using the optical image sensor 114 to capture identifying data contained within an encoded barcode, here a two-dimensional barcode 122 which identifies a particular patient monitoring module. The inset of FIGURE 2 contains a clearer view of the display 116 that the rescuer is viewing on the second housing. The display 116 is currently displaying the barcode image 124 corresponding to barcode 122, so that the rescuer 12 has visual confirmation of the proper image capture and the proper decoding of the barcode.

    [0021] In similar fashion, the rescuer 12 may position the image sensor 114 to capture the barcode on a patient identification card, an insurance card, a drug vial, a consumable medical product such as patient electrodes, or any similar item having identifying information. If image sensor 114 resides on the main housing, the barcode should of course be positioned within the sensor 114 field of view instead of repositioning the sensor 114 itself.

    [0022] In operation, the rescuer 12 activates the reader module or image sensor via the user interface disposed on the second housing, such as via a touch screen on display 116. The scanner module or camera sensor in response images the item. A processor then decodes the barcode or printed character image into data. Then the monitor defibrillator 100 indicates the successful or unsuccessful data acquisition via an audio output or display 116 and optionally displays the result. The paramedic, after visually confirming the successful or unsuccessful data capture on the system display, can take further action. Once successful data capture is confirmed, the monitor defibrillator 100 appends the data into a medical event record that is held in system memory.

    [0023] Another embodiment of the invention includes a scanner module or camera subsystem that is external to the main housing, and which may be enabled to acquire still images or video of the patient and or the event. The images may also be retained in the medical event record, or could be immediately transmitted to a hospital.

    [0024] FIGURE 3 illustrates a more detailed view of a scan barcode screen 300 for assisting a user in obtaining information pertaining to equipment that is used in the medical treatment event. The optical image sensor and processor preferably is configured to capture and decode a one or two dimensional barcode-type identifier. These codes are intended to be applied to the exterior of the medical device in order to allow efficient tracking within the medical organization and for regulatory purposes. Barcode screen 300 exploits this situation by enabling the automatic detection and identification of such medical devices during the event. Once captured, the inventive system annotates the corresponding medical event log entry. The information provides follow-on opportunities to merge equipment-related event logs with the event logs generated by the defibrillator monitor 100. The equipment identifier is commonly the medical device serial number.

    [0025] FIGURE 3 shows a two-dimensional barcode disposed on the exterior of a wearable patient monitor that is in use at the medical treatment event shown in FIGURE 2. Identifying data other than barcode data also falls within the scope of the invention. Although not shown, written text could also be imaged by the sensor 114 for decoding within the defibrillator monitor 100.

    [0026] The user navigates to barcode screen 300 and activates sensor 114. A processor in defibrillator monitor 100 then automatically identifies the barcode image 124 in the target area 320. When the processor recognizes a readable barcode, it obtains the barcode via the sensor 114, decodes the barcode, and automatically records the device identifying information into the event record memory. The processor may simultaneously record the barcode read time into the event log.

    [0027] If the two-dimensional barcode image 124 is too unstable to be accurately read, monitor defibrillator 100 issues a hold still prompt 330 for the user to steady the camera. After the image is successfully recognized and decoded, the monitor defibrillator 100 issues a confirmation prompt via display 116 or at the audio output 106, and may also display a subset of the decoded information such that the user is assured that the acquisition and decoding were correct.

