(19)
(11)EP 2 973 612 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 14769095.2

(22)Date of filing:  12.03.2014
(51)Int. Cl.: 
H01B 11/06  (2006.01)
H01B 7/295  (2006.01)
H01B 3/30  (2006.01)
(86)International application number:
PCT/US2014/024817
(87)International publication number:
WO 2014/151041 (25.09.2014 Gazette  2014/39)

(54)

FOAMED POLYMER SEPARATOR FOR CABLING

GESCHÄUMTER POLYMERABSCHEIDER FÜR VERKABELUNG

SÉPARATEUR EN POLYMÈRE EXPANSÉ POUR CÂBLAGE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 15.03.2013 US 201313840905

(43)Date of publication of application:
20.01.2016 Bulletin 2016/03

(73)Proprietor: General Cable Technologies Corporation
Highland Heights KY 41076 (US)

(72)Inventors:
  • BROWN, Scott M.
    Independence, Kentucky 41051 (US)
  • THWAITES, Stephen A.
    Walton, Kentucky 41094 (US)
  • SIRIPURAPU, Srinivas
    Carmel, Indiana 46032 (US)

(74)Representative: Zambardino, Umberto et al
Botti & Ferrari S.r.l. Via Cappellini, 11
20124 Milano
20124 Milano (IT)


(56)References cited: : 
JP-A- 2002 208 316
US-A1- 2009 236 120
US-A1- 2011 284 287
US-A1- 2013 037 302
US-B2- 7 813 605
US-A1- 2004 055 781
US-A1- 2011 220 390
US-A1- 2012 061 120
US-A1- 2013 048 338
  
  • TOMOYUKI NEMOTO ET AL: "Nanocellular foams-cell structure difference between immiscible and miscible PEEK/PEI polymer blends", POLYMER ENGINEERING AND SCIENCE., vol. 50, no. 12, 30 August 2010 (2010-08-30), pages 2408-2416, XP055310647, US ISSN: 0032-3888, DOI: 10.1002/pen.21766
  • TAO LIU ET AL: "Microstructure and Properties of Microcellular Poly (phenylene sulfide) Foams by Mucell Injection Molding", POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, vol. 52, no. 5, 4 March 2013 (2013-03-04), pages 440-445, XP055310791, US ISSN: 0360-2559, DOI: 10.1080/03602559.2012.748803
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

Field of the Invention



[0001] The present application relates to a foamed thermoplastic polymer separator for cabling. More specifically, the foamed thermoplastic polymer separator provides electrical separation between conductors in a cable, such as a data communications cable.

Background of the Invention



[0002] Conventional data communications cables typically comprise multiple pairs of twisted conductors enclosed within a protective outer jacket. These cables often include twisted pair separators in order to provide physical distance (i.e., separation) between the pairs within a cable, thereby reducing crosstalk. Conventional separators are typically made of dielectric materials, such as polyolefin and fluoropolymers, which provide adequate electrical insulation.

[0003] Standard materials used in the formation of separators, like polyolefins and certain fluoropolymers, are disadvantageous for a number of reasons. In the event a portion of the cable ignites, it is desirable to limit the amount of smoke produced as a result of the melting or burning of the combustible portions (e.g., a separator) of the cable. It is also desirable to prevent or limit the spread of flames along the cable from one portion of the cable to another. The conventional materials used for cable separators have poor smoke and/or flame-retardant properties. Therefore, those materials increase the amount of smoke that is emitted in the event of a fire, as well as the distance that the flame travels along the burning cable. In order to mitigate these drawbacks, some manufacturers add flame retardants and smoke suppressants to the conventional polyolefin and fluoropolymer materials. However, smoke suppressants and flame retardants often increase the dielectric constant and dissipative factors of the separator, thereby adversely affecting the electrical properties of the cable by increasing the signal loss of the twisted pairs within close proximity to the separator. Also, flame retardants and smoke suppressants generally contain halogens, which are undesirable because hazardous acidic gases are released when halogens burn.

