(19)
(11)EP 2 971 616 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.04.2020 Bulletin 2020/18

(21)Application number: 14778227.0

(22)Date of filing:  06.03.2014
(51)International Patent Classification (IPC): 
F01D 25/28(2006.01)
F02C 7/00(2006.01)
F01D 25/16(2006.01)
F02C 7/20(2006.01)
F01D 25/30(2006.01)
F01D 25/00(2006.01)
F01D 25/24(2006.01)
F02C 7/06(2006.01)
F02C 7/24(2006.01)
(86)International application number:
PCT/US2014/021094
(87)International publication number:
WO 2014/164189 (09.10.2014 Gazette  2014/41)

(54)

HEAT SHIELD MOUNT CONFIGURATION

MONTAGEKONFIGURATION FÜR EINEN HITZESCHILD

CONFIGURATION DE MONTAGE D'ÉCRAN THERMIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 11.03.2013 US 201361775732 P

(43)Date of publication of application:
20.01.2016 Bulletin 2016/03

(73)Proprietor: United Technologies Corporation
Farmington, CT 06032 (US)

(72)Inventors:
  • GROGG, Gary L.
    South Berwick, Maine 03908 (US)
  • VDOVIAK, Garth J.
    North Berwick, Maine 03906 (US)
  • THAYER, Marshall
    Waterboro, Maine 04087 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
WO-A1-2012/048934
US-A- 4 053 189
US-A- 5 226 788
US-A1- 2013 011 253
WO-A1-2012/048934
US-A- 4 887 949
US-A1- 2013 011 253
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] In many gas turbine engines, a low pressure spool includes a low pressure turbine that is connected to and drives a low pressure compressor, and a high pressure spool includes a high pressure turbine that is connected to and drives a high pressure compressor. Air is compressed by the compressors and communicated to a combustor section where air is mixed with fuel and ignited to generate a high pressure exhaust gas stream that expands through the turbines. Energy is extracted from the turbines to drive the compressors. The spools are mounted for rotation about an engine central longitudinal axis relative to an engine static structure via several bearing systems. The bearing systems are located within bearing compartments that include heat shields to protect components from the high temperatures of the exhaust gases.

    [0002] The heat shields are typically comprised of sheet metal plates that are attached to the engine static structure with bolts. Due to the thinness of the plates, the bolts can potentially damage areas of the heat shield that come into contact with the head of the bolt during installation. This increases maintenance costs as the shields have to be replaced during overhaul service operations. Riveted-on nut plates are not preferred in hot sections of the engine because threads can seize and pull apart anti-rotation features on the plates requiring them to be drilled out. Another proposed solution is to use thicker mount flanges that are welded to the shields; however, this increases cost and weight.

    [0003] US 2013/0011253 A discloses a joint assembly for an annular structure which comprises a first annular member having a first radially extending flange and a second annular member having a second radially extending flange. The first and second flanges having a plurality of first and second circumferentially aligned apertures. A plurality of fasteners are provided and each fastener is arranged to extend through a respective pair of the first and second apertures to join the first and second annular members together.

    SUMMARY



    [0004] From a first aspect, the invention provides an attachment interface assembly as claimed in claim 1.

    [0005] In another embodiment according to any of the previous embodiments, the engine static structure includes a circumferentially extending groove. A portion of the clip is received within the groove to axially retain the clip, fastener, and heat shield to the engine static structure .

    [0006] In another embodiment according to any of the previous embodiments, the clip comprises a generally flat body portion defining the center opening and includes a plurality of gripping fingers extending outwardly from the flat body portion to grip the enlarged head portion.

    [0007] In another embodiment according to any of the previous embodiments, the fastener comprises a tee-head bolt.

    [0008] In another embodiment according to any of the previous embodiments, the engine static structure has a bearing support structure, and includes a nut threaded onto the threaded body portion to clamp the clip and heat shield between the enlarged head portion and the bearing support structure.

    [0009] In another embodiment according to any of the previous embodiments, the enlarged head portion includes a plurality of linear side edges. The clip has a generally flat body portion defining the center opening and includes a plurality of gripping fingers extending outwardly from the flat body portion to grip the enlarged head portion at each of the linear side edges.

    [0010] In another embodiment according to any of the previous embodiments, each gripping finger includes a bent distal end that extends over an outward facing end face of the enlarged head portion.

    [0011] From a further aspect, the invention provides a gas turbine engine assembly as claimed in claim 8.

    [0012] In another embodiment according to any of the previous embodiments, the fastener comprises a tee-head bolt.

