(19)
(11)EP 2 971 579 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.04.2020 Bulletin 2020/18

(21)Application number: 14807208.5

(22)Date of filing:  11.03.2014
(51)International Patent Classification (IPC): 
F01D 9/04(2006.01)
F01D 25/30(2006.01)
F01D 25/28(2006.01)
F02C 7/20(2006.01)
(86)International application number:
PCT/US2014/023065
(87)International publication number:
WO 2014/197037 (11.12.2014 Gazette  2014/50)

(54)

AFT FAIRING SUB-ASSEMBLY FOR TURBINE EXHAUST CASE FAIRING

BAUGRUPPE FÜR EINE TURBINENABGASGEHÄUSEVERKLEIDUNG

SOUS-ENSEMBLE ARRIÈRE POUR UN CARÉNAGE DE CARTER D'ÉCHAPPEMENT DE TURBINE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 11.03.2013 US 201361776311 P

(43)Date of publication of application:
20.01.2016 Bulletin 2016/03

(73)Proprietor: United Technologies Corporation
Farmington, CT 06032 (US)

(72)Inventors:
  • CONWAY, Chuong
    Manchester, Connecticut 06040 (US)
  • LILES, Jason David
    Port Saint Lucie, Florida 34987 (US)
  • SCOTT, Jonathan Ariel
    Tolland, Connecticut 06084 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
WO-A1-2014/105530
US-A- 4 793 770
US-A1- 2003 161 716
US-A1- 2007 241 257
US-A1- 2010 132 374
US-A1- 2011 302 929
DE-A1- 19 852 603
US-A- 4 993 918
US-A1- 2005 132 715
US-A1- 2009 142 182
US-A1- 2011 081 237
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] The present disclosure relates generally to gas turbine engine exhaust cases. More particularly, the present disclosure relates to design and construction of fairings that fit around and protect ring-strut-ring structures.

    [0002] Turbine Exhaust Cases (TEC) typically comprise structural frames that support the very aft end of a gas turbine engine. In aircraft applications, the TEC can be utilized to mount the engine to the aircraft airframe. In industrial gas turbine applications, the TEC can be utilized to couple the gas turbine engine to an electrical generator. A typical TEC comprises an outer ring that couples to the outer diameter case of the low pressure turbine, an inner ring that surrounds the engine centerline so as to support shafting in the engine, and a plurality of struts connecting the inner and outer rings. As such, the TEC is typically subject to various types of loading, thereby requiring the TEC to be structurally strong and rigid. Due to the placement of the TEC within the hot gas stream exhausted from the turbines of the gas turbine engine, it is typically desirable to shield the TEC structural frame with a fairing that is able to withstand direct impingement of the hot gas stream. The fairing additionally takes on a ring-strut-ring configuration wherein the struts are hollow to surround the frame struts. The structural frame and the fairing can each be optimized for their respective functions, such as load bearing and temperature capabilities.

    [0003] Conventionally, manufacture of a TEC has involved casting the ring-strut-ring frame as a single piece and separately producing a ring-strut-ring fairing. Typically, the frame is separated into a plurality of pieces, reassembled in-place with the fairing, and welded or bolted back together. Historically, it has been simpler to reassemble the frame within the fairing in order to protect the structural and aerodynamic integrity of the fairing. However, separating the frame into pieces inherently produces structural weaknesses that may degrade performance. There is, therefore, a need for improved manufacturing and assembly processes for turbine exhaust cases.

    [0004] US 2011/0302929 relates to an exhaust gas housing for a gas turbine. US 4,993,918 relates to a free float fairing.

    SUMMARY



    [0005] The present disclosure is directed to a fairing sub-assembly for a turbine frame as defined in claim 1.

    [0006] A method of assembling a fairing sub-assembly for a turbine frame is defined by claim 10. The method may further comprise joining the plurality of inner shroud segments to an inner band, joining the plurality of outer shroud segments to an outer band, and joining the plurality of strut shells to the inner and outer bands.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0007] 

    FIG. 1 is a side sectional schematic view of an industrial gas turbine engine having a turbine exhaust case of the present invention.

    FIG. 2A is a perspective view of a turbine exhaust case in which a ring-strut-ring fairing is assembled within a ring-strut-ring frame.

    FIG. 2B is a cross-sectional view of the turbine exhaust case of FIG. 2A showing a strut of the frame extending through a strut of the fairing.

    FIG. 3 is a perspective view of the ring-strut-ring frame of FIG. 2A showing the monolithic construction of the frame.

    FIG. 4 is a partially exploded view of the ring-strut-ring fairing of FIG. 2A showing the multi-piece construction of the fairing.

    FIG. 5A is a perspective view of a fairing sub-assembly that can be inserted into the frame.

    FIG. 5B is a cross-sectional view of the fairing sub-assembly of FIG. 5A.

    FIG. 6 is a cross-sectional view of the fairing sub-assembly of FIG. 5B inserted into the frame.

    FIG. 7 is a front perspective view of the fairing sub-assembly inserted into the frame with unassembled fairing components exploded from the sub-assembly.

    FIG. 8 is a cross-sectional view of the complete fairing assembled onto the frame showing the location of stiffening rings and pads on the fairing.

    FIG. 9A is a perspective view of an outer end of a leading edge fairing strut shell showing a stiffening pad on a forward shroud half.

    FIG. 9B is a perspective view of an inner end of a leading edge fairing strut shell showing a stiffening pad on a forward shroud half.


    DETAILED DESCRIPTION



    [0008] FIG. 1 is a side partial sectional schematic view of gas turbine engine 10. In the illustrated embodiment, gas turbine engine 10 is an industrial gas turbine engine circumferentially disposed about a central, longitudinal axis or axial engine centerline axis 12 as illustrated in FIG. 1. Gas turbine engine 10 includes, in series order from front to rear, low pressure compressor section 16, high pressure compressor section 18, combustor section 20, high pressure turbine section 22, and low pressure turbine section 24. In some embodiments, power turbine section 26 is a free turbine section disposed aft of the low pressure turbine 24.

    [0009] As is well known in the art of gas turbines, incoming ambient air 30 becomes pressurized air 32 in the low and high pressure compressors 16 and 18. Fuel mixes with pressurized air 32 in combustor section 20, where it is burned. Once burned, combustion gases 34 expand through high and low pressure turbine sections 22, 24 and through power turbine section 26. High and low pressure turbine sections 22 and 24 drive high and low pressure rotor shafts 36 and 38 respectively, which rotate in response to the combustion products and thus rotate the attached high and low pressure compressor sections 18 and 16. Power turbine section 26 may, for example, drive an electrical generator, pump, or gearbox (not shown).