[0004] Moreover, the addition of the separator also adds weight to the cable. It is desirable to keep the weight of the cable as low as possible, for ease of transporting to the job site and for reducing the requirements on supports within the building, for example. To reduce the impact on electrical performance and also to reduce the weight of the cable, some manufacturers may "foam" the separators in order to reduce the amount of material used. A foamed material is any material that is in a lightweight cellular form resulting from introduction of gas bubbles during the manufacturing process. However, foaming of conventional separator materials only minimally reduces the amount of material used because the amount of foaming is limited by the resulting physical strength of the foam. The separator must have sufficient strength to prevent damage during cable processing or manufacturing. Additionally, crushing or deformation of the foamed separators can occur if the foamed material does not have adequate strength, resulting in compaction and less separation between twisted pairs. As a result, traditional foamed separators often possess undesirable mechanical stability.

[0005] Accordingly, in light of those drawbacks associated with conventional separators, there is a need for a cable separator that adequately reduces crosstalk between twisted pairs within the cable, while simultaneously improving the flame spread and smoke emission properties of the cable without the addition of halogens. Cable separators that are structurally sound and as lightweight as possible are also desirable.

Summary of the Invention



[0006] Accordingly, an exemplary embodiment of the present invention provides a cable separator comprising a preshaped body having a longitudinal length, wherein the preshaped article is substantially entirely formed of a foamed thermoplastic polymer having a glass transition temperature above 160°C and being halogen-free.

[0007] The present invention may also provide a data communication cable comprising a plurality of conductors and a separator. The separator includes a preshaped body having a longitudinal length, wherein the preshaped body is substantially entirely formed of a foamed thermoplastic polymer having a glass transition temperature above 160°C and being halogen-free. The separator separates the plurality of conductors.

[0008] The present invention may also provide a method of making a cable including the steps of providing a foamed thermoplastic polymer having a glass transition temperature above 160°C and being halogen-free, and extruding the foamed polymer material to form a separator having a predetermined shape. A plurality of conductors is then provided. The separator is positioned between the plurality of conductors after forming the separator having the predetermined shape and without further manipulation of the separator. An outer jacket is then extruded that surrounds the separator and the plurality of conductors.

[0009] Other objects, advantages and salient features of the invention will become apparent from the following detailed description, which, taken in conjunction with the annexed drawings, discloses a preferred embodiment of the present invention.

Brief Description of the Drawings



[0010] A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:

FIG. 1 is cross-sectional end view of a foamed separator for cabling in accordance with an exemplary embodiment of the present invention;

FIG. 2A is a cross-sectional end view of a data communication cable including the foamed separator illustrated in FIG. 1, in accordance with an exemplary embodiment of the present invention;

FIG. 2B is a cross-sectional end view of a data communication cable in accordance with an exemplary embodiment of the present invention; and

FIG. 2C is a cross-sectional end view of a data communication cable in accordance with an exemplary embodiment of the present invention.


Detailed Description of the Exemplary Embodiments



[0011] Referring to FIGS. 1 and 2A, a cable separator 100 according to an exemplary embodiment of the present invention generally comprises a preshaped body 102 having a longitudinal length that is preferably substantially entirely formed of a foamed thermoplastic polymer material. The foamed polymer material is a high-performance thermoplastic polymer having a glass transition temperature above 160°C and is halogen-free. Use of the foamed polymer to form the cable separator improves the smoke and flame resistance of the resulting cable, improves the electrical performance of the cable, improves the rigidity (and thus structural integrity) of the separator, and decreases the weight of the overall cable.

[0012] The preshaped body 102 of the separator 100 may take any variety of shapes, provided that the selected shape is suitable to provide conductor separation in a data communication cable 200. As shown in FIG. 1, the separator body 102 may form a substantially crossweb shape. The separator body 102 may comprise one or more projections 103 extending outwardly from the longitudinal length of the body 102. That is, the projections 103 extend outwardly from a center of the body 102. As depicted in FIG. 1, the separator 100 preferably has four projections 103, although any number of projections 103 may be used. In at least one embodiment, the separator 100 comprises four preshaped projections 103 extending from the center of the body 102, whereby each projection 103 is perpendicular to the adjacent projection 103.