    [0013] In another embodiment according to any of the previous embodiments, the clip comprises a generally flat body portion defining the center opening and a plurality of gripping fingers extending outwardly from the flat body portion to grip the enlarged head portion of the tee-head bolt.

    [0014] In another embodiment according to any of the previous embodiments, the enlarged head portion of the tee-head bolt includes a plurality of linear side edges. One gripping finger grips the enlarged head portion at each of the linear side edges.

    [0015] In another embodiment according to any of the previous embodiments, each gripping finger includes a bent distal end that extends over an outward facing end face of the enlarged head portion.

    [0016] In another embodiment according to any of the previous embodiments, the at least one bearing has at least first and second bearings respectfully supported by first and second bearing support structures, and includes a turbine exhaust case flange that is clamped between the first and second bearing support structures by the at least one fastener.

    [0017] In another embodiment according to any of the previous embodiments, the heat shield has a first heat shield positioned between the clip and the first bearing support structure, and a second heat shield positioned between the second bearing support structure and a nut threaded onto the threaded body portion.

    [0018] In another embodiment according to any of the previous embodiments, the bearing support structure includes a circumferentially extending groove. A portion of the clip is received within the groove.

    [0019] From a further aspect, the invention provides a method of installing a heat shield on bearing support structure of a gas turbine engine as claimed in claim 13.

    [0020] In another embodiment according to the previous embodiment, a circumferentially extending groove in the bearing support structure is provided. A portion of the clip is inserted within the groove to axially retain the clip, the fastener, and heat shield to the bearing support structure.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0021] The disclosure can be further understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:

    Figure 1 schematically illustrates a geared turbofan engine embodiment.

    Figure 2 is a schematic view of one section of the engine embodiment of Figure 1 that utilizes the subject invention.

    Figure 3 is an exploded view of an attachment assembly for a heat shield.

    Figure 4 is a perspective view of the attachment assembly of Figure 3 in an installed position.

    Figure 5 is a cross-sectional side view of Figure 4.


    DETAILED DESCRIPTION



    [0022] Figure 1 schematically illustrates a gas turbine engine 20. The gas turbine engine 20 is disclosed herein as a two-spool turbofan that generally incorporates a fan section 22, a compressor section 24, a combustor section 26 and a turbine section 28. Alternative engines might include an augmentor section (not shown) among other systems or features. The fan section 22 drives air along a bypass flow path B in a bypass duct defined within a nacelle 15, while the compressor section 24 drives air along a core flow path C for compression and communication into the combustor section 26 then expansion through the turbine section 28. Although depicted as a two-spool turbofan gas turbine engine in the disclosed non-limiting embodiment, it should be understood that the concepts described herein are not limited to use with two-spool turbofans as the teachings may be applied to other types of turbine engines including three-spool architectures.

    [0023] The exemplary engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided, and the location of bearing systems 31 may be varied as appropriate to the application.

    [0024] The low speed spool 30 generally includes an inner shaft 40 that interconnects a fan 42, a low pressure compressor 44 and a low pressure turbine 46. The inner shaft 40 is connected to the fan 42 through a speed change mechanism, which in exemplary gas turbine engine 20 is illustrated as a geared architecture 48 to drive the fan 42 at a lower speed than the low speed spool 30. The high speed spool 32 includes an outer shaft 50 that interconnects a high pressure compressor 52 and high pressure turbine 54. A combustor 56 is arranged in exemplary gas turbine 20 between the high pressure compressor 52 and the high pressure turbine 54. A mid-turbine frame 57 of the engine static structure 36 is arranged generally between the high pressure turbine 54 and the low pressure turbine 46. The mid-turbine frame 57 further supports bearing systems 38 in the turbine section 28. The inner shaft 40 and the outer shaft 50 are concentric and rotate via bearing systems 38 about the engine central longitudinal axis A which is collinear with their longitudinal axes.

    [0025] The core airflow is compressed by the low pressure compressor 44 then the high pressure compressor 52, mixed and burned with fuel in the combustor 56, then expanded over the high pressure turbine 54 and low pressure turbine 46. The mid-turbine frame 57 includes airfoils 59 which are in the core airflow path C. The turbines 46, 54 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion. It will be appreciated that each of the positions of the fan section 22, compress section 24, combustor section 26, turbine section 28, and fan drive gear system 50 may be varied. For example, gear system 50 may be located aft of combustor section 26 or even aft of turbine section 28, and fan section 22 may be positioned forward or aft of the location of gear system 48.

