(19)
(11)EP 2 971 601 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
16.10.2019 Bulletin 2019/42

(21)Application number: 13786382.5

(22)Date of filing:  23.10.2013
(51)International Patent Classification (IPC): 
F01D 21/04(2006.01)
F02K 3/06(2006.01)
F01D 11/12(2006.01)
(86)International application number:
PCT/US2013/066332
(87)International publication number:
WO 2014/143188 (18.09.2014 Gazette  2014/38)

(54)

FAN TRACK LINER ASSEMBLY

BLÄSERGEHÄUSEAUSKLEIDUNGSANORDNUNG

AGENCEMENT DE VIROLE POUR UN CARTER DE SOUFFLANTE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 11.03.2013 US 201361776645 P
05.09.2013 US 201314019272

(43)Date of publication of application:
20.01.2016 Bulletin 2016/03

(73)Proprietor: Rolls-Royce Corporation
Indianapolis, Indiana 46225-1103 (US)

(72)Inventors:
  • TOTTEN, John, Trevor
    Westfield, IN 46074 (US)
  • RIVERS, Jonathan, Michael
    Indianapolis, IN 46236 (US)
  • ENGEBRETSEN, Eric, William
    Denmark, WI 54208-0756 (US)
  • KAPPES, Matthew, Joseph
    Indianapolis, IN 46203 (US)

(74)Representative: Ström & Gulliksson AB 
P O Box 4188
203 13 Malmö
203 13 Malmö (SE)


(56)References cited: : 
EP-A2- 1 860 283
EP-A2- 2 290 199
GB-A- 2 407 344
EP-A2- 2 290 196
EP-A2- 2 495 400
US-A1- 2011 211 943
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF TECHNOLOGY



    [0001] An improved liner for a fan case for a gas turbine engine, and more particularly, an improved fan track liner assembly.

    BACKGROUND



    [0002] Gas turbine engines are used extensively in high performance aircraft and they employ large fans that are positioned at the front of the engine so as to provide greater thrust and to reduce specific fuel consumption. This in turn, provides greater efficiencies and economical performance which is desired in the competitive airline industry. A fan is disposed within a duct and is driven by a shaft that is connected to the turbine and directs air rearwardly through the duct in the form of bypass air. The duct includes a fan casing that circumscribes the fan and the casing is capable of containing debris and minimizing damage to the engine in the event a catastrophic event occurs such as when birds, hailstones, or other debris enter the duct.

    [0003] Fan casings can also be equipped with specialized blade containment structures that serve to minimize structural damage to the immediate surroundings of the engine in the event a fan blade is released from its hub during engine operation. This is known as a "blade-off' event, which can be catastrophic to an aircraft. Thus, various configurations have been used for such containment structures including various methods of securing the containment structure to a fan casing.

    [0004] Serviceability of the fan casing has also become a problem in the event a containment structure has been damaged and needs replaced. For example, if debris were to enter a fan casing, and the integrity of an existing containment structure is diminished, then maintenance workers must service the aircraft by taking the aircraft out of service. Once the aircraft is taken out of service, a repair technician then removes the damaged containment structure and then installs a compatible replacement containment structure. These structures are sometimes referred to as a fan track liner.

    [0005] Traditionally, containment structures would be glued to the interior surface of the fan casing which, when in need of repair, would require a worker to spend substantial resources in removing the old containment structure. For example, the interior surface of the fan case would need to be reconditioned before installing a new containment structure. Sometimes the containment structures have been known to utilize a bonding agent to affix the structure to the fan case track. Such instances require the entire fan casing to be placed within a large oven in order to cure the bonding agent so as to assure proper adhesive of the containment structure to the fan casing. Fan casings reach up to ten feet in diameter, which means large expensive ovens must be used to complete the bonding agent curing process.