[0013] Each projection 103 may have a first end 106 originating from a center of the body 102 and a second end 108 at which the projection 103 terminates. Along the length of the projection 103, between the first end 106 and the second end 108, the projection 103 may taper. Specifically, the projection 103 may be thickest at its first end 106 and narrowest at its second end 108.

[0014] According to one embodiment, the body 102 may be about 0.025-0.035 inches wide (not including the width of the projections 103), and the separator 100 as a whole may be about 0.14-0.25 inches in width and height.

[0015] Referring to FIG. 2B, a separator 100' according to another exemplary embodiment of the present invention is substantially the same as the separator 100 of FIG. 2A, except that it preferably has larger dimensions. More specifically, the separator 100' is sized such that the projections 103' of the preshaped body 102' preferably extend to the jacket of the cable.

[0016] Referring to FIG. 2C, a separator 100" according to yet another exemplary embodiment of the present invention may be preshaped in the form of a substantially flat member. The substantially flat member may be a tape, for example. The substantially flat separator 100" may have a wider center with narrowing ends.

[0017] In all embodiments, the separator is substantially entirely formed of a foamed high-performance thermoplastic polymer, which has a glass transition temperature above 160°C and which is halogen-free. Materials which are halogen-free contain less than 900 parts per million (ppm) of either chlorine or bromine, and less than 1500 ppm total halogens. A high-performance polymer with a high glass transition temperature (above 160°C) has high flame retardance/resistance and low smoke emission when subjected to a flame. Further, high-performance thermoplastic polymers have inherently high strength and toughness, which improves their mechanical performance in a variety of high-stress applications. High-performance polymer materials suitable for forming the separator of the present invention include, but arc not limited to, polyethersulfone, poly(arylether sulfonc), poly(biphenylether sulfone), polysulfone, polyphenylene, polyimide, polyphenylsulfone, polyphenylenesulfide, poly(aryletherketone), poly(etheretherketone), and blends thereof. According to one embodiment, the polymer materials may be homopolymers, copolymers, alternating copolymers or block copolymers. If the material is a copolymer of the above-mentioned polymers, it is preferably a siloxane copolymer thereof.

[0018] Unlike conventional materials used to form separators, no smoke suppressants or flame retardants need to be added to the polymer foam of the present invention to meet the mandatory burn performance required by federally regulated standards. Thus, the separators of the present invention need not include any halogen-containing additives. As a result, in the event of a fire, no hazardous acidic gasses would be released. Further, it is advantageous that no additives are needed for the separator, because they increase the effective dielectric constant and dissipative factors of the separator, thus increasing signal loss of the cable.

[0019] The smoke and flame spread performance of a conventional halogen-containing ethylene chlorotrifluoroethylene (ECTFE) material is compared to halogen-free 50% foamed polyetherimide (PEI) in Table 1 below. Specifically, crossweb separators made of each material were incorporated into two different cables - Construction 1 and Construction 2. Construction 2 is simply a larger cable, having a larger crossweb, than Construction 1. The burn performance was tested according to the National Fire Protection Association (NFPA) standards, specifically NFPA 262. Smoke performance is measured by the average optical density and peak optical density of smoke. As can be seen, the PEI foam exhibited improved smoke performance and comparable flame spread performance over the conventional ECTFE for both cable constructions. Further, the PEI foam exhibited the same flame spread performance as ECTFE for Construction 1, and improved flame spread performance over ECTFE for Construction 2. The PEI foam separators meet all federally regulated standards, which require five feet or less of flame spread, a maximum of 0.15 average optical density of smoke, and a maximum of 0.50 peak optical density of smoke.
Table 1. Smoke and Flame Performance of Various Polymer Materials
 Construction 1Construction 2
 ECTFEPEI FoamECTFEPEI Foam
Flame spread (ft) 1.0 1.0 2.0 1.5
Average Optical Density (smoke) 0.14 0.10 0.12 0.08
Peak Optical Density (smoke) 0.29 0.20 0.30 0.21