    [0026] The engine 20 in one example is a high-bypass geared aircraft engine. In a further example, the engine 20 bypass ratio is greater than about six (6), with an example embodiment being greater than about ten (10), the geared architecture 48 is an epicyclic gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3 and the low pressure turbine 46 has a pressure ratio that is greater than about five. In one disclosed embodiment, the engine 20 bypass ratio is greater than about ten (10:1), the fan diameter is significantly larger than that of the low pressure compressor 44, and the low pressure turbine 46 has a pressure ratio that is greater than about five 5:1. Low pressure turbine 46 pressure ratio is pressure measured prior to inlet of low pressure turbine 46 as related to the pressure at the outlet of the low pressure turbine 46 prior to an exhaust nozzle. The geared architecture 48 may be an epicycle gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3:1. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine and that the present invention is applicable to other gas turbine engines including direct drive turbofans.

    [0027] A significant amount of thrust is provided by the bypass flow B due to the high bypass ratio. The fan section 22 of the engine 20 is designed for a particular flight condition -- typically cruise at about 0.8 Mach and about 35,000 feet (10,668 m). The flight condition of 0.8 Mach and 35,000 ft (10,668 m), with the engine at its best fuel consumption - also known as "bucket cruise Thrust Specific Fuel Consumption ('TSFC')" - is the industry standard parameter of kg (lbm) of fuel being burned divided by N (lbf) of thrust the engine produces at that minimum point. "Low fan pressure ratio" is the pressure ratio across the fan blade alone, without a Fan Exit Guide Vane ("FEGV") system. The low fan pressure ratio as disclosed herein according to one non-limiting embodiment is less than about 1.45. "Low corrected fan tip speed" is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of [(Tram K)/(518.7 K)]0.5([(Tram °R) / (518.7 °R)]0.5). The "Low corrected fan tip speed" as disclosed herein according to one non-limiting embodiment is less than about 1150 ft / second (350.5 m/s).

    [0028] Figure 2 shows an attachment interface 70 to a turbine exhaust case 72 that is positioned aft of the low pressure turbine section 46. A bearing compartment 74 includes at least a first bearing 76 and a second bearing 78 that rotatably support the spool 30 for rotation about the axis A. A first bearing support structure 80 supports the first bearing 76 and is attached to the non-rotating turbine exhaust case 72 at the attachment interface 70. A second bearing support structure 82 supports the second bearing 78 and is attached to the turbine exhaust case 72 at the attachment interface 70. A first heat shield 84 is positioned radially outward of the first bearing support structure 80 and a second heat shield 86 is positioned radially outward of the second bearing support structure 82. The first 84 and second 86 heat shields are also attached to the turbine exhaust case 72 at the attachment interface 70.

    [0029] As shown in Figures 3 and 5, the first heat shield 84 and the second heat shield 86 are comprised of a thin sheet metal plate 88 having a radially outer edge portion 90. A mount flange 92 extends circumferentially about the radially outer edge portion 90 and includes a plurality of holes 94. As shown in Figure 3, the holes 94 of the first heat shield 84 are aligned with a plurality of holes 96 formed in the first bearing support structure 80. The turbine exhaust case 72 also includes corresponding holes 98 (Figure 5) that align with the holes 94 in the first 84 and second 86 heat shields.

    [0030] Each of the aligned sets of holes 94, 98 receives a fastener assembly that includes a fastener 100 and a clip 102 (Figure 3). The fastener 100 has a threaded body portion 104 and an enlarged head portion 106. The threaded body portion 104 is inserted through the aligned holes 94, 98 and a nut 108 is threaded onto an end of the threaded body portion 104. The clip 102 comprises a generally flat body portion 110 that includes a center opening 112 and which includes a plurality of gripping fingers 114 extending outwardly from the flat body portion 110 to grip the enlarged head portion 106. The center opening 112 receives the threaded body portion 104 such that the flat body portion 110 is positioned between the enlarged head portion 106 and the heat shield 84.

    [0031] The first bearing support structure 80 includes a first end face 116 that faces the first heat shield 84 and a second end face 118 that faces the second heat shield 86. A ledge 120 extends outwardly from the first end face 116 of the support structure 80. The ledge 120 transitions into a lip 122 that extends radially inward from a distal end of the ledge 120. The lip 122 is spaced from the first end face 116 by a gap such that a circumferentially extending groove 124 is formed in the first bearing support structure 80. A portion of the clip 102 is received within the groove 124 to axially retain the clip 102, the fastener 100, and the heat shield 84 to the bearing support structure 80. In the example shown in Figure 3, one of the gripping fingers 114 is received within the groove 124.