    [0006] Another problem with utilizing traditional containment structures is that they fail to provide a sufficient containment of debris during a blade-off or other catastrophic event. This may be due to the containment structure being too rigid and not demonstrating the proper collapsible deformation characteristics that may be present during predetermined conditions. For example, it would not be desirable to have a fan track liner collapse due to ice impact. By contrast, having a liner that collapses during a blade-off, or other events, so as to minimize damage to the engine and its surroundings, could be helpful to the industry. In the past this has been addressed by different mounting arrangements. To exemplify; EP 2 290 196 A2 teaches a rigid tray backing portion with a resilient sprung section with plies and wedges extending into hook shaped recesses, EP 1 860 283 A2 teaches a rigid liner tray with hooks bridging the gap to the panel, EP 2 495 400 A2 teaches a cantilever for mounting a liner to a casing and GB 2 407 344 A teaches a structure with acoustic panels and fan blade track panels secured to a cassette, the cassette having axially extending members securing the ends of the cassette to the fan casing. It may however be helpful to provide a containment structure that has a predetermined collapsing characteristic or profile.

    [0007] An embodiment may overcome these problems and provides a fan track liner assembly that more fully meets the demands of today's aircraft industry.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0008] While the claims are not limited to a specific illustration, an appreciation of the various aspects is best gained through a discussion of various examples thereof. Referring now to the drawings, exemplary illustrations are shown in detail. Although the drawings represent the illustrations, the drawings are not necessarily to scale and certain features may be exaggerated to better illustrate and explain an innovative aspect of an example. Further, the exemplary illustrations described herein are not intended to be exhaustive or otherwise limiting or restricted to the precise form and configuration shown in the drawings and disclosed in the following detailed description. Exemplary illustrations are described in detail by referring to the drawings as follows:

    FIG. 1 illustrates a schematic view of a gas turbine engine employing the improvements discussed herein;

    FIG. 2 illustrates a side-elevational sectional view of an exemplary fan track liner assembly that is designed to yield next to a fan case hook;

    FIG. 3 illustrates a side-elevational sectional view of another exemplary fan track liner assembly, shown installed to a fan casing;

    FIG. 4 illustrates an exploded perspective view of another exemplary fan track liner assembly illustrated in Fig. 3; showing a liner, a backing tray and a fan casing; and

    FIG. 5 illustrates a side-elevational sectional view of a fan track liner assembly in accordance with the invention.


    DETAILED DESCRIPTION



    [0009] Exemplary illustrations of a gas turbine engine having a containment structure such as fan track liner assembly are described herein and are shown in the attached drawings. Exemplary fan track liner assemblies may include a one-piece removal tray that is positioned within a cavity of the fan case. The tray may be secured at a forward edge of the fan case cavity by either resting on, or being fastened to a fan case hook. The aft position of the tray may be positioned in place and held securely by a fastener.

    [0010] Another example of a containment structure may include a fan track liner assembly and method of installation including first inserting a backing tray within the cavity of a fan case. A liner may then be bonded to the backing tray so as to form a fan track liner assembly. A void may be provided in the fan case cavity, that is positioned forward of the collapsible components of the liner, so as to provide an area for debris to collect, in the event of a blade-off, or other catastrophic event. Other aspects of the disclosure will become apparent and is set forth below.

    [0011] Turning now to the drawings, figure 1 illustrates a gas turbine machine 10 for use in connection with a high performance aircraft. The machine 10 includes a fan 12, a low pressure compressor and a high pressure compressor, 14 and 16, a combustor 18, and high pressure turbine and low pressure turbine, 20 and 22, respectively. The high pressure compressor 16 is connected to a first rotor shaft 24 and the low pressure compressor 14 is connected to a second rotor shaft 26. The shafts extend axially and are parallel to a longitudinal center line axis 28.

    [0012] Ambient air 30 enters the fan 12 and is directed across a fan rotor 32 and into an annular duct 34 which in part is circumscribed by fan case 36. The bypass airflow 38 provides engine thrust while the primary gas stream 40 is directed to the combustor 18 and the high pressure turbine 20. The fan case 36 includes an improved fan track liner assembly 42, which can enhance containment of debris during predetermined events.