[0020] The separators of the exemplary embodiments of the present invention are "preshaped" in that they are manufactured into a desired shape which is maintained during the cable construction and thereafter. Using a preshaped separator is beneficial in that once the separator is formed, it does not require further configuring or arranging to create a desired shape for use in a cable. That is, the cable manufacturing process is streamlined by preshaping or preforming the separator and thus requiring no further manipulation of the separator when completing the cable construction (e.g., adding a jacket and twisted wire pairs). The polymer foam preferably has, however, enough flexibility to allow it to be constructed into the cable, while also having sufficient rigidity such that it will substantially maintain its shape during manufacture, installation and use of the cable. The rigidity of the polymer separator adds structure and stiffness to the cable, which is desirable to prevent kinking of the cable, such as during the pulling out process from the cable packaging. A stiffer cable also reduces sag between support points in a building, thereby reducing drag during installation.

[0021] High-performance polymers which have higher tensile strength, tensile modulus, flexural strength and flexural modulus as compared to other materials are well suited for forming separators. Materials having higher tensile/modulus are stiffer than materials with lower tensile strength/modulus and are not as easily deformed when forces are applied to them. Materials having higher flexural strength and flexural modulus resist bending better than materials with lower flexural strength/modulus and are also not as easily deformed when a flexural force is applied to them. Tensile strength/modulus was measured for a variety of conventional polymer materials according to Active Standard ASTM D638, and flexural strength/modulus was measured for the same polymer materials according to Active Standard ASTM D790. As can be seen in Table 2 below, polyetherimide (PEI) and polyphenylsulfone (PPSU), both halogen-free, outperform conventional halogenated materials, such as, fluorinated ethylene propylene (FEP), ethylene chlorotrifluoroethylene (ECTFE), perfluoromethylalkoxy (MFA) and flame-retardant polyethylene (FRPE) in tensile strength, tensile modulus, flexural strength and flexural modulus. The PEI and PPSU materials, both of which are high-performance polymers, also outperform high density polyethylene (HDPE), which is not a high-performance polymer, in the same categories. The flexural strength of FEP and MFA is so low that neither can be reliably measured.
Table 2. Material Properties of Various Polymer Materials
 FEPHDPEECTFEMFAPEIFRPEPPSU
Halogenated? Yes No Yes Yes No Yes No
Specific gravity 2.17 1.2 1.68 2.15 1.27 1.20-1.65 1.29
Tensile Strength (Mpa) 27 24 54 32 110 16-17 70
Tensile Modulus (MPa) 345 1030 1650 500 3580 1100 2340
Flexural Strength (MPa) --- 40 50 --- 165 17 90
Flexural Modulus (MPa) 520 1520 1370 650 3510 510 2410


[0022] By foaming the polymer of the separators of the present invention, the amount of material needed to form the separator is significantly reduced as compared to conventional cable separators, thereby reducing the overall weight of the cable and reducing the amount of flame and smoke producing material. As can be seen in Table 2, some of the high-performance polymer materials also have lower specific gravity than conventional polymer materials, thus further reducing the weight of the resulting separator. High-performance polymers which have glass transition temperatures above 160°C are preferred because they have high tensile strength which allows for higher foam rates to be achieved, while still maintaining the required strength needed for processing and manufacture. The polymer separators of the present invention may have foam rates of between 30% and 80%, which is significantly higher than the conventional cable construction materials. At higher foam rates, the conventional materials are susceptible to crushing and deformation, thereby jeopardizing the electrical properties of the cable.

[0023] One further advantage of the polymer foam involves its use in plenum style communication cables. The use of conventional polymer materials for separators in plenum style cables requires special manufacturing equipment, as these polymers are highly corrosive to unprotected metals. Special corrosion-resistant metals, such as austenitic nickel-chromium based super alloys (i.e., Inconel® and Hastelloy®), must therefore be used. The specialty equipment required to process these materials is expensive, so the use of certain high-performance polymers, such as PEI and PPSU, to form separators provides the added advantage of reducing manufacturing costs.