    [0028] FIGURE 4 illustrates a view of a functional block diagram of a defibrillator monitor 100 according to one embodiment of the invention, including an integrated optical image sensor 114 for recording data during a medical treatment event. The FIGURE 4 device is contained essentially in a single housing. Defibrillator monitor 100 includes a connector 104 which electrically connects a set of patient electrodes 402 to the device. Electrodes 402 may be monitoring electrodes, but are preferably multi-function electrodes that can monitor and provide electrotherapy to a patient. In the preferred electrode embodiment, a patient monitoring circuit 404 obtains an electrocardiographic (ECG) signal from the patient electrodes and provides a resulting ECG data record to a controller 406. Controller 406 in turn analyzes the ECG. If the ECG indicates that the cardiac rhythm is treatable by electrotherapy, controller 406 provides an audible and/or visual indication to the user, and prepares the device for delivering a shock via patient therapy circuit 408. Controller 406 also provides a record of the ECG, the shock decisions, and the subsequent treatment to a memory 420 for later analysis by administrators and follow-on treatment providers. In the FIGURE 4 embodiment, the record is transferred to memory 420 via processor 430.

    [0029] Processor 430 is operable to perform several functions. First, processor 430 decodes image data that is obtained by optical image sensor 114. Processor 430 also is the user interface control for a light source 118, which can be switched on by the user or automatically under low light conditions. Processor 430 may control display 116 and audio output 106 to provide guidance and status information relating to the encoded image data to the user, such as at the completion of decoding and display of the acquired data or subset of acquired data. Processor 430 also serves to integrate the ECG data received from controller 406 with data obtained from optical image sensor 114. For example, if the event data recorded in memory 420 is arranged chronologically, then processor 430 writes both of the ECG data and the image data into memory 420 based on the time that the data is obtained.

    [0030] FIGURE 5 illustrates another functional block diagram of a defibrillator monitor 200 according to another embodiment of the invention. The FIGURE 5 embodiment includes a separable integrated optical image sensor 114 for recording data during a medical treatment event. Each of the like-numbered components from FIGURE 4 functions similarly to those in FIGURE 5.

    [0031] Because the defibrillator monitor 200 is in two parts, the FIGURE 5 embodiment includes a communications means 120 between the patient monitoring circuitry of blocks 404, 406, 408 and the remaining components housed in a second housing 112. Communications means 120 is preferably a bidirectional wireless communications path, such as Wi-Fi, Bluetooth TM, or a b-field communications path. Less preferred is a communications means 120 which is a wired communications cable between the circuits in the first housing 102 and second housing 112.

    [0032] Also within the scope of the invention is the disposition of the processor 430, memory 420 and controller 406 relative to the housings and communications means 120. For example, memory 420 could be under control of controller 406 and residing in first housing 102.

    [0033] FIGURE 6 illustrates one embodiment of a method for recording data 600 related to a medical treatment event in real time. The method begins at step 602 wherein a defibrillator monitor is provided which includes a processor, a memory, an optical image sensor, a user interface, an audible output, and a display. A user positions an encoded graphic of interest within the optical image sensor field of view at step 604 and activates the optical image sensor at step 606 by means of the user interface. The activation step 604 could be accomplished by pressing a button or by touching an icon on a touch screen display. Activation step 604 could also be accomplished automatically under a software program control that recognizes barcode and optical character information as it enters the sensor field of view.

    [0034] When the encoded graphic is positioned within the image sensor field of view, the encoded graphic is imaged at step 609. The imaging step can be either automatic or by a manual control. If the barcode or optical characters reside in a low-light environment, a prior illuminating step 608 may be necessary, wherein a light source that is placed adjacent to the image sensor is activated, again either manually or automatically, to provide sufficient illumination of the graphic.

    [0035] After the barcode or optical character is imaged at step 609, it may be decoded at decoding step 610. Processor 430 or its equivalent automatically completes step 610. Preferably, feedback of the decoding step 610 completion is provided to the user via audible or visual indication. Of course, indication of a successful decoding may differ from an indication of a failed decoding step, which allows the user to proceed accordingly. The result of a successful decoding step 610 is a data record which identifies the imaged material.

    [0036] The identifying data record is recorded into memory at step 612, preferably along with a time stamp of the imaging event. The identifying data record may be any of a patient identification, treatment protocol step, re-usable equipment employed during the event, drugs administered to the patient, and the like. The identifying data record could also be an inventory record of material staged with the defibrillator monitor for later use.