    [0013] With reference to Figure 2, an exemplary fan track liner assembly 42 is positioned within the fan track cavity 44. The fan track cavity 44 is a radially extending recess that is encompassed by a fan case inner surface 46, an aft located radially extended wall 48, a forwardly positioned accurate shaped wall 50, and an opening 52 that extends between the radially extending wall 48 and the wall 50. The cavity 44 has a depth similar to the length of the radially extending wall 48 and the cavity 44 is substantially consumed by the volume defined by the external configuration of the fan track liner assembly 42. A void 54 is provided near the fan case hook 56, which provides a space for fragments of the blade 32, or other debris, to enter during a catastrophic event. The void 54 further provides a space for the fan track liner assembly 42 to be collapsed partially into during a catastrophic event. The fan case 36 further includes a support member 58 extending from the wall 48, and the support member 58 provides a mounting surface to which the fan track liner assembly 42 can be mounted at its rearward location. Another liner assembly 60 can be mounted to the same support member 58, if so desired.

    [0014] The fan track liner assembly 42 is operable to yield next to the fan case hook 56 during a catastrophic event. The components of the fan track liner assembly 42 include an outer surface 62, a honeycomb core 64, and a liner 66 which lies adjacent the fan case inner surface 46. The liner 66 includes a plurality of raised surfaces 68, which appear like bumps along the surface of the liner 66. The raised surfaces 68 impinge upon the fan case inner surface 46 and provide voids 70 throughout the area in which the liner 66 engages the fan case inner surface 46. The voids 70 operate to remove material from the liner 66 so as to make the fan track liner assembly 42 lighter. The voids 70 further provide spaces or vacancies, which in turn, during a catastrophic event, allow the core 64 to be collapsed into the voids 70. It will be appreciated that the voids 70 may provide other features and benefits as well.

    [0015] The outer surface 62 of the fan track liner 42 can be made of an abradable material such as, but not limited to, NOMEX® brand honeycomb filled with epoxy filled low density filler. The core 64 has a honeycomb like structure. It will be appreciated that the core 64 may be made of other materials, and provide various collapsing characteristics, as is desired by the industry. The liner 66 performs a tray-like function, thus allowing the fan track liner assembly 42 to set within the fan track cavity 44, relatively easily during repair conditions. In this instance, no adhesive is used to secure the assembly 42 to the fan case 36, thus enhancing serviceability. The liner 66 can be made of a composite material, but it will be appreciated that it could be made of other materials.

    [0016] To install the fan track liner assembly 42, the forward section 72 of the fan track liner assembly 42 is inserted such that a lip 74 is inserted radially outward of the fan case hook 56, while the aft section 76 is rotated outward and bolted via fastener 78 to support member 58. The lip 74 is on the leading edge of the outer surface 62. The lip 74 rests upon the fan case hook 56 and it is not rigidly secured thereto. Thus, the lip 74 is operable to be displaced in the direction of arrow 80 during a catastrophic event. During such period, the lip 74 moves into the void 54 and provides a space for debris to accumulate. The fan blade 32 is shown with its tip 82 in contact with the outer surface 62. Such condition could occur when the gas turbine 10 is under load during normal operating conditions. The fan track liner assembly 42 has a predetermined level of deflectability so as to allow it to perform under such conditions. An aerodynamic flow path 30 is directed to a leading edge 86 of the blade 32, which in turn generates a fan blade airflow 88, which in turn becomes bypass airflow 38 (FIG.1). During a blade-off catastrophic event, blade debris could move forward, thus causing lip 74 to move in the direction of arrow 80. Under this condition, blade debris could be captured in the void 54, and or the core 64 could deform and move into void 54. The fan hook 56 and void 54 aid in capturing debris during catastrophic events.