[0024] The separator may be formed using melt processable materials, such as foamed or solid polymers or copolymers. The separator may be foamed through a chemical process, using gas injection or other such methods known to one skilled in the art to achieve uniform fine air bubbles throughout the cross-section of the separator. As is known to one skilled in the art, polymer resins may be foamed with the use of one or more blowing agents. Examples of blowing agents include, but are not limited to, inorganic agents, organic agents, and chemical agents. Examples of inorganic blowing agents include, without limitation, carbon dioxide, nitrogen, argon, water, air nitrogen, and helium. Examples of organic blowing agents include, without limitation, aliphatic hydrocarbons having 1-9 carbon atoms, aliphatic alcohols having 1-3 carbon atoms, and fully and partially halogenated aliphatic hydrocarbons having 14 carbon atoms. Exemplary aliphatic hydrocarbons that may be used include, without limitation, methane, ethane, propane, n-butane, isobutane, n-pentane, isopentane, neopentane, and the like. Exemplary aliphatic alcohols include, without limitation, methanol, ethanol, n-propanol, and isopropanol. Fully and partially halogenated aliphatic hydrocarbons can be used and include, without limitation, fluorocarbons, chlorocarbons, and chlorofluorocarbons. Examples of fluorocarbons include methyl fluoride, perfluoromethane, ethyl fluoride, 1,1-difluoroethane (HFC-152a), 1,1,1-trifluoroethane (HFC-143a), 1,1,1,2-tetrafluoroethane (HFC-134a), pentafluoroethane, difluoromethane, perfluoroethane, 2,2-difluoropropane, 1,1,1-trifluoropropane, perfluoropropane, dichloropropane, difluoropropane, perfluorobutane, perfluodichloropropane, difluoropropane, perfluorobutane, perfluorocyclobutane. Partially halogenated chlorocarbons and chlorofluorocarbons for use in this invention include methyl chloride, methylene chloride, ethyl chloride, 1,1,1-trichloroethane, 1, 1-dichloro-1-fluoroethane (HFC-141b), 1-chloro-1,1-difluoroethane (HCFC-142), chlorodifluoromethane (HCFC-22), 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123) and 1-chloro-1,2,2,2-tetrafluoroethane (HCFC-124). Fully halogenated chlorofluorocarbons include trichloromonofluoromethane (CFC-11), dichlorodifluoromethane (CFC-12), trichlorotrifluoroethane (CFC-113), 1,1,1-trifluoroethane, pentafluoroethane, dichlorotetrafluoroethane (CFC-114), chloroheptafluoropropane, and dichlorhexafluoropropane. However in preferred embodiments, the blowing agents used to foam the separators are halogen-free. Examples of chemical blowing agents that can be used include, without limitation, azodicarbonaminde, azodiisobutyronitrile, benzenesulfonhydrazide, 4,4-oxybenzene sulfonylsemicarbazide, p-toluene sulfonyl semicarbazide, barium azodicarboxylate, N,N'-dimethyl-N,N'-dinitrosoterephthalamide, trihydrazino triazine and 5-phenyl-3,6-dihydro-1,3,4-oxadiazine-2-one. As in known in the art, the blowing agents may be used in various states (e.g., gaseous, liquid, or supercritical).

[0025] As shown in FIGS. 2A, 2B and 2C, separators 100, 100' and 100" of the present invention may be used in a data communication cable 200 for separating a plurality of conductors 202. While not limited to such an embodiment, the plurality of conductors 202 may be organized into twisted conductor pairs 206. In that construction, the separator physically separates each of the twisted conductor pairs 206. The data communication cable 200 may also comprise a protective jacket 204 which surrounds the conductors 202.

[0026] As shown in FIG. 2A, the projections 103 of the separator 100 may extend sufficiently far so as to provide physical separation between the conductor pairs 206, but not as far as the inside of the projective jacket 204. Alternatively, as shown in FIG. 2B, the projections 103' of the separator 100' may extend to the inside of the protective jacket 204 without extending beyond the conductor pairs 206.