    [0037] Issuing step 614 comprises issuing an audible indication at the defibrillator monitor that the decoding step has been completed. Issuing step 614 can also be enabled when the image is in view of the sensor, when imaging is complete, and when a record has been placed into memory. Step 614 may also be accompanied by an audible indication of the decoded identification itself.

    [0038] Similarly, displaying step 616 comprises displaying a visual indication at the defibrillator monitor that the decoding step has been completed. FIGURE 3 as previously described shows one embodiment of such a display. Displaying step 616 can also be enabled when the image is in view of the sensor, when imaging is complete, and when a record has been placed into memory. Step 616 may also be accompanied by the decoded identifier itself.

    [0039] It is understood that the scope of the invention includes providing the issuing step 614 or the displaying step 616 prior to the recording step 612. For example, an audible prompt may be provided to the user immediately after the decoding step 610, accompanied by a display of the decoded image. Then, after the user determines that the decoded image is correct, she directs the device to conduct the recording step 612 by means of the user interface controls.

    [0040] FIGURE 7 illustrates another method for recording data 700 related to a medical treatment event in real time. The method begins at step 702 wherein a defibrillator monitor is provided which includes a processor, a memory, an optical image sensor, a user interface, an audible output, and a display. Step 702 differs from the previous providing step 602 in that at least the optical image sensor is separate and separable from the defibrillator monitor. This physical configuration is previously described in relation to FIGURE 5. In a preferred embodiment, the providing step provides that the optical image sensor, user interface and display are disposed in a circuit within a unitary housing that is separable from the defibrillator monitor, and wherein the providing step further comprises providing a wireless communications path between the circuit and the defibrillator monitor. Optionally, the processor and memory are also disposed in the unitary housing.

    [0041] The image sensor being separate from the base unit defibrillator monitor, in the FIGURE 7 embodiment, the user positions the optical image sensor field of view to include the encoded graphic of interest at step 704 and activates the optical image sensor at step 706 by means of the user interface. The activation step 704 could be accomplished by pressing a button or by touching an icon on a touch screen display. Activation step 704 could also be accomplished automatically under a software program control that recognizes barcode and optical character information as it enters the sensor field of view.

    [0042] When the encoded graphic is properly positioned relative to the image sensor field of view, the encoded graphic is imaged at step 709. The imaging step can be either automatic or by a manual control. If the barcode or optical characters reside in a low-light environment, a prior illuminating step 708 may be necessary, wherein a light source that is placed adjacent to the image sensor is activated, again either manually or automatically, to provide sufficient illumination of the graphic.

    [0043] After the barcode or optical character is imaged at step 709, it may be decoded at decoding step 710. Processor 430 or its equivalent automatically completes step 710. Preferably, feedback of the decoding step 710 completion is provided to the user via audible or visual indication. Of course, indication of a successful decoding may differ from an indication of a failed decoding step, which allows the user to proceed accordingly. The result of a successful decoding step 710 is a data record which identifies the imaged material.

    [0044] The identifying data record is recorded into memory at step 712, preferably along with a time stamp of the imaging event. The identifying data record may be any of a patient identification, treatment protocol step, re-usable equipment employed during the event, drugs administered to the patient, and the like. The identifying data record could also be an inventory record of material staged with the defibrillator monitor for later use. Data received from the defibrillator monitor, such as ECG data, received via the wireless communications path may also be into the memory at step 712 along with the barcode data.

    [0045] Issuing step 714 comprises issuing an audible indication at the defibrillator monitor that the decoding step has been completed. Issuing step 714 can also be enabled when the image is in view of the sensor, when imaging is complete, and when a record has been placed into memory. Step 714 may also be accompanied by an audible indication of the decoded identification itself.