    [0017] An aft section 76 of the fan track liner assembly 42 is shown rigidly secured by the fastener 78, which extends through a lip 90 that is a component of the liner 66. It will be appreciated that other fastening type devices 78 may be employed, utilizing other mechanical configurations. When the fan track liner assembly 42 is loaded within the fan track cavity 44, the assembly 42 is slightly compressed in the forward and radial directions, thus making it pre-loaded as the installer secures fasteners 78 in place. By the fan track liner assembly 42 being slightly preloaded, pressure is maintained on lip 74 at or near the fan case hook 56. The nose 92 of the fan track liner 42 similarly is wedged against the fan case inner surface 46, which in turn causes the forward section 72 to be wedged in place, and firmly secured in the cavity 44.

    [0018] With reference now to figure 3, another example of a fan track liner assembly 102 is provided. Where possible, like reference numerals have been utilized. The fan case 36 includes an inner surface 46, reinforcement ribs 104, and a cavity 44. An arcuate shaped wall 50 encompasses a forward section of the cavity 44, and L-shaped wall 106 defines an aft portion of the cavity 44. The wall 106 includes a radially extending member 108, an axially extending wall 110 and another radially extending wall 112 that connects with another axially extending wall 114. Another track liner assembly 116 is adjacent thereto and is secured in place by fastener 78. Another fastener 118 is used at the forward end of the fan track liner assembly 102, for securing the assembly to the fan hook 56.

    [0019] The fan track liner assembly 102 is a two-piece assembly that is secured to the fan case 36. The assembly 102 includes a backing tray 120 and a liner 122. The backing tray 120 can be made of composite material and has a surface configuration that matches substantially the fan case inner surface profile 124. The backing tray 120 is sufficiently flexible to allow its resilient hooked shaped portion 126 to be securely fitted to wall 50.

    [0020] With reference to the exploded view figure 4, the fan track liner assembly 42 includes the backing tray 120 with a split-ring configuration 128 that can be made of a single-piece composite, nylon, or other similar type material. The backing tray 120 has apertures 130 about its periphery 132 near the forward section of the tray 120. These apertures 130 are for receiving the fasteners 118 that secure the lip 134 of the backing tray 120 to the hook 56 of the fan case 36. The apertures 130 are spaced at a plurality of locations around its periphery 132. Similarly, apertures 136 are spaced around the periphery 132 of the split ring 128 near the aft portion 138 of the backing tray 120. The apertures 136 appear in the wall 110 of the backing tray 120 and have sufficient clearance to receive the fasteners 78. With reference to figures 3 and 4, the liner 122 is circular-shaped and is configured to be radially inset and located within the backing tray 120. The liner 122 includes an outer surface 140 (made of an abradable material), a honeycomb core 142 and a skin 144 that extends axially adjacent to the backing tray 120. An adhesive bond layer 146 is sandwiched between the backing tray 120 and the skin 144 to firmly secure the liner 122 to the backing tray 120. It will be appreciated that various types of chemical methods may be employed in order to form the appropriate bond layer 146. The skin 144 may be constructed of composite material, but it will be appreciated that other materials can be utilized.

    [0021] To install the fan track liner assembly 102 to the fan case 36, first the technician positions the backing tray 120 within the cavity 44 of the fan case 36. The hook-shaped portion 126 of the backing tray 120 is bolted 118 to the fan case hook 56. The aft portion 76 of the backing tray 120 can now be pushed into position. The adhesive bond layer 146 can now be applied to the backing tray 120 and the liner 122 can now be inserted and bonded to the tray 120. Fastener 78 can now be installed which now firmly locks the fan track liner assembly 102 to the fan case 36.

    [0022] With reference now to figure 5, the fan track liner assembly 152 in accordance with the invention is disclosed and is secured in position to a fan case 36. Where possible, like reference numerals will be provided. A cavity 44 has received therein the fan track assembly 152, which employs a substantial volume of the cavity 44, but for void 154 and void 156. Another void 155 is circumscribed by the skin 164 of the assembly 152. The voids provide empty space for the fan track assembly 152 to collapse within, along with debris, during a catastrophic event. It will be appreciated that voids having other spaces, within cavity 44, can be provided, depending upon the geometric configuration of the provide fan track assembly 152.