    [0032] In one example, the fastener 100 comprises a tee-head bolt. In this example, the enlarged head portion 106 includes a plurality of linear side edges 126 and the clip 102 includes one gripping finger 114 to grip the enlarged head portion 106 at each of the linear side edges 126. Each gripping finger 114 includes a bent distal end 128 (Figure 4) that extends over an outward facing end face 130 of the enlarged head portion 106.

    [0033] As shown in Figure 5, the method of installing the heat shield 84 on the bearing support structure 80 includes the steps of inserting the threaded body portion 104 of the fastener 100 through the corresponding center opening 112 in the associated clip and through aligned holes 94, 98 in the heat shields 84, 86, bearing support structures 80, 82, and turbine exhaust case 72 such that the clip 102 is positioned between the associated enlarged head portion 106 and the first heat shield 84, and the gripping fingers 114 grip the enlarged head portion 106. A portion of the clip 102 is inserted into the groove 124 such that the clip 102, the fastener 100, and the heat shield are axially retained to the bearing support structure. The nut 108 is tightened on the threaded body portion 104 to clamp the heat shields to the bearing support structures, with the clip 102 being clamped between the enlarged head portion 106 and the first bearing support structure 80. This is repeated for each fastener 100 of the attachment interface 70 (Figure 2).

    [0034] Thus, the fastener and clip cooperate to capture the heat shield to the bearing mount structure during a blind assembly operation. The clip protects the heat shield from sharp edges of the enlarged bolt head, and since the clip does not rotate during assembly, there is no damage to the thin sheet metal that forms the shields. Once the fastener is completely installed, the heat shields are firmly held in place. The fastener and clip provide a low-cost installation solution for thin sheet metal heat shields that is maintained for the full life of the associated parts.

    [0035] In the examples shown, the tee-head bolt and clip have been used to mount heat shields to a bearing support structure and turbine exhaust case. It should be understood that the bolt and clip could be used to mount heat shields at other locations within the engine. Further, the bolt and clip could be used to capture other engine components to a static structure as needed.

    [0036] Although an example embodiment has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of the claims. For that reason, the following claims should be studied to determine their true scope and content.


    Claims

    1. An attachment interface assembly (70) for a gas turbine engine comprising:

    a component configured for attachment to an engine static structure;

    a fastener (100) having a threaded body portion (104) and an enlarged head portion (106), the threaded body portion to be inserted through aligned holes (94, 98) in the component and engine static structure; and characterized in further comprising

    a clip (102) having a center opening (112) that receives the threaded body portion (104) such that the clip (102) is positioned between the enlarged head portion (106) and the component,

    and in that the component comprises a heat shield (84, 86), and in that the heat shield (84, 86) comprises a thin sheet metal plate (88) having a radially outer edge portion (90) defined by a circumferentially extending mount flange (92) having a first side and a second side, and wherein the first side is in direct abutting engagement with the engine static structure and the second side is in direct abutting engagement with the clip (102).


     
    2. The assembly according to claim 1, wherein the engine static structure includes a circumferentially extending groove (124), and a portion of the clip (102) is received within the groove (124) to axially retain the clip (102), fastener (100), and heat shield (84, 86) to the engine static structure.
     
    3. The assembly according to claim 2, wherein the clip (102) comprises a generally flat body portion (110) defining the center opening (112) and which includes a plurality of gripping fingers (114) extending outwardly from the flat body portion (110) to grip the enlarged head portion (106).
     
    4. The assembly according to claim 2 or 3, wherein the fastener (100) comprises a tee-head bolt.
     
    5. The assembly according to any preceding claim, wherein the engine static structure comprises a bearing support structure (80, 82), and including a nut (108) threaded onto the threaded body portion (104) to clamp the clip (102) and heat shield (84, 86) between the enlarged head portion (106) and the bearing support structure (80, 82).
     
    6. The assembly according to any preceding claim, wherein the enlarged head portion (106) includes a plurality of linear side edges (126), and wherein the clip (102) comprises a generally flat body portion (110) defining the center opening (112) and which includes a plurality of gripping fingers (114) extending outwardly from the flat body portion (110) to grip the enlarged head portion (106) at each of the linear side edges (126).
     
    7. The assembly according to claim 5 or 6, wherein each gripping finger (114) includes a bent distal end (128) that extends over an outward facing end face (130) of the enlarged head portion (106).
     
    8. A gas turbine engine assembly comprising:

    at least one shaft (40, 50) defining an engine axis of rotation (A);

    at least one compressor (24) and at least one turbine (28) connected to each other by the at least one shaft (40, 50);

    at least one bearing (76, 78) supporting the at least one shaft (40, 50) for rotation about the engine axis of rotation (A), the bearing (76, 78) positioned with a bearing compartment (74) including a bearing support structure (80, 82); and

    the attachment interface assembly of any preceding claim, wherein the engine static structure is a bearing support structure (80, 82) and the component is a heat shield (84, 86).