    [0046] Similarly, displaying step 716 comprises displaying a visual indication at the defibrillator monitor that the decoding step has been completed. FIGURE 3 as previously described shows one embodiment of such a display. Displaying step 716 can also be enabled when the image is in view of the sensor, when imaging is complete, and when a record has been placed into memory. Displaying step 716 may also be accompanied by the decoded identifier itself.

    [0047] It is understood that the scope of the invention includes providing the issuing step 714 or the displaying step 716 prior to the recording step 712. For example, an audible prompt may be provided to the user immediately after the decoding step 710, accompanied by a display of the decoded image. Then, after the user determines that the decoded image is correct, she directs the device to conduct the recording step 712 by means of the user interface controls.

    [0048] FIGURE 8 illustrates an embodiment of a medical event review software application display including both cardiac data captured from a defibrillator monitor patient monitoring circuit and data obtained from an associated optical image sensor. A review and analysis program residing on a central computer arranges the event log data for post-event review by an administrator or manager. One such program that provides this functionality is the aforementioned Event Review software. FIGURE 8 illustrates one embodiment of an annotation and video preview screen 800 that is a novel modification of an Event Review screen. In this embodiment, data and annotations from a defibrillator with its associated barcode and optical character data have been merged into an integrated event log for the medical treatment event prior to display. The merged annotations comprising decoded image data from the sensor and patient data from the patient monitor circuit are listed in chronological order in an event tree 810. The event tree may be scrolled, expanded to show more detailed information about the annotation, or collapsed as desired.

    [0049] Some or all of the annotations appearing in the event tree 810 may also be plotted on a merged annotation timeline 830. The timeline 830 is a more graphical-appearing event record generally having a sweep bar that marks the current time. In the FIGURE 8 embodiment, an ECG obtained from the defibrillator data and the barcode data may be superimposed on the timeline 830. Audio from the event may also be played as the time bar progresses.

    [0050] One additional feature of the annotation and video preview screen 800 is the simultaneous display of recorded medical event video 820 that is synchronized with the progress of the annotation timeline 830. An optional video record as obtained from the defibrillator monitor image sensor may be included in the medical event record. Standard video controls may be provided for the user to manipulate the playback.

    [0051] Modifications to the device, software, and displays as described above are encompassed within the scope of the invention which is defined by the appended claims. For example, the appearance and arrangement of displays and the particular location of each of the circuits may differ somewhat than shown in the particular embodiments. Different user controls which are incorporated into the second housing 112, but which perform essentially the same functions as described also fall within the scope of the invention as defined by the appended claims.
    Table of the Elements
    Element NumberElement Name
    12 rescuer
    14 patient
    402 electrodes
    100 defibrillator monitor
    116 display
    114 optical image sensor
    102 first housing
    104 connector
    106 audio output
    430 processor
    420 memory
    112 second housing
    114 optical image sensor
    116 display
    118 light source
    119 audio record
    120 communications means
    300 scan barcode screen
    122 barcode
    124 barcode image
    320 target area
    330 hold still prompt
    406 controller
    404 patient monitoring circuit
    408 patient therapy circuit
    600 method for recording data
    602 providing defibrillator monitor step
    604 positioning an encoded graphic step
    606 activating image sensor step
    609 imaging the encoded graphic step
    608 illuminating step
    610 decoding the graphic step
    612 recording data step
    614 issuing audible indication step
    616 displaying visual indication step
    700 method for recording data
    702 providing defibrillator monitor step
    704 positioning a field of view step
    706 activating image sensor step
    709 imaging the encoded graphic step
    708 illuminating step
    710 decoding the graphic step
    712 recording data step
    714 issuing audible indication step
    716 displaying visual indication step
    800 medical treatment event record
    810 event log listing
    820 optical imager record
    825 patient monitoring record



    Claims

    1. A monitor defibrillator (100) for recording parameters related to a medical treatment event in real time, comprising:

    a controller (406);

    a patient monitoring circuit (404) including a connector (104) for receiving a set of patient electrodes (402) in communication with the controller (406), the patient monitoring circuit being operable to produce a patient electrocardiogram, ECG, and to determine the need for a defibrillating shock;

    a patient therapy circuit (408) controlled by the controller and operable to deliver the defibrillating shock;

    an optical sensor (114) operable to obtain a barcode image (124);

    a memory (420); and

    a processor (430) operable to:

    - receive ECG data from the controller (406);

    - decode the barcode image into barcode data;

    - integrate the ECG data with the barcode data; and

    - generate a patient record file into the memory (420) comprising the ECG data and the barcode data arranged chronologically based on the time at which the data was obtained.