    [0023] The fan track assembly 152 includes a one-piece tray 158 that includes an outer abradable surface 160, a honeycomb core 162 and a skin 164. The skin 164 is configured to be positioned closely to the fan case inner surface 46. The fan track assembly 152 further includes a flexible strip 166, made of pliable material, near a forward position 168, and the strip 166 is connected to the forward position via adhesive, or other similar type methodologies. The flexible strip 166 represents an area of the fan track assembly 152 that has reduced strength as it can be easily collapsed during a pre-determined event. For example, during a catastrophic event, the strip 166 may move in the direction of arrow 170, thus creating an opening and access to void 155, and allowing debris to enter. It will be appreciated that the strip 166 could be bolted to the fan case hook 56 (not shown) in lieu of being connected to the forward position 168 of the outer surface 160. Likewise, the fan casing 36 is provided with a support member 172 that could include a fastener (not shown) for securing a recessed portion 174 within the core 162. The aft section 176 of the fan track assembly 152 is secured via fastener 178 to the fan case bracketry 180.

    [0024] The reduction in strength of the tray 158 in the section with the rubber strip 166 compared to the previously discussed abradable liner 122, allows the blade 32 to penetrate the tray 158 more easily, thereby engaging the fan case hook 56 in a more consistent manner. Further, the reduction in strength in the area near the void 155 also aids in blade- to-hook engagement. It will be appreciated that the axial-length of the void 155 can be sized to meet other needs of the containment system, which could be based on the blade 32 and tray 158 characteristics. The edges of the strip 166 can be sealed with epoxy, polysulfide, or the equivalent adhesive/ caulk if desired.

    [0025] It will be appreciated that the fan track assembly 152 could include other geometric configurations, so as to modify the volume of spacing found in voids 155 and 156. Likewise, materials other than the strip 166 can be employed so as to provide a weakened structure near the forward section 72 of the tray 158, so as to allow the liner to yield next to the fan case hook. Further, the liner assemblies 42, 102 and 152 may include inner core sections having different crush strengths. For example, the forward section 72 may have a crush strength measuring one metric, while the aft section 176 may have a crush strength measuring another metric. Thus, a single liner assembly may operate differently from front to aft given a certain catastrophic condition.

    [0026] It will be appreciated that the aforementioned method and devices may be modified to have some components and steps removed, or may have additional components and steps added, all of which are deemed to be within the scope of the present disclosure as defined by the appended claims. Even though the present disclosure has been described in detail with reference to specific embodiments, it will be appreciated that the various modification and changes can be made to these embodiments without departing from the scope of the present disclosure as set forth in the claims. The specification and the drawings are to be regarded as an illustrative thought instead of merely restrictive thought.


    Claims

    1. A fan track liner assembly (152) comprising: a gas turbine engine fan case (36) having a cavity (44);
    a fan track body (158) received in the cavity (44) and having a first surface (160), an inner core (162) and a second surface (164), the first surface is made of abradable material and is operable to engage a blade member (32), the inner core (162) is made of collapsible material that is operable to be deformed during a catastrophic condition, the second surface (164) has a profile that is configured to substantially mate with an inside surface (46) of the fan case (36);
    a first mounting member (164) extending from the fan track body (158); and
    a second mounting member (164) extending from the fan track body (158); the fan track liner assembly being characterized by:
    a flexible material (166) covering an opening extending between a fan case hook (56) and a forward surface (168) of the fan track body (158) that leads into a void (155) disposed between the fan track body (158) and the inside surface (46) of the fan case (36), the flexible material (166) operable to yield into the void (155) during a catastrophic event.
     
    2. The fan track liner assembly (42, 102, 152) according to claim 1, further comprising a tray (120, 158) that fits between the fan track body (42, 102, 152) and the inside surface (46, 124) of a cavity (44) of a fan case (36).
     