    [0010] Low Pressure Turbine Exhaust Case (LPTEC) 40 is positioned between low pressure turbine section 24 and power turbine section 26. LPTEC 40 defines a flow path for gas exhausted from low pressure turbine section 24 that is conveyed to power turbine 26. LPTEC 40 also provides structural support for gas turbine engine 10.

    [0011] It is understood that FIG. 1 provides a basic understanding and overview of the various sections and the basic operation of an industrial gas turbine engine. It will become apparent to those skilled in the art that the present application is applicable to all types of gas turbine engines, including those with aerospace applications. Similarly, although the present disclosure is described with reference to an LPTEC, the present invention is applicable to other components of gas turbine engines, such as intermediate cases, mid-turbine frames and the like.

    [0012] FIG. 2A shows an exploded view of Low Pressure Turbine Exhaust Case (LPTEC) 40. LPTEC 40 includes frame 42, outer load ring 44, inner load ring 45, and fairing 46. Frame 42 includes outer ring 48, inner ring 50, and struts 52. Fairing 46 includes outer ring 54, inner ring 56, and vanes 58. As will be discussed subsequently, fairing 46 is fabricated as a plurality of pieces or segments (see FIG. 4) that are assembled in-place with frame 42, which is fabricated as a single-piece component.

    [0013] Frame 42 comprises a stator component of gas turbine engine 10 (FIG. 1) that is typically mounted between low pressure turbine section 24 and power turbine section 26. In the described embodiment, outer ring 48 of frame 42 is conically shaped, while inner ring 50 is cylindrically shaped. In other embodiments, outer ring 48 and inner ring 50 may have other shapes. Inner ring 50 is disposed generally radially inward of outer ring 48 and is connected thereto by struts 52. Outer ring 48, inner ring 50 and struts 52 form a portion of a load path through engine 10 (FIG. 1). Frame 42 is sometimes referred to as a "cold frame" because fairing 46 shields frame 42 from heat of combustion gases 34.

    [0014] Fairing 46 is adapted to be disposed within frame 42 between outer ring 48 and inner ring 50. Specifically, vanes 58 encase struts 52, while outer ring 54 and inner ring 56 line outer ring 48 and inner ring 50, respectively. In the described embodiment, outer ring 54 and inner ring 56 of fairing 46 have generally conical shapes, and are connected to each other by vanes 58. In other embodiments, outer ring 54 and inner ring 56 may have other shapes. Outer ring 54, inner ring 56, and vanes 58, define a portion of a gas flow path that passes through frame 42.

    [0015] Load rings 44 and 45 comprise full-hoop bands that are used to strengthen and assemble the individual components of fairing 46. Fairing 46 is connected to load rings 44 and 45 when assembled, and load ring 44 can be used to facilitate assembly with frame 42. Load ring 44 is attached to an axial aft end of outer ring 54. Likewise, load ring 45 is attached to an axial aft end of inner ring 56. Load rings 44 and 45 are used to, among other things, hold individual pieces comprising fairing 46 together as a sub-assembly to facilitate assembly of fairing 46 onto frame 42. Fairing 46 additionally includes leading edge load rings, as shown in FIG. 2B.

    [0016] FIG. 2B shows a cross-section of LPTEC 40 having fairing 46 installed within frame 42. Frame 42 includes outer ring 48, inner ring 50 and strut 52. Fairing 46 includes outer ring 54, inner ring 56 and vanes 58. In addition to aft outer load ring 44 and aft inner load ring 45, LPTEC 40 also includes forward outer and inner load rings 64 and 66, annular mount 68, fasteners 70 and fasteners 72.

    [0017] Frame 42 comprises a single piece, ring-strut-ring body wherein strut 52 is integrally connected to outer ring 48 and inner ring 50. As mentioned, a flow path for gas exiting gas turbine engine 10 (FIG. 1) passes between outer ring 48 and inner ring 50 within fairing 46. Frame 42 also includes other features, such as flange 74, flange 76 and bolt holes (not shown), to permit frame 42 to be mounted to components of gas turbine engine 10 (FIG. 1), such as low pressure turbine section 24, power turbine section 26 or an exhaust nozzle.

    [0018] Fairing 46 comprises a thin-walled structure that lines the flow path through frame 42. Specifically, outer ring 54 and inner ring 56 define the boundaries of an annular flow path. Vanes 58 intermittently interrupt the annular flow path to protect struts 52 of frame 42. As such, vanes 58 can be aerodynamically shaped to minimize drag generated by vanes 58 or to turn flow of combustion gases 34 (FIG. 1) flowing through LPTEC 40. Fairing 46 is comprised of a plurality of components that, in the view of FIG. 2B, are joined at split line 78 to form a ring-strut-ring body that fits within the ring-strut-ring body of frame 42.

    [0019] FIG. 3 is a perspective view of frame 42 of FIG. 2A. Frame 42 comprises a monolithic structure that joins outer ring 48, inner ring 50 and struts 52. In other words, frame 42 is of a single piece, unitary construction. In one embodiment, frame 42 is cast out of a high strength metal, such as nickel, titanium or steel. Frame 42 may, however, be machined from a unitary block. Struts 52 of frame 42 can be hollow and includes passages to permit components of gas turbine engine 10 to communicate with the interior of gas turbine engine 10 near shafts 36 and 38 (FIG. 1). For example, cooling air lines and lubricating oil lines can be passed through LPTEC 40 so as to cool bearings or other components of the engine. Outer ring 48 and inner ring 50 define annular load paths connected by struts 52. Fairing 46 is fitted into the flow path to protect frame 42 from the extreme temperatures of the hot gas flowing through LPTEC 40.