     
    9. The gas turbine engine assembly according to claim 8, wherein the enlarged head portion (106) of the tee-head bolt includes a plurality of linear side edges (126), and wherein one gripping finger (114) grips the enlarged head portion (106) at each of the linear side edges (126).
     
    10. The gas turbine engine assembly according to claim 9, wherein the at least one bearing (76, 78) comprises at least first and second bearings respectfully supported by first and second bearing support structures (80, 82), and including a turbine exhaust case flange that is clamped between the first and second bearing support structures (80, 82) by the at least one fastener (100).
     
    11. The gas turbine engine assembly according to claim 10, wherein the heat shield (84, 86) comprises a first heat shield (84) positioned between the clip (102) and the first bearing support structure (80), and including a second heat shield (86) positioned between the second bearing support structure (82) and a nut (108) threaded onto the threaded body portion (104).
     
    12. The gas turbine engine assembly according to any of claims 9 to 11, wherein the bearing support structure (80, 82) includes a circumferentially extending groove (124), and wherein a portion of the clip (102) is received within the groove (124).
     
    13. A method of installing a heat shield (84, 86) on a bearing support structure (80, 82) of a gas turbine engine comprising the steps of:

    (a) providing a fastener (100) having a threaded body portion (104) and an enlarged head portion (106), and a clip (102) having a center opening (112) and a plurality of gripping fingers (114);

    (b) inserting threaded body portion (104) through the center opening (112) in the clip (102) and through aligned holes (94, 98) in the heat shield (84, 86) and bearing support structure (80, 82) such that the clip (102) is positioned between the enlarged head portion (106) and the heat shield (84, 86) and the gripping fingers (114) grip the enlarged head portion (106); and

    (c) tightening a nut (108) on the threaded body portion (104) to clamp the heat shield (84, 86) between the clip (102) and the bearing support structure (80, 82),

    wherein the heat shield (84, 86) comprises a thin sheet metal plate (88) having a radially outer edge portion (90) defined by a circumferentially extending mount flange (92) having a first side and a second side, and wherein the first side is in direct abutting engagement with the engine static structure and the second side is in direct abutting engagement with the clip (102).
     
    14. The method according to claim 13, including providing a circumferentially extending groove (124) in the bearing support structure (80, 82) and inserting a portion of the clip (102) within the groove (124) to axially retain the clip (102), the fastener (100), and heat shield (84, 86) to the bearing support structure (80, 82).
     


    Ansprüche

    1. Befestigungsoberflächenbaugruppe (70) für ein Gasturbinentriebwerk, umfassend:

    eine Komponente, die dazu konfiguriert ist, an einer statischen Triebwerksstruktur befestigt zu werden;

    ein Befestigungselement (100), das einen Gewindekörperabschnitt (104) und einen vergrößerten Kopfabschnitt (106) aufweist, wobei der Gewindekörperabschnitt durch ausgerichtete Löcher (94, 98) in der Komponente und der statischen Triebwerksstruktur eingesetzt wird; und dadurch gekennzeichnet, dass sie ferner

    eine Klammer (102) umfasst, die eine zentrale Öffnung (112) aufweist, die den Gewindekörperabschnitt (104) aufnimmt, sodass die Klammer (102) zwischen dem vergrößerten Kopfabschnitt (106) und der Komponente positioniert ist,

    und dadurch, dass die Komponente einen Hitzeschild (84, 86) umfasst, und dadurch, dass der Hitzeschild (84, 86) eine dünne Blechplatte (88) umfasst, die einen radial äußeren Randabschnitt (90) aufweist, der durch einen sich in Umfangsrichtung erstreckenden Montageflansch (92) definiert wird, der eine erste Seite und eine zweite Seite aufweist, und wobei die erste Seite in direkt anliegendem Eingriff mit der statischen Triebwerksstruktur und die zweite Seite in direkt anliegendem Eingriff mit der Klammer (102) steht.


     
    2. Baugruppe nach Anspruch 1, wobei die statische Triebwerksstruktur eine sich in Umfangsrichtung erstreckende Nut (124) beinhaltet, und ein Abschnitt der Klammer (102) innerhalb der Nut (124) aufgenommen wird, um die Klammer (102), das Befestigungselement (100) und den Hitzeschild (84, 86) axial an der statischen Triebwerksstruktur festzuhalten.
     