    3. The fan track liner assembly (42, 102, 152) according to any one of claims 1 to 2, wherein the void (54, 70, 154, 155, 156) is disposed in an area between the fan track body (42, 102, 152) and the fan case hook (56) of the fan case (36), and wherein the flexible material (74, 166) is a deformable portion (64, 72, 166) of the fan track body (42, 102, 152) that is deformable during a catastrophic event, the deformable portion (64, 72, 166) can be positioned in the void (54, 70, 154, 155, 156).
     
    4. The fan track liner assembly (42, 102, 152) according to any one of claims 1 to 3, further comprising an adhesive (146), the adhesive (146) secures the fan track body (42, 102, 152) in the cavity (44) of a fan case (36).
     
    5. The fan track liner assembly (42, 102, 152) according to any one of the preceding claims, further comprising at least one fastener (78, 118, 178) securing a mounting member (74, 90, 134, 138) to a surface of a fan casing (36).
     
    6. The fan track liner assembly (42, 102, 152) according to any one of the preceding claims, wherein the fan track body (42, 102, 152) includes a tray (120, 158) that is configured to fit within the cavity (44) of a fan case (36).
     
    7. The fan track liner assembly (42, 102, 152) according to any one of the preceding claims, wherein the inner core (64, 142, 162) is made of a honey-comb material that is filled with epoxy.
     
    8. The fan track liner assembly (42, 102, 152) according to any one of the preceding claims, wherein the fan track body (42, 102, 152) is a single-piece split ring shaped configuration (128).
     
    9. The fan track liner assembly (42, 102, 152) according to any one of the preceding claims, wherein the flexible material (74, 166) comprises a rubber strip (166) located between the fan case hook (56) and the forward surface (72, 168) the fan track body (42, 102, 152).
     
    10. A gas turbine engine (10) comprising a fan track liner assembly according to any one of the preceding claims.
     
    11. The gas turbine engine (10) according to claim 10, wherein the flexible material (166) mates with the fan case hook (56) and is connected to the forward surface (72, 168) of the fan track body (42, 102, 152), the flexible material (166) is operable to give way during a catastrophic condition.
     


    Ansprüche

    1. Bläsergehäuseauskleidungsanordnung (152), umfassend:

    ein Bläsergehäuse (36) eines Gasturbinentriebwerks, das einen Hohlraum (44) aufweist;

    einen Bläsergehäusekörper (158), der in dem Hohlraum (44) aufgenommen ist und

    eine erste Oberfläche (160), einen inneren Kern (162) und eine zweite Oberfläche (164) aufweist,

    wobei die erste Oberfläche aus abschleifbarem Material hergestellt ist und dazu betreibbar ist, in ein Flügelelement (32) einzugreifen, wobei der innere Kern (162) aus zusammenklappbarem Material besteht, das dazu betreibbar ist, während eines katastrophalen Zustands verformt zu werden,

    wobei die zweite Oberfläche (164) ein Profil aufweist, das dazu ausgestaltet ist, im Wesentlichen mit einer inneren Oberfläche (46) des Bläsergehäuses (36) zusammenzupassen;

    ein erstes Montageelement (164), das sich von dem Bläsergehäusekörper (158) erstreckt; und

    ein zweites Montageelement (164), das sich von dem Bläsergehäusekörper (158) erstreckt;
    wobei die Bläsergehäuseauskleidungsanordnung gekennzeichnet ist durch:

    ein flexibles Material (166), das eine Öffnung abdeckt, die sich zwischen einem Bläsergehäusehaken (56) und einer vorderen Oberfläche (168) des Bläsergehäusekörpers (158) erstreckt, und die in einen Leerraum (155) führt, der zwischen dem Bläsergehäusekörper (158) und der inneren Oberfläche (46) des Bläsergehäuses (36) angeordnet ist,

    wobei das flexible Material (166) dazu betreibbar ist, während eines katastrophalen Ereignisses in den Leerraum (155) nachzugeben.


     
    2. Bläsergehäuseauskleidungsanordnung (42, 102, 152) nach Anspruch 1,
    ferner umfassend eine Wanne (120, 158), die zwischen den Bläsergehäusekörper (42, 102, 152) und die inneren Oberfläche (46, 124) eines Hohlraums (44) eines Bläsergehäuses (36) passt.
     