    [0020] FIG. 4 is a partially exploded view of fairing 46 of FIG. 2A. Fairing 46 includes outer ring 54, inner ring 56 and vanes 58 when assembled. Fairing 46 is comprised of thin-walled segments that can be manufactured using a variety of processes. For example, the segments of fairing 46 can be cast in their final shape or can be made as flat pieces that are bent or wrought into their final shape. When unassembled, fairing 46 is formed of outer segments 80, inner segments 82, forward strut segments 84 and aft strut segments 86. Outer segments 80 and inner segments 82 comprise rectilinear segments that are arcuate in the circumferential direction with respect to axis 12 of gas turbine engine 10 (FIG. 1). In other words, outer segments 80 and inner segments 82 comprise circumferential and axial segments of a cone. Specifically, each outer segment 80 comprises leading edge 80A, trailing edge 80B, first side 80C and second side 80D. Each inner segment 82 comprises leading edge 82A, trailing edge 82B, first side 82C and second side 82D. Similarly, forward strut segments 84 and aft strut segments 86 comprise strut halves that join adjacent pairs of shroud halves. Specifically, forward strut segment 84 comprises strut shell 84A, outer shroud half 84B and inner shroud half 84C. Similarly, aft strut segment 86 comprises strut shell 86A, outer shroud half 86B and inner shroud half 86C.

    [0021] As will be discussed in greater detail later, aft load rings 44 and 45 connect outer segments 80, inner segments 82 and aft strut segments 86 to facilitate assembly of and to strengthen fairing 46 when fully assembled. Specifically, aft load rings 44 and 45, outer segments 80, inner segments 82 and aft strut segments 86 are joined together as a bench-made sub-assembly outside of frame 42 in order to facilitate accurate, efficient welding. Forward load rings 64 and 66 connect outer segments 80, inner segments 82 and forward strut segments 84 to facilitate assembly of and to strengthen fairing 46 when fully assembled. Specifically, forward load rings 64 and 66, outer segments 80, inner segments 82 and forward strut segments 84 are joined to the bench-made sub-assembly within frame 42 to complete the installation within LPTEC 40. Assembly of fairing 46 is described with reference to FIGS. 5A - 8.

    [0022] FIG. 5A is a perspective view of fairing 46 partially assembled into aft sub-assembly 88. FIG. 5B, which is discussed concurrently with FIG. 5A, is a cross-sectional view of aft sub-assembly 88 of FIG. 5A. Aft sub-assembly 88 is built outside of frame 42 in a structured environment such that a high degree of control over the process used to join the individual components can be exerted. Specifically, aft sub-assembly 88 is put together in a fixture or on a bench to ensure precise alignment of the individual components, e.g. aft load rings 44 and 45, outer segments 80, inner segments 82 and aft strut segments 86. For example, the individual components can be clamped into place for welding, without having to work around the constraints of frame 42. Subsequently, precisely controlled welding processes can be used to join the individual components. In one embodiment, robotic welding arms can be used to join the individual components.

    [0023] To assemble fairing 46, trailing edges 80B of outer segments 80 are joined to load ring 44 such that outer segments 80 are evenly spaced around the circumference of load ring 44. The space between neighboring outer segments 80 is approximately equal to the arc length of outer shroud half 86B of aft strut segments 86. Similarly, trailing edges 82B of inner segments 82 are joined to load ring 45. The space between neighboring inner segments 82 is approximately equal to the arc length of inner shroud half 86C. Aft strut segments 86 are positioned between neighboring outer segments 80 so that outer shroud half 86B can be joined to load ring 44. Likewise, aft strut segments 86 are positioned between neighboring inner segments 82 so that inner shroud half 86C can be joined to load ring 45. As will be discussed later, load rings 44 and 45 provide stiffening to fairing 46 when fully assembled, in addition to facilitating assembly as described here.

    [0024] Load rings 44 and 45, outer segments 80, inner segments 82 and aft strut segments 86 can be assembled in any order. In one embodiment, outer segments 80 and outer shroud halves 86B are first joined to load ring 44. Outer shroud halves 86B and outer segments 80 are also joined to each other. Next, load ring 45 is joined to inner shroud halves 86C. Finally, inner segments 82 are joined to load ring 45 and inner shroud halves 86C. To provide the strongest structure, all mating faces are joined together using any suitable method. In one embodiment, the segments are welded together along the entire length of each mating face. In other embodiments, intermittent spot welds can be used. Assembled as such, outer segments 80, and aft strut segments 86 form slots 90A, and inner segments 82 and aft strut segments 86 form slots 90B. Slots 90A and 90B are configured to receive forward strut segments 84 (FIG. 4) after aft sub-assembly 88 is positioned within frame 42. The forward edges of aft strut segments 86 define split line 78, which mates with aft edges of forward strut segments 84.

    [0025] Joining of the individual components, e.g. aft load rings 44 and 45, outer segments 80, inner segments 82 and aft strut segments 86, in a fixture or bench eliminates the need for aligning components by hand, which allows for increased control over tolerances and reduces misalignment in fairing 46 when fully assembled. Furthermore, automating the welding process reduces over-welding, which produces waste and can generate distortion. Additionally, aft sub-assembly 88 may be further processed, such as with heat treating, machining or bending, before being built around frame 42.

    [0026] FIG. 6 is a cross-sectional view of aft sub-assembly 88 of FIG. 5B inserted into frame 42. Aft sub-assembly 88 is inserted into frame 42 from the trailing edge, or aft, end so that outer segment 80 is radially inward of outer ring 48 and inner segment 82 is radially outward of inner ring 50. Aft strut segment 86 partially surrounds strut 52. Specifically, aft strut shell 86A forms a U-shaped or V-shaped pocket that covers approximately the aft half of strut 52 in the embodiment disclosed. Strut-shells (84, 86) comprise an outer diameter shroud segment and an inner diameter shroud segment. Aft sub-assembly 88 can be supported within frame 42 by any suitable means. In one embodiment, load ring 44 can be supported within outer ring 48 using annular mount 68 (FIG. 2B). However, it is desirable to not have aft sub-assembly 88 restricted to permit the segments of fairing 46 to be assembled without inducing any residual strain, such as strain that might arise during a welding process. With aft sub-assembly 88 inserted into frame 42, forward strut segments 84 (FIG. 4) can be brought into engagement with aft strut segments 86 to encapsulate portions of the lengths of struts 52.

    [0027] FIG. 7 is a front perspective view of aft sub-assembly 88 of fairing 46 inserted into frame 42 with forward strut segments 84 exploded from aft sub-assembly 88. Outer segments 80 and aft strut segments 86 form three-sided slots 90A (FIG. 5A) between edges 80C and 80D into which shroud half 84B of forward strut segments 84 can be inserted. Likewise, inner segments 82 and aft strut segments 86 form three-sided slots 90B (FIG. 5A) between edges 82C and 82D into which shroud half 84C of forward strut segments 84 can be inserted. Outer shroud halves 84B of forward strut segment 84 are inserted into slots 90A, and inner shroud halves 84C are inserted into slot 90B. Forward strut shell 84A is brought into engagement with aft strut shell 86A so that a shroud is formed around struts 52. Strut segments 84 are thereafter joined to aft sub-assembly 88.