     
    2. The monitor defibrillator of Claim 1, wherein the patient record file further comprises a record of the defibrillating shock.
     
    3. The monitor defibrillator of Claim 1 or 2, wherein the patient monitoring circuit (404) and the patient therapy circuit (408) are contained within a first housing (102), and the optical sensor (114) is contained within a hand-portable second housing (112), and wherein the monitor defibrillator further comprises:

    - a display (116) disposed within the second housing; and

    - a communicating means (120) between the circuits in the first housing (102) and the optical sensor in the second housing (112).


     
    4. The monitor defibrillator of Claim 3, wherein the communicating means (120) is one of a bidirectional wireless Wi-Fi, wireless Bluetooth, wireless b-field communications path or a wired communications cable.
     
    5. The monitor defibrillator of Claim 3 or 4, wherein the second housing (112) is separately attachable to the first housing (102) in a stowage location on the back of the first housing (102).
     
    6. The monitor defibrillator of any of Claims 1-5, wherein the optical sensor is a barcode reader.
     
    7. The monitor defibrillator of any of Claims 1-5, wherein the optical sensor is a camera.
     
    8. The monitor defibrillator of any of Claims 1-7, further comprising a light source (118) disposed adjacent to the optical sensor (114) and operable to illuminate the barcode image (124).
     
    9. The monitor defibrillator of any of Claims 1-8, wherein the optical sensor (114) is further operable to obtain an image of a written character, and further wherein the processor (430) is operable to decode the image of the written character into identifying data and to record the identifying data into the patient record file into the memory (420).
     
    10. The monitor defibrillator of Claim 1, further comprising:

    a display (116); and

    an audio output (106),

    wherein the processor (430) is further operable to generate an audible indication at the audio output (106) and a visual indication at the display (116) at the completion of decoding.


     
    11. A method (600) for recording data related to a medical treatment event in real time, comprising the steps of:

    providing (602) a defibrillator monitor (100) of any of Claims 1-10;

    positioning (604) an encoded graphic within the field of view of the optical image sensor(114);

    activating (606) the optical image sensor (114) by means of a user interface comprised in the defibrillator monitor (100);

    imaging (609) the encoded graphic with the optical image sensor (114);

    decoding (610) the encoded graphic image into identifying data with the processor (430);

    receiving ECG data from the controller (406);

    integrating the ECG data with the identifying data; and

    recording (612) the ECG data and the identifying data into the memory (420) arranged chronologically based on the time at which the data was obtained.


     
    12. The method of Claim 11, further comprising the steps of:

    issuing (614) an audible indication at the audible output (106) responsive to the completion of the decoding (610) step; and

    displaying (616) a visual indication at the display (116) responsive to the completion of the imaging (609) step.


     
    13. The method of Claim 12, wherein the displaying (616) step further comprises displaying the identifying data.
     
    14. The method of any of Claims 11-13 when the defibrillator monitor (100) is according to Claim 7, the method further comprising the step of illuminating (608) the encoded graphic with the light source (118) prior to the imaging (609) step.
     