    3. Bläsergehäuseauskleidungsanordnung (42, 102, 152) nach einem der Ansprüche 1 bis 2,
    wobei der Leerraum (54, 70, 154, 155, 156) in einem Bereich zwischen dem Bläsergehäusekörper (42, 102, 152) und dem Bläsergehäusehaken (56) des Bläsergehäuses (36) angeordnet ist, und
    wobei das flexible Material (74, 166) ein verformbarer Abschnitt (64, 72, 166) des Bläsergehäusekörpers (42, 102, 152) ist, der während eines katastrophalen Ereignisses verformbar ist, wobei der verformbare Abschnitt (64, 72, 166) in dem Leerraum (54, 70, 154, 155, 156) positioniert werden kann.
     
    4. Bläsergehäuseauskleidungsanordnung (42, 102, 152) nach einem der Ansprüche 1 bis 3,
    ferner umfassend einen Klebstoff (146), wobei der Klebstoff (146) den Bläsergehäusekörper (42, 102, 152) im Hohlraum (44) eines Bläsergehäuses (36) befestigt.
     
    5. Bläsergehäuseauskleidungsanordnung (42, 102, 152) nach einem der vorhergehenden Ansprüche,
    ferner umfassend mindestens ein Halterungselement (78, 118, 178), das ein Montageelement (74, 90, 134, 138) an einer Oberfläche eines Bläsergehäuses (36) befestigt.
     
    6. Bläsergehäuseauskleidungsanordnung (42, 102, 152) nach einem der vorhergehenden Ansprüche,
    wobei der Bläsergehäusekörper (42, 102, 152) eine Wanne (120, 152) beinhaltet, die dazu ausgestaltet ist, in den Hohlraum (44) eines Bläsergehäuses (36) zu passen.
     
    7. Bläsergehäuseauskleidungsanordnung (42, 102, 152) nach einem der vorhergehenden Ansprüche,
    wobei der innere Kern (64, 142, 162) aus einem Wabenmaterial hergestellt ist, das mit Epoxid gefüllt ist.
     
    8. Bläsergehäuseauskleidungsanordnung (42, 102, 152) nach einem der vorhergehenden Ansprüche,
    wobei der Bläsergehäusekörper (42, 102, 152) eine einstückige, schlitzringförmige Konfiguration (128) ist.
     
    9. Bläsergehäuseauskleidungsanordnung (42, 102, 152) nach einem der vorhergehenden Ansprüche,
    wobei das flexible Material (74, 166) einen Gummistreifen (166) umfasst, der sich zwischen dem Bläsergehäusehaken (56) und der vorderen Oberfläche (72, 168) des Bläsergehäusekörpers (42, 102, 152) befindet.
     
    10. Gasturbinentriebwerk (10), das eine Bläsergehäuseauskleidungsanordnung nach einem der vorangehenden Ansprüche umfasst.
     
    11. Gasturbinentriebwerk (10) nach Anspruch 10,
    wobei das flexible Material (166) mit dem Bläsergehäusehaken (56) zusammenpasst und mit der vorderen Oberfläche (72, 168) des Bläsergehäusekörpers (42, 102, 152) verbunden ist, wobei das flexible Material (166) dazu betreibbar ist, bei einem katastrophalen Zustand nachzugeben.
     