    [0028] As discussed above, strut segments 84 can be welded into place such that all mating faces are joined along their entire lengths. Forward strut segments 84 are hand assembled with and joined to aft sub-assembly 88. Slots 90A and 90B (FIG. 5A), however, are precisely produced with automated welding processes while aft sub-assembly 88 is held in place by a fixture. Slots 90A and 90B form a skeleton in which to easily align forward strut segments 84, thereby improving the quality of welds used for forward strut segments 84. Specifically, in one embodiment, forward strut segments 84 can be manually positioned within frame 42 to align with aft strut segments 86 and thereafter manually welded together due to the confined space limitations. For example, struts 52 of frame 42 may prevent complete freedom of the welding process, thereby making it difficult or impossible to position robotic welding arms. However, to the extent allowed by frame 42, automated welding processes may be used. In other embodiments, forward strut segments 84 may be fully welded by an automated process.

    [0029] Load rings 64 and 66 are subsequently joined to aft sub-assembly 88 and forward strut segments 84. Specifically, outer load ring 64 is joined to outer segments 80 and outer shroud halves 84B of forward strut segments 84. Inner load ring 66 is joined to inner segments 82 and inner shroud halves 84C. Load rings 64 and 66 complete the assembly of fairing 46. Load rings 64 and 66 provide stiffening to fairing 46 similarly to that of load rings 44 and 45. Load rings 44, 45, 64 and 66 also provide structural points at which fairing 46 can be joined to frame 42. Load rings 64 and 66 are positioned and aligned with forward strut segments 84, outer segments 80 and inner segments 82 and thereafter welded together. In one embodiment, load rings 64 and 66 are manually positioned and welded. In another embodiment, load rings 64 and 66 are positioned in place with fixtures and welded with an automated process. Additionally, combinations of manual and automated processes may be used.

    [0030] In one embodiment, the individual components of fairing 46 are fabricated from an alloy having a high temperature resistance, such as Inconel® 625 alloy, using a plasma welding process, and frame 42 is fabricated from CA6NM alloy, which has a relatively low temperature resistance. Fabrication of aft sub-assembly 88 (FIG. 5B) outside of frame 42 allows for better manufacturing of fairing 46, which provides better protection for frame 42 because the welds will be fully and properly formed. Further, aft sub-assembly 88 can be heat treated, if desired, outside of frame 42, which cannot be subjected to the temperatures needed to heat treat fairing 46.

    [0031] FIG. 8 is a cross-sectional view of completely assembled fairing 46 fitted into frame 42. FIG. 8 is the same view as FIG. 2A, with additional elements numbered. Fairing 46 includes load rings 44, 45, 64 and 66. Load ring 44 includes flange 92. Load ring 45 includes flange 94 and rim 95. Load ring 64 includes rim 96 and land 97. Load ring 65 includes rim 98. Forward strut segment 84 includes pads 100A and 100B. Aft strut segment 86 includes pads 102A and 102B.

    [0032] Fairing 46 is joined to frame 42 at the interface of annular mount 68 and flange 92. For example, annular mount 68 can be bolted to outer ring 48, and flange 92 can be inserted into an opening in annular mount 68, thereby providing a free-floating connection or radial spline. Additionally, fairing 46 can be rigidly attached to frame 42 by fastening flange 93 of load ring 66 to inner ring 50 of frame 42 with fastener 72.

    [0033] When completely assembled onto frame 42, fairing 46 is trapped in position such that fairing 46 cannot be non-destructively removed. That is, fairing 46 must be cut-away from frame 42 in order to separate the two components. Alternatively, frame 42 can be cut apart from fairing 46. Fairing 46 is thin-walled and can therefore be easily repaired by selectively removing portions of fairing 46 and replacing the portions with new material that can be joined to the existing structure. Fairing 46 is not subject to excessive loads within gas turbine engine 10 (FIG. 1) and can therefore withstand structural interruptions formed by assembly of the segments (80, 82, 84, 86) and subsequent repair procedures. Frame 42, however, remains as a single-piece or monolithic structure without inherent structural interruptions (e.g. joints or welds) in order to provide strength and stability to gas turbine engine 10 (FIG. 1).

    [0034] Load rings 44, 45, 64 and 66 provide stiffening to the annuluses formed by the connection of aft sub-assembly 88 with forward strut segments 84. Outer segments 80, inner segments 82, outer shroud halves 86B, outer shroud halves 84B, inner shroud halves 86C and inner shroud halves 84C are generally formed of thin metal materials and, as such, have a tendency to deform when subjected to loading within gas turbine engine 10 (FIG. 1). Load rings 44, 45, 64 and 66 are joined to fairing 46 to strengthen outer ring 54 and inner ring 56 when fully assembled. Load rings 44, 45, 64 and 66 can be of any suitable cross-section, but are generally thicker than outer segments 80 and inner segments 82. More particularly, load rings 44, 45, 64 and 66 include features that are radially taller than outer segments 80 and inner segments 82 such that they provide more resistance to bending or loading in the circumferential and axial directions. Furthermore, load rings 44, 45, 64 and 66 comprise full-hoop bodies so that they do not include any structural interruptions, thereby providing stiffening to the annular shape formed by outer segments 80, inner segments 82, forward strut segments 84 and aft strut segments 86.

    [0035] Load rings 44, 45, 64 and 66 include circumferential features for strengthening and stiffening the entirety of fairing 46. In particular, load ring 44 includes flange 92 which is thicker than outer shroud half 86B. Flange 92 may also be fashioned for assembling fairing 46 to frame 42 using annular mount 68. Load ring 45 includes flange 94, which increases the height of load ring 45 to provide additional resistance to deformation. Similarly, rim 95 comprises a thickening of load ring 45 that provides strength. Load ring 64 includes rim 96 and land 97, which both strengthen and stiffen load ring 64. Land 97 may also be used as a mating surface for seals used to seal between fairing 46 and frame 42. For example, land 97 may provide a flat planar, or cylindrical surface having an orientation that permits flush engagement with a seal. Load ring 64 includes rim 98, which strengthens and stiffens load ring 66. Flange 92, flange 94, rim 95, rim 96, land 97 and rim 98 comprise only a narrow portion of the axial length of their respective load ring. In other words, the entire axial length of rings 44, 45, 64 and 66 need not be radially thickened to provide stiffening. Flange 92, flange 94, rim 95, rim 96, land 97 and rim 98 comprise full three-hundred-sixty-degree features in the disclosed embodiment. However, in other embodiments, these stiffening features can be intermittent or interrupted around the circumferences of load rings 44, 45, 64 and 66.