    15. The method of any of Claims 11-14, wherein the encoded graphic is a barcode or a printed character.
     


    Ansprüche

    1. Monitor-Defibrillator (100) zum Aufzeichnen von Parametern in Bezug auf ein medizinisches Behandlungsereignis in Echtzeit, umfassend:

    eine Steuerung (406);

    eine Patientenüberwachungsschaltung (404) mit einem Verbinder (104) zum Aufnehmen eines Satzes von Patientenelektroden (402) in Verbindung mit der Steuerung (406), wobei die Patientenüberwachungsschaltung betreibbar ist, um ein Patienten-Elektrokardiogramm, EKG, zu erstellen, und die Notwendigkeit eines defibrillierenden Schocks zu bestimmen;

    eine Patiententherapieschaltung (408), die von der Steuerung gesteuert wird und betreibbar ist, um den defibrillierenden Schock abzugeben;

    einen optischen Sensor (114), der betreibbar ist, um ein Barcodebild (124) zu erhalten;

    ein Speicher (420); und

    ein Prozessor (430), der betrieben werden kann zum:

    - Empfangen von EKG-Daten von der Steuerung (406);

    - Dekodieren des Barcodebild in Barcodedaten;

    - Integrieren von EKG-Daten mit den Barcodedaten; und

    - Generieren einer Patientenakte-Datei in den Speicher (420), die die EKG-Daten und die Barcodedaten enthält, die chronologisch auf der Grundlage des Zeitpunkts angeordnet sind, zu dem die Daten abgerufen wurden.


     
    2. Monitor-Defibrillator nach Anspruch 1, wobei die Patientenakte-Datei ferner eine Aufzeichnung des Defibrillationsschocks umfasst.
     
    3. Monitor-Defibrillator nach Anspruch 1 oder 2, wobei die Patientenüberwachungsschaltung (404) und die Patiententherapieschaltung (408) in einem ersten Gehäuse (102) enthalten sind, und der optische Sensor (114) in einem handtragbaren zweiten Gehäuse (112) enthalten ist, wobei der Monitor-Defibrillator ferner umfasst:

    - eine Anzeige (116), die in dem zweiten Gehäuse angeordnet ist; und

    - ein Kommunikationsmittel (120) zwischen den Schaltkreisen im ersten Gehäuse (102) und dem optischen Sensor im zweiten Gehäuse (112).


     
    4. Monitor-Defibrillator nach Anspruch 3, wobei das Kommunikationsmittel (120) eines von einem bidirektionalen drahtlosen Wi-Fi, einem drahtlosen Bluetooth, einem drahtlosen b-Feldkommunikationspfad oder einem drahtgebundenen Kommunikationskabel ist.
     
    5. Monitor-Defibrillator nach Anspruch 3 oder 4, wobei das zweite Gehäuse (112) separat an dem ersten Gehäuse (102) an einer Staustelle auf der Rückseite des ersten Gehäuses (102) angebracht werden kann.
     
    6. Monitor-Defibrillator nach einem der Ansprüche 1 bis 5, wobei der optische Sensor ein Barcodeleser ist.
     
    7. Monitor-Defibrillator nach einem der Ansprüche 1 bis 5, wobei der optische Sensor eine Kamera ist.
     
    8. Monitor-Defibrillator nach einem der Ansprüche 1 bis 7, ferner umfassend eine Lichtquelle (118), die neben dem optischen Sensor (114) angeordnet ist und zum Beleuchten des Barcodebildes (124) betreibbar ist.
     
    9. Monitor-Defibrillator nach einem der Ansprüche 1 bis 8, wobei der optische Sensor (114) weiter betreibbar ist, um ein Bild eines geschriebenen Zeichens zu erhalten, und ferner wobei der Prozessor (430) betreibbar ist, um das Bild des geschriebenen Zeichens in identifizierenden Daten zu decodieren, und zum Aufzeichnen der identifizierenden Daten in die Patientenakten-Datei in den Speicher (420).
     
    10. Monitor-Defibrillator nach Anspruch 1, ferner umfassend:

    eine Anzeige (116); und

    eine Audioausgabe (106),

    wobei der Prozessor (430) ferner betreibbar ist, um eine akustische Anzeige an dem Audioausgang (106) und eine visuelle Anzeige an der Anzeige (116) nach Beendigung der Decodierung zu erzeugen.