    Revendications

    1. Ensemble de chemisage pour voie de soufflante (152) comprenant : un carter de soufflante de moteur de turbine à gaz (36) présentant une cavité (44) ;
    un corps de voie de soufflante (158) reçu dans la cavité (44) et ayant une première surface (160), un noyau interne (162) et une seconde surface (164), la première surface est réalisée avec un matériau abradable et peut fonctionner pour mettre en prise un élément de pale (32), le noyau interne (162) est réalisé avec un matériau repliable qui est configuré pour être déformé pendant une condition catastrophique, la seconde surface (164) a un profil qui est configuré pour se coupler sensiblement avec une surface intérieure (46) du carter de soufflante (36) ;
    un premier élément de montage (164) s'étendant à partir du corps de voie de soufflante (158) ; et
    un second élément de montage (164) s'étendant à partir du corps de voie de soufflante (158) ; l'ensemble de chemisage de voie de soufflante étant caractérisé par :
    un matériau flexible (166) recouvrant une ouverture s'étendant entre un crochet de carter de soufflante (56) et une surface avant (168) du corps de voie de soufflante (158) qui conduit dans un vide (155) disposé entre le corps de voie de soufflante (158) et la surface intérieure (46) du carter de soufflante (36), le matériau flexible (166) pouvant fonctionner pour céder dans le vide (155) pendant un événement catastrophique.
     
    2. Ensemble de chemisage de voie de soufflante (42, 102, 152) selon la revendication 1, comprenant en outre un plateau (120, 158) qui se raccorde entre le corps de voie de soufflante (42, 102, 152) et la surface intérieure (46, 124) d'une cavité (44) d'un carter de soufflante (36).
     
    3. Ensemble de chemisage de voie de soufflante (42, 102, 152) selon l'une quelconque des revendications 1 à 2, dans lequel le vide (54, 70, 154, 155, 156) est disposé dans une zone entre le corps de voie de soufflante (42, 102, 152) et le crochet de carter de soufflante (56) du carter de soufflante (36), et dans lequel le matériau flexible (74, 166) est une partie déformable (64, 72, 166) du corps de voie de soufflante (42, 102, 152) qui est déformable pendant un événement catastrophique, la partie déformable (64, 72, 166) peut être positionnée dans le vide (54, 70, 154, 155, 156).
     
    4. Ensemble de chemisage de voie de soufflante (42, 102, 152) selon l'une quelconque des revendications 1 à 3, comprenant en outre un adhésif (146), l'adhésif (146) fixe le corps de voie de soufflante (42, 102, 152) dans la cavité (44) d'un carter de soufflante (36).
     
    5. Ensemble de chemisage de voie de soufflante (42, 102, 152) selon l'une quelconque des revendications précédentes, comprenant en outre au moins une fixation (78, 118, 178) fixant un élément de montage (74, 90, 134, 138) sur une surface d'un carter de soufflante (36).
     
    6. Ensemble de chemisage de voie de soufflante (42, 102, 152) selon l'une quelconque des revendications précédentes, dans lequel le corps de voie de soufflante (42, 102, 152) comprend un plateau (120, 158) qui est configuré pour s'adapter à l'intérieur de la cavité (44) d'un carter de soufflante (36).
     
    7. Ensemble de chemisage de voie de soufflante (42, 102, 152) selon l'une quelconque des revendications précédentes, dans lequel le noyau interne (64, 142, 162) est réalisé avec un matériau en nid d'abeille qui est rempli avec de l'époxy.
     
    8. Ensemble de chemisage de voie de soufflante (42, 102, 152) selon l'une quelconque des revendications précédentes, dans lequel le corps de voie de soufflante (42, 102, 152) est une configuration en forme de bague fendue d'un seul tenant (128).
     
    9. Ensemble de chemisage de voie de soufflante (42, 102, 152) selon l'une quelconque des revendications précédentes, dans lequel le matériau flexible (74, 166) comprend une bande de caoutchouc (166) positionnée entre le crochet de carter de soufflante (56) et la surface avant (72, 168) du corps de voie de soufflante (42, 102, 152).
     
    10. Moteur de turbine à gaz (10) comprenant un ensemble de chemisage de voie de soufflante selon l'une quelconque des revendications précédentes.
     
    11. Moteur de turbine à gaz (10) selon la revendication 10, dans lequel le matériau flexible (166) se couple avec le crochet de carter de soufflante (56) et est raccordé à la surface avant (72, 168) du corps de voie de soufflante (42, 102, 152), le matériau flexible (166) peut être actionné pour céder pendant une condition catastrophique.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description