    [0036] Fairing 46 also includes pads 100A, 100B, 102A and 102B, which provide localized stiffening to fairing 46 in between load rings 44, 45, 64 and 66. Specifically, pads 100A - 102B provide stiffening of forward and aft strut segments 84 and 86 near strut shells 84A and 86A. The intersection of strut shells 84A and 86A with inner and outer shroud halves 84B, 84C, 86B and 86C generate localized stress concentrations. Pads 100A - 102B provide strengthening to shroud halves 84B, 84C, 86B and 86C to guard against creep, fatigue, and potential failure from the stress concentrations.

    [0037] FIG. 9A is a perspective view of forward strut segment 84 showing outer shroud half 84A and pad 100A. FIG. 9B is a perspective view of forward strut segment 84 showing inner shroud half 84B and pad 100B. Pad 100A comprises a rectilinear outline having U-shaped cut-out 104A to accommodate strut shell 84A. Likewise, pad 100B comprises a rectilinear outline having U-shaped cut-out 104B to accommodate the forward vane shape of strut shell 84A. U-shaped cut-outs 104A and 104B trace a portion of the outline of strut shell 84A to provide reinforcement along areas where stress concentrations occur. Although pads 100A and 100B are shown having a particular rectilinear configuration, pads 100A and 100B may have other geometries and shapes. For example, pads 100A and 100B may be circular or oval, may have rounded edges or may have curved surfaces. Aft strut segments 86 are similar in construction to forward strut segments described in FIGS. 9A and 98B, with the main difference being that they include V-shaped cut-out more closely approximating the aft end of a vane shape.

    [0038] Top surfaces 106A and 106B are generally concentric with outer shroud half 84B and inner shroud half 84C, respectively, so as to avoid producing stress concentrations. Specifically, top surfaces 106A and 106B are uniformly spaced from shroud halves 84A and 84B to provide hoop segments that strengthen strut segments 84 in the circumferential direction. Side surfaces of pads 100A and 100B, such as surfaces 108A and 108B, are obliquely angled with respect to surfaces 106A and 106B, and shroud halves 84B and 84C to avoid sharp angles that may produce stress concentrations.

    [0039] In the embodiment shown, pads 100A and 100B do not encompass the entirety of shroud halves 84B and 84C so as to not add unnecessary weight to fairing 46. Pads 100A and 100B can, however, be extended to the edges of shroud halves 84A and 84B in other embodiments to provide additional stiffening and strengthening. Likewise, pads 100A and 100B may extend further around the outline of strut shell 84A to further strengthen the joint between strut shell 84A and shroud halves 84B and 84C in other embodiments. Pads 102A and 102B of aft strut segment 86 (FIG. 8) are constructed similarly to pads 100A and 100B.


    Claims

    1. A fairing sub-assembly (88) for a turbine frame, the fairing sub-assembly comprising:

    an inner ring (50) comprised of a plurality of separately formed circumferential inner arcuate segments (82) distributed along the inner ring (50), each inner arcuate segment (82) comprising a discrete piece circumferentially separated from adjacent inner arcuate segments (82);

    an outer ring (48) comprised of a plurality of separately formed outer circumferential arcuate segments (80) distributed along the outer ring (48), each outer arcuate segment (80) comprising a discrete piece circumferentially separated from adjacent outer arcuate segments (80); and

    a plurality of strut-shells (84, 86) connecting and completing the inner ring (50) and the outer ring (48), each strut-shell (84, 86) comprising:

    a sheet metal body forming a U-shaped or V-shaped pocket;

    an outer diameter strut shroud segment connected to the sheet metal body, and extending circumferentially in an arcuate section; and

    an inner diameter strut shroud segment connected to the metal body opposite the outer diameter strut shroud segment, and extending circumferentially in an arcuate section;

    wherein each of the plurality of strut-shells (84, 86) has a circumferential extent not overlapping with the inner and outer arcuate segments (82, 80), and is joined to adjacent inner and outer arcuate segments (82, 80) by axially-extending welds.


     
    2. The fairing sub-assembly (88) of claim 1 and further comprising:

    an inner band (45) joining the plurality of inner segments (82) and the plurality of strut-shells (84, 86); and

    an outer band (44) joining the plurality of outer segments (80) and the plurality of strut-shells (84, 86);

    wherein the plurality of inner segments (82), the plurality of outer segments (80), the plurality of strut-shells (84, 86), the inner band (45) and the outer band (44) are fully welded along all mating interfaces.


     
    3. The fairing sub-assembly (88) of claims 1 or 2 wherein:

    each strut-shell is joined to adjacent outer segments to form an outer slot in the outer ring (48); and

    each strut-shell is joined to adjacent inner segments to form an inner slot in the inner ring (50).


     
    4. The fairing sub-assembly (88) of any preceding claim wherein:

    each of the plurality of inner segments (82) comprises an arcuate rectilinear panel; and

    each of the plurality of outer segments (80) comprises an arcuate rectilinear panel.


     
    5. The fairing sub-assembly (88) of any preceding claim wherein:

    each of the plurality of outer segments (80) comprises a circumferential and axial segment of a cone; and

    each of the plurality of inner segments (82) comprises a circumferential and axial segment of a cone.


     
    6. The fairing sub-assembly (88) of any preceding claim wherein each of the plurality of strut-shells (84, 86) comprises an aft portion of an aerodynamic vane.
     
    7. The fairing sub-assembly (88) of claim 6 wherein each outer diameter shroud segment and each inner diameter shroud segment has an axial length that is shorter than those of the plurality of inner segments and the plurality of outer segments.
     
    8. The fairing sub-assembly (88) of claim 6 wherein:

    each outer diameter shroud segment is joined to adjacent outer segments to form an outer slot; and

    each inner diameter shroud segment is joined to adjacent inner segments to form an inner slot.


     
    9. The fairing sub-assembly (88) of claim 6 and further comprising:

    an inner band joining the inner diameter shroud segments and the plurality of inner segments (82); and

    an outer band joining the outer diameter shroud segments and the plurality of outer segments (80).