     
    11. Verfahren (600) zum Aufzeichnen von Daten in Bezug auf ein medizinisches Behandlungsereignis in Echtzeit, umfassend die Schritte von:

    Bereitstellen (602) eines Defibrillator-Monitors (100) eines der Ansprüche 1 bis 10;

    Positionieren (604) einer codierten Grafik innerhalb des Sichtfelds des optischen Bildsensors (114) ;

    Aktivieren (606) des optischen Bildsensors (114) mittels einer Benutzerschnittstelle, die in dem Defibrillator-Monitor (100) enthalten ist;

    Abbilden (609) der codierten Grafik mit dem optischen Bildsensor (114);

    Decodieren (610) des codierten Grafikbildes in identifizierende Daten mit dem Prozessor (430);

    Empfangen von EKG-Daten von der Steuerung (406);

    Integrieren der EKG-Daten mit den identifizierenden Daten; und

    Aufzeichnen (612) der EKG-Daten und der identifizierenden Daten in den Speicher (420), die chronologisch auf der Grundlage des Zeitpunkts angeordnet sind, zu dem die Daten abgerufen wurden.


     
    12. Verfahren nach Anspruch 11, ferner umfassend die Schritte von:

    Ausgeben (614) einer akustischen Anzeige an dem Audioausgang (106) als Reaktion auf den Abschluss des Decodierungsschritts (610); und

    Anzeigen (616) einer visuellen Anzeige an der Anzeige (116) als Reaktion auf den Abschluss des Bildgebungsschritts (609).


     
    13. Verfahren nach Anspruch 12, wobei der Anzeigeschritt (616) ferner das Anzeigen der Identifizierungsdaten umfasst.
     
    14. Verfahren nach einem der Ansprüche 11 bis 13, wenn der Defibrillator-Monitor (100) gemäß Anspruch 7 ist, wobei das Verfahren ferner den Schritt des Beleuchtens (608) der codierten Grafik mit der Lichtquelle (118) vor dem Bildgebungsschritt (609) umfasst.
     
    15. Verfahren nach einem der Ansprüche 11 bis 14, wobei die codierte Grafik ein Barcode oder ein gedrucktes Zeichen ist.
     


    Revendications

    1. Moniteur-défibrillateur (100) pour enregistrer des paramètres liés à un événement de traitement médical en temps réel, comprenant:

    une unité de commande (406) ;

    un circuit de surveillance d'un patient (404) comprenant un connecteur (104) pour recevoir un ensemble d'électrodes d'un patient (402) en communication avec l'unité de commande (406), le circuit de surveillance du patient étant opérable pour produire un électrocardiogramme du patient, ECG, et pour déterminer la nécessité d'un choc de défibrillation;

    un circuit de thérapie d'un patient (408) commandé par l'unité de commande et opérable pour délivrer le choc de défibrillation;

    un capteur optique (114) opérable pour obtenir une image de code à barres (124);

    une mémoire (420); et

    un processeur (430) opérable pour:

    - recevoir des données ECG de l'unité de commande (406) ;

    - décoder l'image du code à barres en données de code à barres;

    - intégrer les données ECG avec les données du code à barres; et

    - générer un fichier d'enregistrement d'un patient dans la mémoire (420) comprenant les données ECG et les données de code à barres agencées chronologiquement en fonction du moment auquel les données ont été obtenues.


     
    2. Moniteur-défibrillateur selon la revendication 1, dans lequel le fichier d'enregistrement du patient comprend en outre un enregistrement du choc de défibrillation.
     