[0027] As shown in FIG. 2C, the separator 100" may be preshaped as a substantially flat member. The substantially flat member may be in the form of a tape, for example. In this embodiment, the separator 100" generally forms two channels to separate one group of conductor pairs 206 from another group of conductor pairs 206.

[0028] To construct the data communication cable of the present invention, a separator is first formed by extruding the foamed polymer material of the present invention into a predetermined shape. According to one embodiment, the predetermined shape may be a crossweb. According to yet another embodiment, the predetermined shape may be a substantially flat member. Next, a plurality of conductors is provided, and the separator is positioned between groupings of the conductors. With a crossweb shape, the separator separates the plurality of conductors into four groupings. With a substantially flat member shape, the separator separates the plurality of conductors into two groupings. The separator has a predetermined shape, thus no manipulation is needed when positioning the separator between the conductors. Lastly, an outer jacket is extruded. The outer jacket surrounds the separator and the plurality of conductors, and its application requires no further manipulation of the separator.

[0029] While embodiments comprising foamed PEI are described herein, these embodiments do not form part of the invention but rather represent background art useful for understanding the invention.


Claims

1. A cable separator, comprising:

a preshaped body having a longitudinal length,

wherein said preshaped body is substantially entirely formed of a foamed thermoplastic polymer having a glass transition temperature above 160 °C and is selected from the group consisting of polyethersulfone, poly(arylether sulfone), poly(biphenylether sulfone), polysulfone, polyphenylene, polyimide, polyphenylsulfone, poly(aryletherketone), poly(etheretherketone), and blends thereof; and

wherein the preshaped body is halogen-free.


 
2. The cable separator according to claim 1, wherein
said foamed thermoplastic polymer has a foam rate of between 30% and 80%.
 
3. The cable separator according to claim 1, wherein
said preshaped body includes one or more projections extending in an outward direction.
 
4. The cable separator according to claim 3, wherein
said preshaped body is a crossweb.
 
5. The cable separator according to claim 1, wherein
said preshaped body is a substantially flat member.
 
6. A data communication cable, comprising:

a plurality of conductors; and

a separator, including:

a preshaped body having a longitudinal length,

wherein said preshaped body is substantially entirely formed of a foamed thermoplastic polymer having a glass transition temperature above 160 °C and is selected from the group consisting of polyethersulfone, poly(arylether sulfone), poly(biphenylether sulfone), polysulfone, polyphenylene, polyimide, polyphenylsulfone, poly(aryletherketone), poly(etheretherketone), and blends thereof; and wherein the preshaped body is halogen-free, and

wherein said separator separates said plurality of conductors.


 
7. The data communication cable according to claim 6, wherein
said foamed thermoplastic polymer has a foam rate of between 30% and 80%.
 
8. The data communication cable according to claim 6, wherein
said preshaped body includes one or more projections extending in an outward direction.
 
9. The data communication cable according to claim 8, wherein
said preshaped body is a crossweb.
 
10. The data communication cable according to claim 6, wherein
said preshaped body is a substantially flat member.
 
11. The data communication cable according to claim 6, wherein
said plurality of conductors comprises a plurality of twisted conductor pairs.
 
12. The data communication cable of claim 6, further comprising
a protective jacket surrounding said plurality of conductors.
 
13. A method of manufacturing a cable, comprising the steps of:

providing a foamed thermoplastic polymer having a glass transition temperature above 160 °C and is selected from the group consisting of polyethersulfone, poly(arylether sulfone), poly(biphenylether sulfone), polysulfone, polyphenylene, polyimide, polyphenylsulfone, poly(aryletherketone), poly(etheretherketone), and blends thereof; and wherein the foamed thermoplastic polymer is halogen-free;

extruding said foamed thermoplastic polymer to form a separator having a predetermined shape;

providing a plurality of conductors;

positioning said separator between said plurality of conductors after forming said separator having said predetermined shape and without further manipulation of said separator; and

extruding an outer jacket that surrounds said separator and said plurality of conductors.