     
    10. A method of assembling a fairing sub-assembly (88) for a turbine frame, the method comprising:

    casting a plurality of strut-shells (84, 86), each strut-shell (84, 86) comprising a U-shaped or V-shaped pocket extending radially inward between outer and inner diameter strut shroud segments, wherein the outer and inner diameter strut shroud segments are arcuate, circumferentially extending elements;

    welding a plurality of circumferentially separated inner arcuate sheet metal segments between circumferentially neighboring inner diameter strut shroud segments; welding a plurality of circumferentially separated outer arcuate sheet metal segments between circumferentially neighboring outer diameter strut shroud segments;

    wherein each of the plurality of strut-shells (84, 86) has a circumferential extent not overlapping with the inner and outer arcuate sheet metal segments, such that the inner and outer arcuate sheet metal segments bridge circumferential gaps between each of the plurality of strut-shells (84, 86).


     
    11. The method of claim 10 and further comprising:

    joining the plurality of inner arcuate sheet metal segments to an inner band (45);

    joining the plurality of outer arcuate sheet metal segments to an outer band (44); and

    joining the plurality of strut-shells (84, 86) to the inner and outer bands (44, 45).


     
    12. The method of claim 11 and further comprising:
    welding the inner arcuate sheet metal segments, the outer arcuate sheet metal segments, the strut-shells (84, 86), the inner band (45) and the outer band (44) along all mating edges.
     
    13. The method of claim 11 and further comprising:
    joining the plurality of strut shells to the inner and outer bands between adjacent inner arcuate sheet metal segments and adjacent outer arcuate sheet metal segments.
     
    14. The method of claim 13 and further comprising:

    positioning the plurality of strut-shells (84, 86) between adjacent outer arcuate sheet metal segments to form outer slots; and

    positioning the plurality of strut shells (84, 86) between adjacent inner arcuate sheet metal segments to form inner slots; and

    positioning the fairing sub-assembly (88) within a turbine frame such that the strut-shells (84, 86) partially enshroud a frame strut.


     
    15. The method of claim 14 wherein:

    the plurality of strut-shells (84, 86) comprise aft strut-shells; and

    the fairing sub-assembly (88) is inserted into an aft end of the turbine frame, the method further comprising:

    positioning a plurality of forward strut-shells within outer and inner slots such that the forward strut-shells and the aft strut-shells encircle the frame struts; and

    joining the plurality of forward strut-shells to the fairing sub assembly (88).


     


    Ansprüche

    1. Verkleidungsteilbaugruppe (88) für einen Turbinenrahmen, wobei die Verkleidungsteilbaugruppe Folgendes umfasst:

    einen inneren Ring (50), der aus einer Vielzahl von separat gebildeten umlaufenden inneren bogenförmigen Segmenten (82) besteht, die entlang des inneren Rings (50) verteilt ist, wobei jedes innere bogenförmige Segment (82) ein einzelnes Stück umfasst, das umlaufend von benachbarten inneren bogenförmigen Segmenten (82) getrennt ist;

    einen äußeren Ring (48), der aus einer Vielzahl von separat gebildeten äußeren umlaufenden bogenförmigen Segmenten (80) besteht, die entlang des äußeren Rings (48) verteilt ist, wobei jedes äußere bogenförmige Segment (80) ein einzelnes Stück umfasst, das umlaufend von benachbarten äußeren bogenförmigen Segmenten (80) getrennt ist; und

    eine Vielzahl von Strebenschalen (84, 86), die den inneren Ring (50) und den äußeren Ring (48) verbindet und vervollständigt, wobei jede Strebenschale (84, 86) Folgendes umfasst:

    einen Metallblechkörper, der eine U-förmige oder V-förmige Tasche bildet;

    ein Außendurchmesserstrebenmantelsegment, das mit dem Metallblechkörper verbunden ist und sich in einem bogenförmigen Abschnitt umlaufend erstreckt; und

    ein Innendurchmesserstrebenmantelsegment, das mit dem Metallkörper gegenüber dem Außendurchmesserstrebenmantelsegment verbunden ist und sich in einem bogenförmigen Abschnitt umlaufend erstreckt;
    wobei jede aus der Vielzahl von Strebenschalen (84, 86) ein umlaufendes Ausmaß aufweist, das das innere und äußere bogenförmige Segment (82, 80) nicht überlappt, und durch sich axial erstreckende Schweißungen mit benachbarten inneren und äußeren bogenförmigen Segmenten (82, 80) verbunden ist.


     
    2. Verkleidungsteilbaugruppe (88) nach Anspruch 1 und ferner umfassend:

    ein inneres Band (45), das die Vielzahl von inneren Segmenten (82) und die Vielzahl von Strebenschalen (84, 86) verbindet; und

    ein äußeres Band (44), das die Vielzahl von äußeren Segmenten (80) und die Vielzahl von Strebenschalen (84, 86) verbindet;

    wobei die Vielzahl von inneren Segmenten (82), die Vielzahl von äußeren Segmenten (80), die Vielzahl von Strebenschalen (84, 86), das innere Band (45) und das äußere Band (44) vollständig entlang aller Passschnittstellen geschweißt sind.


     
    3. Verkleidungsteilbaugruppe (88) nach Anspruch 1 oder 2, wobei:

    jede Strebenschale mit benachbarten äußeren Segmenten verbunden ist, um einen äußeren Schlitz in dem äußeren Ring (48) zu bilden; und

    jede Strebenschale mit benachbarten inneren Segmenten verbunden ist, um einen inneren Schlitz in dem inneren Ring (50) zu bilden.


     
    4. Verkleidungsteilbaugruppe (88) nach einem vorhergehenden Anspruch, wobei:

    jedes aus der Vielzahl von inneren Segmenten (82) eine bogenförmige geradlinige Platte umfasst; und

    jedes aus der Vielzahl von äußeren Segmenten (80) eine bogenförmige geradlinige Platte umfasst.


     
    5. Verkleidungsteilbaugruppe (88) nach einem vorhergehenden Anspruch, wobei:

    jedes aus der Vielzahl von äußeren Segmenten (80) ein umlaufendes und axiales Segment eines Kegels umfasst; und

    jedes aus der Vielzahl von inneren Segmenten (82) ein umlaufendes und axiales Segment eines Kegels umfasst.