    3. Baugruppe nach Anspruch 2, wobei die Klammer (102) einen im Allgemeinen flachen Körperabschnitt (110) umfasst, der die zentrale Öffnung (112) definiert und der eine Vielzahl von Greiffingern (114) beinhaltet, die sich von dem flachen Körperabschnitt (110) nach außen erstrecken, um den vergrößerten Kopfabschnitt (106) zu greifen.
     
    4. Baugruppe nach Anspruch 2 oder 3, wobei das Befestigungselement (100) eine Hammerschraube umfasst.
     
    5. Baugruppe nach einem der vorhergehenden Ansprüche, wobei die statische Triebwerksstruktur eine Lagerstützstruktur (80, 82) umfasst und eine Mutter (108) beinhaltet, die auf den Gewindekörperabschnitt (104) aufgeschraubt ist, um die Klammer (102) und den Hitzeschild (84, 86) zwischen den vergrößerten Kopfabschnitt (106) und die Lagerstützstruktur (80, 82) einzuspannen.
     
    6. Baugruppe nach einem der vorhergehenden Ansprüche, wobei der vergrößerte Kopfabschnitt (106) eine Vielzahl von linearen Seitenkanten (126) beinhaltet, und wobei die Klammer (102) einen im Allgemeinen flachen Körperabschnitt (110) umfasst, der die zentrale Öffnung (112) definiert und der eine Vielzahl von Greiffingern (114) beinhaltet, die sich von dem flachen Körperabschnitt (110) nach außen erstrecken, um den vergrößerten Kopfabschnitt (106) an jeder der linearen Seitenkanten (126) zu greifen.
     
    7. Baugruppe nach Anspruch 5 bis 6, wobei jeder Greiffinger (114) ein gebogenes distales Ende (128) beinhaltet, das sich über eine nach außen gerichtete Endseite (130) des vergrößerten Kopfabschnitts (106) erstreckt.
     
    8. Gasturbinentriebwerksbaugruppe, Folgendes umfassend:

    mindestens eine Welle (40, 50), die eine Triebwerksrotationsachse (A) definiert;

    mindestens einen Kompressor (24) und mindestens eine Turbine (28), die miteinander durch die mindestens eine Welle (40, 50) verbunden sind;

    mindestens ein Lager (76, 78), das die mindestens eine Welle (40, 50) für die Rotation um die Triebwerksrotationsachse (A) stützt, wobei das Lager (76, 78) mit einer Lagerkammer (74), die eine Lagerstützstruktur (80, 82) beinhaltet, positioniert ist; und

    die Befestigungsoberflächenbaugruppe nach einem der vorhergehenden Ansprüche, wobei die statische Triebwerksstruktur eine Lagerstützstruktur (80, 82) und die Komponente ein Hitzeschild (84, 86) ist.


     
    9. Gasturbinentriebwerksbaugruppe nach Anspruch 8, wobei der vergrößerte Kopfabschnitt (106) der Hammerschraube eine Vielzahl von linearen Seitenkanten (126) beinhaltet, und wobei ein Greiffinger (114) den vergrößerten Kopfabschnitt (106) an jeder der linearen Seitenkanten (126) greift.
     
    10. Gasturbinentriebwerksbaugruppe nach Anspruch 9, wobei das mindestens eine Lager (76, 78) mindestens ein erstes und ein zweites Lager umfasst, die jeweils durch eine erste und eine zweite Lagerstützstruktur (80, 82) gestützt werden, und einen Turbinenabgasgehäuseflansch beinhaltend, der durch das mindestens eine Befestigungselement (100) zwischen der ersten und der zweiten Lagerstützstruktur (80, 82) eingespannt ist.
     
    11. Gasturbinentriebwerksbaugruppe nach Anspruch 10, wobei der Hitzeschild (84, 86) einen ersten Hitzeschild (84) umfasst, der zwischen der Klammer (102) und der ersten Lagerstützstruktur (80) positioniert ist, und einen zweiten Hitzeschild (86) beinhaltet, der zwischen der zweiten Lagerstützstruktur (82) und einer Mutter (108) positioniert ist, die auf den Gewindekörperabschnitt (104) aufgeschraubt ist.
     
    12. Gasturbinentriebwerksbaugruppe nach einem der Ansprüche 9 bis 11, wobei die Lagerstützstruktur (80, 82) eine sich in Umfangsrichtung erstreckende Nut (124) beinhaltet, und wobei ein Abschnitt der Klammer (102) innerhalb der Nut (124) aufgenommen wird.
     