    3. Moniteur-défibrillateur selon la revendication 1 ou 2, dans lequel le circuit de surveillance du patient (404) et le circuit de thérapie du patient (408) sont contenus dans un premier boîtier (102), et le capteur optique (114) est contenu dans un deuxième boîtier portable (112), et où le moniteur-défibrillateur comprend en outre:

    - un afficheur (116) disposé à l'intérieur du deuxième boîtier; et

    - un moyen de communication (120) entre les circuits dans le premier boîtier (102) et le capteur optique dans le deuxième boîtier (112).


     
    4. Moniteur-défibrillateur selon la revendication 3, dans lequel le moyen de communication (120) est l'un d'un Wi-Fi sans fil bidirectionnel, d'un Bluetooth sans fil, d'un chemin de communications d'un champ b sans fil ou d'un câble de communications filaires.
     
    5. Moniteur-défibrillateur selon la revendication 3 ou 4, dans lequel le deuxième boîtier (112) peut être fixé séparément au premier boîtier (102) dans un emplacement de rangement à l'arrière du premier boîtier (102) .
     
    6. Moniteur-défibrillateur selon l'une quelconque des revendications 1 à 5, dans lequel le capteur optique est un lecteur de codes à barres.
     
    7. Moniteur-défibrillateur selon l'une quelconque des revendications 1 à 5, dans lequel le capteur optique est une caméra.
     
    8. Moniteur-défibrillateur selon l'une quelconque des revendications 1 à 7, comprenant en outre une source de lumière (118) disposée à côté du capteur optique (114) et opérable pour éclairer l'image de code à barres (124).
     
    9. Moniteur-défibrillateur selon l'une quelconque des revendications 1 à 8, dans lequel le capteur optique (114) est en outre opérable pour obtenir une image d'un caractère écrit, et en outre dans lequel le processeur (430) est opérable pour décoder l'image du caractère écrit en données d'identification et pour enregistrer les données d'identification dans le fichier d'enregistrement du patient dans la mémoire (420) .
     
    10. Moniteur-défibrillateur selon la revendication 1, comprenant en outre:

    un afficheur (116); et

    une sortie audio (106),

    où le processeur (430) est en outre opérable pour générer une indication audible à la sortie audio (106) et une indication visuelle sur l'afficheur (116) à la fin du décodage.


     
    11. Procédé (600) pour enregistrer des données liées à un événement de traitement médical en temps réel, comprenant les étapes de:

    fournir (602) un défibrillateur-moniteur (100) selon l'une quelconque des revendications 1 à 10;

    positionner (604) un graphique codé dans le champ de vision du capteur d'image optique (114);

    activer (606) le capteur d'image optique (114) au moyen d'une interface utilisateur comprise dans le défibrillateur-moniteur (100);

    imager (609) le graphique codé avec le capteur d'image optique (114);

    décoder (610) l'image graphique codée en données d'identification avec le processeur (430);

    recevoir des données ECG de l'unité de commande (406) ;

    intégrer les données ECG avec les données d'identification; et

    enregistrer (612) les données ECG et les données d'identification dans la mémoire (420) agencées chronologiquement en fonction du moment auquel les données ont été obtenues.


     
    12. Procédé selon la revendication 11, comprenant en outre les étapes de:

    émettre (614) une indication audible à la sortie audio (106) en réponse à l'achèvement de l'étape de décodage (610); et

    afficher (616) une indication visuelle sur l'afficheur (116) en réponse à l'achèvement de l'étape d'imagerie (609).


     
    13. Procédé selon la revendication 12, dans lequel l'étape d'affichage (616) comprend en outre l'affichage des données d'identification.
     
    14. Procédé selon l'une quelconque des revendications 11 à 13, lorsque le défibrillateur-moniteur (100) est selon la revendication 7, le procédé comprenant en outre l'étape d'illumination (608) du graphique codé avec la source de lumière (118) avant l'étape d'imagerie (609).
     
    15. Procédé selon l'une quelconque des revendications 11 à 14, dans lequel le graphique codé est un code à barres ou un caractère imprimé.
     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description