     
    6. Verkleidungsteilbaugruppe (88) nach einem vorhergehenden Anspruch, wobei jede aus der Vielzahl von Strebenschalen (84, 86) einen hinteren Abschnitt einer aerodynamischen Leitschaufel umfasst.
     
    7. Verkleidungsteilbaugruppe (88) nach Anspruch 6, wobei jedes Außendurchmessermantelsegment und jedes Innendurchmessermantelsegment eine axiale Länge aufweist, die kürzer als diejenigen aus der Vielzahl von inneren Segmenten und der Vielzahl von äußeren Segmenten ist.
     
    8. Verkleidungsteilbaugruppe (88) nach Anspruch 6, wobei:

    jedes Außendurchmessermantelsegment mit benachbarten äußeren Segmenten verbunden ist, um einen äußeren Schlitz zu bilden; und

    jedes Innendurchmessermantelsegment mit benachbarten inneren Segmenten verbunden ist, um einen inneren Schlitz zu bilden.


     
    9. Verkleidungsteilbaugruppe (88) nach Anspruch 6 und ferner umfassend:

    ein inneres Band, das die Innendurchmessermantelsegmente und die Vielzahl von inneren Segmenten (82) verbindet; und

    ein äußeres Band, das die Außendurchmessermantelsegmente und die Vielzahl von äußeren Segmenten (80) verbindet.


     
    10. Verfahren zum Zusammenbauen einer Verkleidungsteilbaugruppe (88) für einen Turbinenrahmen, wobei das Verfahren Folgendes umfasst:

    Gießen einer Vielzahl von Strebenschalen (84, 86), wobei jede Strebenschale (84, 86) eine U-förmige oder V-förmige Tasche umfasst, die sich zwischen Außen- und Innendurchmesserstrebenmantelsegmenten radial einwärts erstreckt, wobei die Außen- und Innendurchmesserstrebenmantelsegmente bogenförmige, sich umlaufend erstreckende Elemente sind;

    Schweißen einer Vielzahl von umlaufend getrennten inneren bogenförmigen Metallblechsegmenten zwischen umlaufend benachbarte Innendurchmesserstrebenmantelsegmente;

    Schweißen einer Vielzahl von umlaufend getrennten äußeren bogenförmigen Metallblechsegmenten zwischen umlaufend benachbarte Außendurchmesserstrebenmantelsegmente;

    wobei jede aus der Vielzahl von Strebenschalen (84, 86) ein umlaufendes Ausmaß aufweist, das die inneren und äußeren bogenförmigen Metallblechsegmente nicht überlappt, sodass die inneren und äußeren bogenförmigen Metallblechsegmente umlaufende Spalten zwischen jeder aus der Vielzahl von Strebenschalen (84, 86) überbrücken.


     
    11. Verfahren nach Anspruch 10 und ferner umfassend:

    Verbinden der Vielzahl von inneren bogenförmigen Metallblechsegmenten mit einem inneren Band (45);

    Verbinden der Vielzahl von äußeren bogenförmigen Metallblechsegmenten mit einem äußeren Band (44); und

    Verbinden der Vielzahl von Strebenschalen (84, 86) mit dem inneren und äußeren Band (44, 45).


     
    12. Verfahren nach Anspruch 11 und ferner umfassend:
    Schweißen der inneren bogenförmigen Metallblechsegmente, der äußeren bogenförmigen Metallblechsegmente, der Strebenschalen (84, 86), des inneren Bandes (45) und des äußeren Bandes (44) entlang aller Passkanten.
     
    13. Verfahren nach Anspruch 11 und ferner umfassend:
    Verbinden der Vielzahl von Strebenschalen mit dem inneren und äußeren Band zwischen benachbarten inneren bogenförmigen Metallblechsegmenten und benachbarten äußeren bogenförmigen Metallblechsegmenten.
     
    14. Verfahren nach Anspruch 13 und ferner umfassend:

    Positionieren der Vielzahl von Strebenschalen (84, 86) zwischen benachbarten äußeren bogenförmigen Metallblechsegmenten, um äußere Schlitze zu bilden; und

    Positionieren der Vielzahl von Strebenschalen (84, 86) zwischen benachbarten inneren bogenförmigen Metallblechsegmenten, um innere Schlitze zu bilden; und

    Positionieren der Verkleidungsteilbaugruppe (88) innerhalb eines Turbinenrahmens, sodass die Strebenschalen (84, 86) eine Rahmenstrebe teilweise einhüllen.


     
    15. Verfahren nach Anspruch 14, wobei:

    die Vielzahl von Strebenschalen (84, 86) hintere Strebenschalen umfasst; und

    die Verkleidungsteilbaugruppe (88) in ein hinteres Ende des Turbinenrahmens eingefügt wird, wobei das Verfahren ferner Folgendes umfasst:

    Positionieren einer Vielzahl von vorderen Strebenschalen innerhalb äußerer und innerer Schlitze, sodass die vorderen Strebenschalen und die hinteren Strebenschalen die Rahmenstreben umschließen; und

    Verbinden der Vielzahl von vorderen Strebenschalen mit der Verkleidungsteilbaugruppe (88).


     


    Revendications

    1. Sous-ensemble de carénage (88) pour un cadre de turbine, le sous-ensemble de carénage comprenant :

    une bague intérieure (50) composée d'une pluralité de segments arqués intérieurs (82) circonférentiels formés séparément répartis le long de la bague intérieure (50), chaque segment arqué intérieur (82) comprenant un élément distinct circonférentiellement séparé de segments arqués intérieurs (82) adjacents ;

    une bague extérieure (48) composée d'une pluralité de segments arqués extérieurs (80) circonférentiels formés séparément répartis le long de la bague extérieure (48), chaque segment arqué extérieur (80) comprenant un élément distinct circonférentiellement séparé de segments arqués extérieurs (80) adjacents ; et

    une pluralité de coques-entretoises (84, 86) reliant et achevant la bague intérieure (50) et la bague extérieure (48), chaque coque-entretoise (84, 86) comprenant :

    un corps en tôle formant une poche en forme de U ou en forme de V ;

    un segment d'enveloppe d'entretoise de diamètre extérieur relié au corps en tôle, et s'étendant circonférentiellement dans une section arquée ; et

    un segment d'enveloppe d'entretoise de diamètre intérieur relié au corps en tôle opposé au segment d'enveloppe d'entretoise de diamètre extérieur, et s'étendant circonférentiellement dans une section arquée ;

    dans lequel chacune de la pluralité de coques-entretoises (84, 86) présente une extension circonférentielle ne chevauchant pas les segments arqués intérieurs et extérieurs (82, 80), et est jointe à des segments arqués intérieurs et extérieurs (82, 80) adjacents par des soudures s'étendant axialement.