    13. Verfahren zum Installieren eines Hitzeschildes (84, 86) auf einer Lagerstützstruktur (80, 82) eines Gasturbinentriebwerks, folgende Schritte umfassend:

    (a) Bereitstellen eines Befestigungselements (100), das einen Gewindekörperabschnitt (104) und einen vergrößerten Kopfabschnitt (106) aufweist, und einer Klammer (102), die eine zentrale Öffnung (112) und eine Vielzahl von Greiffingern (114) aufweist;

    (b) Einsetzen des Gewindekörperabschnitts (104) durch die zentrale Öffnung (112) in der Klammer (102) und durch ausgerichtete Löcher (94, 98) in dem Hitzeschild (84, 86) und der Lagerstützstruktur (80, 82), sodass die Klammer (102) zwischen dem vergrößerten Kopfabschnitt (106) und dem Hitzeschild (84, 86) positioniert ist und die Greiffinger (114) den vergrößerten Kopfabschnitt (106) greifen; und

    (c) Anziehen einer Mutter (108) auf dem Gewindekörperabschnitt (104), um den Hitzeschild (84, 86) zwischen der Klammer (102) und der Lagerstützstruktur (80, 82) einzuspannen,

    wobei der Hitzeschild (84, 86) eine dünne Blechplatte (88) umfasst, die einen radial äußeren Randabschnitt (90) aufweist, der durch einen sich in Umfangsrichtung erstreckenden Montageflansch (92) definiert ist, der eine erste und eine zweite Seite aufweist, und wobei die erste Seite in direkt anliegendem Eingriff mit der statischen Triebwerksstruktur und die zweite Seite in direkt anliegendem Eingriff mit der Klammer (102) steht.
     
    14. Verfahren nach Anspruch 13, Bereitstellen einer sich in Umfangsrichtung erstreckenden Nut (124) in der Lagerstützstruktur (80, 82) und Einsetzen eines Abschnitts der Klammer (102) innerhalb der Nut (124) beinhaltend, um die Klammer (102), das Befestigungselement (100) und den Hitzeschild (84, 86) axial an der Lagerstützstruktur (80, 82) festzuhalten.
     


    Revendications

    1. Ensemble d'interface de fixation (70) pour un moteur à turbine à gaz, comprenant :

    un composant configuré pour se fixer à une structure statique de moteur ;

    un élément de fixation (100) ayant une partie de corps filetée (104) et une partie de tête de plus grand diamètre (106), la partie de corps filetée devant être insérée dans des trous alignés (94, 98) dans le composant et la structure statique de moteur ; et caractérisé en ce qu'il comprend en outre

    une pince (102) ayant une ouverture centrale (112) qui reçoit la partie de corps filetée (104) de sorte que la pince (102) se place entre la partie de tête de plus grand diamètre (106) et le composant,

    et en ce que le composant comprend un écran thermique (84, 86), et en ce que l'écran thermique (84, 86) comprend une fine plaque de tôle (88) ayant une partie de bord radialement extérieure (90) définie par une bride de montage s'étendant circonférentiellement (92) ayant un premier côté et un second côté, et dans lequel le premier côté est en prise contigüe directe avec la structure statique de moteur et le second côté est en prise contigüe directe avec la pince (102).


     
    2. Ensemble selon la revendication 1, dans lequel la structure statique de moteur comprend une rainure s'étendant circonférentiellement (124), et une partie de la pince (102) est logée à l'intérieur de la rainure (124) pour maintenir axialement la pince (102), l'élément de fixation (100) et un écran thermique (84, 86) à la structure statique de moteur.
     
    3. Ensemble selon la revendication 2, dans lequel la pince (102) comprend une partie de corps généralement plate (110) définissant l'ouverture centrale (112) et qui comprend une pluralité de doigts de préhension (114) s'étendant vers l'extérieur à partir de la partie de corps plate (110) pour saisir la partie de tête de plus grand diamètre (106).
     
    4. Ensemble selon la revendication 2 ou 3, dans lequel l'élément de fixation (100) comprend un boulon à tête en T.
     
    5. Ensemble selon une quelconque revendication précédente, dans lequel la structure statique de moteur comprend une structure de support de palier (80, 82), et comprenant un écrou (108) fileté sur la partie de corps filetée (104) pour serrer la pince (102) et l'écran thermique (84, 86) entre la partie de tête de plus grand diamètre (106) et la structure de support de palier (80, 82).
     
    6. Ensemble selon une quelconque revendication précédente, dans lequel la partie de tête de plus grand diamètre (106) comprend une pluralité de bords latéraux linéaires (126), et dans lequel la pince (102) comprend une partie de corps généralement plate (110) définissant l'ouverture centrale (112) et qui comprend une pluralité de doigts de préhension (114) s'étendant vers l'extérieur à partir de la partie de corps plate (110) pour saisir la partie de tête de plus grand diamètre (106) au niveau de chacun des bords latéraux linéaires (126).
     
    7. Ensemble selon la revendication 5 ou 6, dans lequel chaque doigt de préhension (114) comprend une extrémité distale courbée (128) qui s' étend sur une face d' extrémité tournée vers l' extérieur (130) de la partie de tête de plus grand diamètre (106).
     
    8. Ensemble de moteur à turbine à gaz, comprenant :

    au moins un arbre (40, 50) définissant un axe de rotation (A) de moteur ;

    au moins un compresseur (24) et au moins une turbine (28) reliés l'un à l'autre par l'au moins un arbre (40, 50) ;

    au moins un palier (76, 78) supportant l'au moins un arbre (40, 50) pour une rotation autour de l'axe de rotation (A) de moteur, le palier (76, 78) étant placé avec un compartiment de palier (74) comprenant une structure de support de palier (80, 82) ; et

    l'ensemble d'interface de fixation selon une quelconque revendication précédente, dans lequel la structure statique de moteur est une structure de support de palier (80, 82) et le composant est un écran thermique (84, 86).


     
    9. Ensemble de moteur à turbine à gaz selon la revendication 8, dans lequel la partie de tête de plus grand diamètre (106) du boulon à tête en T comprend une pluralité de bords latéraux linéaires (126), et dans lequel un doigt de préhension (114) saisit la partie de tête de plus grand diamètre (106) au niveau de chacun des bords latéraux linéaires (126).
     
    10. Ensemble de moteur à turbine à gaz selon la revendication 9, dans lequel l'au moins un palier (76, 78) comprend au moins un premier et un second paliers supportés respectivement par des première et seconde structures de support de palier (80, 82), et comprenant une bride de carter d'échappement de turbine qui est serrée entre les première et seconde structures de support de palier (80, 82) par l'au moins un élément de fixation (100).
     
    11. Ensemble de moteur à turbine à gaz selon la revendication 10, dans lequel l'écran thermique (84, 86) comprend un premier écran thermique (84) placé entre la pince (102) et la première structure de support de palier (80), et comprenant un second écran thermique (86) placé entre la seconde structure de support de palier (82) et un écrou (108) fileté sur la partie de corps filetée (104).
     
    12. Ensemble de moteur à turbine à gaz selon l'une quelconque des revendications 9 à 11, dans lequel la structure de support de palier (80, 82) comprend une rainure s'étendant circonférentiellement (124), et dans lequel une partie de la pince (102) est logée à l'intérieur de la rainure (124).
     
    13. Procédé d'installation d'un écran thermique (84, 86) sur une structure de support de palier (80, 82) d'un moteur à turbine à gaz comprenant les étapes :

    (a) de fourniture d'une pince (100) ayant une partie de corps filetée (104) et une partie de tête de plus grand diamètre (106), et d'une pince (102) ayant une ouverture centrale (112) et une pluralité de doigts de préhension (114) ;

    (b) d'insertion de la partie de corps filetée (104) dans l'ouverture centrale (112) dans la pince (102) et dans les trous alignés (94, 98) dans l'écran thermique (84, 86) et de la structure de support de palier (80, 82) de sorte que la pince (102) se place entre la partie de tête de plus grand diamètre (106) et l'écran thermique (84, 86) et que les doigts de préhension (114) saisissent la partie de tête de plus grand diamètre (106) ; et

    (c) de serrage d'un écrou (108) sur la partie de corps filetée (104) pour serrer l'écran thermique (84, 86) entre la pince (102) et la structure de support de palier (80, 82),

    dans lequel l'écran thermique (84, 86) comprend une fine plaque de tôle (88) ayant une partie de bord radialement extérieure (90) définie par une bride de montage s'étendant circonférentiellement (92) ayant un premier côté et un second côté, et dans lequel le premier côté est en prise contigüe directe avec la structure statique de moteur et le second côté est en prise contigüe directe avec la pince (102).
     
    14. Procédé selon la revendication 13, comprenant la fourniture d'une rainure s'étendant circonférentiellement (124) dans la structure de support de palier (80, 82) et l'insertion d'une partie de la pince (102) à l'intérieur de la rainure (124) pour maintenir axialement la pince (102), l'élément de fixation (100) et l'écran thermique (84, 86) à la structure de support de palier (80, 82).
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description