     
    2. Sous-ensemble de carénage (88) selon la revendication 1 et comprenant en outre :

    une bande intérieure (45) joignant la pluralité de segments intérieurs (82) et la pluralité de coques-entretoises (84, 86) ; et

    une bande extérieure (44) joignant la pluralité de segments extérieurs (80) et la pluralité de coques-entretoises (84, 86) ;

    dans lequel la pluralité de segments intérieurs (82), la pluralité de segments extérieurs (80), la pluralité de coques-entretoises (84, 86), la bande intérieure (45) et la bande extérieure (44) sont totalement soudés le long de toutes les interfaces de contact.


     
    3. Sous-ensemble de carénage (88) selon les revendications 1 ou 2 dans lequel :

    chaque coque-entretoise est jointe à des segments extérieurs adjacents pour former une fente extérieure dans la bague extérieure (48) ; et

    chaque coque-entretoise est jointe à des segments intérieurs adjacents pour former une fente intérieure dans la bague intérieure (50).


     
    4. Sous-ensemble de carénage (88) selon une quelconque revendication précédente dans lequel :

    chacun de la pluralité de segments intérieurs (82) comprend un panneau rectiligne arqué ; et

    chacun de la pluralité de segments extérieurs (80) comprend un panneau rectiligne arqué.


     
    5. Sous-ensemble de carénage (88) selon une quelconque revendication précédente dans lequel :

    chacun de la pluralité de segments extérieurs (80) comprend un segment circonférentiel et axial d'un cône ; et

    chacun de la pluralité de segments intérieurs (82) comprend un segment circonférentiel et axial d'un cône.


     
    6. Sous-ensemble de carénage (88) selon une quelconque revendication précédente dans lequel chacune de la pluralité de coques-entretoises (84, 86) comprend une partie arrière d'une aube aérodynamique.
     
    7. Sous-ensemble de carénage (88) selon la revendication 6 dans lequel chaque segment d'enveloppe de diamètre extérieur et chaque segment d'enveloppe de diamètre intérieur a une longueur axiale qui est plus courte que celle de la pluralité de segments intérieurs et de la pluralité de segments extérieurs.
     
    8. Sous-ensemble de carénage (88) selon la revendication 6 dans lequel :

    chaque segment d'enveloppe de diamètre extérieur est joint à des segments extérieurs adjacents pour former une fente extérieure ; et

    chaque segment d'enveloppe de diamètre intérieur est joint à des segments intérieurs adjacents pour former une fente intérieure.


     
    9. Sous-ensemble de carénage (88) selon la revendication 6 et comprenant en outre :

    une bande intérieure joignant les segments d'enveloppe de diamètre intérieur et la pluralité de segments intérieurs (82) ; et

    une bande extérieure joignant les segments d'enveloppe de diamètre extérieur et la pluralité de segments extérieurs (80).


     
    10. Procédé d'assemblage d'un sous-ensemble de carénage (88) pour un cadre de turbine, le procédé comprenant :

    le coulage d'une pluralité de coques-entretoises (84, 86), chaque coque-entretoise (84, 86) comprenant une poche en forme de U ou en forme de V s'étendant radialement vers l'intérieur entre des segments d'enveloppe d'entretoise de diamètre extérieur et intérieur, dans lequel les segments d'enveloppe d'entretoise de diamètre extérieur et intérieur sont des éléments arqués s'étendant circonférentiellement ;

    le soudage d'une pluralité de segments en tôle arqués intérieurs circonférentiellement séparés entre des segments d'enveloppe d'entretoise de diamètre intérieur circonférentiellement voisins ;

    le soudage d'une pluralité de segments en tôle arqués extérieurs circonférentiellement séparés entre des segments d'enveloppe d'entretoise de diamètre extérieur circonférentiellement voisins ;

    dans lequel chacune de la pluralité de coques-entretoises (84, 86) présente une extension circonférentielle ne chevauchant pas les segments en tôle arqués intérieurs et extérieurs, de telle sorte que les segments en tôle arqués intérieurs et extérieurs enjambent des espaces circonférentiels entre chacune de la pluralité de coques-entretoises (84, 86).


     
    11. Procédé selon la revendication 10 et comprenant en outre :

    la jonction de la pluralité de segments en tôle arqués intérieurs à une bande intérieure (45) ;

    la jonction de la pluralité de segments en tôle arqués extérieurs à une bande extérieure (44) ; et

    la jonction de la pluralité de coques-entretoises (84, 86) aux bandes intérieure et extérieure (44, 45).


     
    12. Procédé selon la revendication 11 et comprenant en outre :
    le soudage des segments en tôle arqués intérieurs, des segments en tôle arqués extérieurs, des coques-entretoises (84, 86), de la bande intérieure (45) et de la bande extérieure (44) le long de tous les bords de contact.
     
    13. Procédé selon la revendication 11 et comprenant en outre :
    la jonction de la pluralité de coques-entretoises aux bandes intérieure et extérieure entre des segments en tôle arqués intérieurs adjacents et des segments en tôle arqués extérieurs adjacents.
     
    14. Procédé selon la revendication 13 et comprenant en outre :

    le positionnement de la pluralité de coques-entretoises (84, 86) entre des segments en tôle arqués extérieurs adjacents pour former des fentes extérieures ; et

    le positionnement de la pluralité de coques-entretoises (84, 86) entre des segments en tôle arqués intérieurs adjacents pour former des fentes intérieures ; et

    le positionnement du sous-ensemble de carénage (88) dans un cadre de turbine de telle sorte que les coques-entretoises (84, 86) enveloppent partiellement une entretoise de cadre.


     
    15. Procédé selon la revendication 14 dans lequel :

    la pluralité de coques-entretoises (84, 86) comprennent des coques-entretoises arrière ; et

    le sous-ensemble de carénage (88) est inséré dans une extrémité arrière du cadre de turbine, le procédé comprenant en outre :

    le positionnement d'une pluralité de coques-entretoises avant dans des fentes extérieures et intérieures de telle sorte que les coques-entretoises avant et les coques-entretoises arrière encerclent les entretoises de cadre ; et

    la jonction de la pluralité de coques-entretoises avant au sous-ensemble de carénage (88).


     




    Drawing






































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description