 
14. The method of claim 13, wherein
said predetermined shape is a crossweb.
 
15. The method of claim 13, wherein
said predetermined shape is a substantially flat member.
 


Ansprüche

1. Ein Kabeltrenner, bestehend aus:
einem vorgeformten Körper mit einer Länge in Längsrichtung, wobei der vorgeformte Körper im Wesentlichen vollständig aus einem geschäumten thermoplastischen Polymer mit einer Glasübergangstemperatur von über 160° C gebildet ist und aus der Gruppe ausgewählt ist, bestehend aus Polyethersulfon, Poly(aryletherSulfon), Poly(biphenylethersulfon), Polysulfon, Polyphenylen, Polyimid, Polyphenylsulfon, Poly(aryletherketon), Poly(etheretherketon) und Mischungen davon; und wobei der vorgeformte Körper halogenfrei ist.
 
2. Der Kabeltrenner nach Anspruch 1, wobei das geschäumte thermoplastische Polymer eine Schaumrate zwischen 30% und 80% aufweist.
 
3. Der Kabeltrenner nach Anspruch 1, wobei der vorgeformte Körper einen oder mehrere Vorsprünge aufweist, die sich in einer nach außen gerichteten Richtung erstrecken.
 
4. Der Kabeltrenner nach Anspruch 3, wobei der genannte vorgeformte Körper ein Kreuzgewebe ist.
 
5. Der Kabeltrenner nach Anspruch 1, wobei der vorgeformte Körper ein im Wesentlichen flaches Element ist.
 
6. Ein Datenkommunikationskabel, bestehend aus:

einer Vielzahl von Leitern; und

einem Trenner, einschließlich:
einem vorgeformten Körper mit einer Länge in Längsrichtung, wobei der vorgeformte Körper im Wesentlichen vollständig aus einem geschäumten thermoplastischen Polymer mit einer Glasübergangstemperatur von über 160 °C geformt ist und ausgewählt ist aus der Gruppe bestehend aus Polyethersulfon, Poly(arylethersulfon), Poly(biphenylethersulfon), Polysulfon, Polyphenylen, Polyimid, Polyphenylsulfon, Poly(aryletherketon), Poly(etheretherketon) und Mischungen davon; und wobei der vorgeformte Körper halogenfrei ist, und wobei der Trenner die Vielzahl von Leitern trennt.


 
7. Das Datenkommunikationskabel nach Anspruch 6, wobei das geschäumte thermoplastische Polymer eine Schaumrate zwischen 30% und 80% aufweist.
 
8. Das Datenkommunikationskabel nach Anspruch 6, wobei der vorgeformte Körper einen oder mehrere sich nach außen erstreckende Vorsprünge aufweist.
 
9. Das Datenkommunikationskabel nach Anspruch 8, wobei der genannte vorgeformte Körper ein Kreuzgewebe ist.
 
10. Das Datenkommunikationskabel nach Anspruch 6, wobei der vorgeformte Körper ein im Wesentlichen flaches Element ist.
 
11. Datenkommunikationskabel nach Anspruch 6, wobei die Vielzahl von Leitern eine Vielzahl von verdrillten Leiterpaaren umfasst.
 
12. Das Datenkommunikationskabel nach Anspruch 6, umfasst einen Schutzmantel, der die genannte Mehrzahl von Leitern umgibt.
 
13. Ein Verfahren zur Herstellung eines Kabels, das die folgenden Schritte umfasst:

Bereitstellen eines geschäumten thermoplastischen Polymers mit einer Glasübergangstemperatur von über 160 °C und ausgewählt ist aus der Gruppe bestehend aus Polyethersulfon, Poly(arylethersulfon), Poly(biphenylethersulfon), Polysulfon, Polyphenylen, Polyimid, Polyphenylsulfon, Poly(aryletherketon), Poly(etheretherketon) und Mischungen davon; und wobei das geschäumte thermoplastische Polymer halogenfrei ist;

Extrudieren des geschäumten thermoplastischen Polymers zur Bildung eines Trenners mit einer vorbestimmten Form;

Bereitstellen einer Vielzahl von Leitern;

Positionieren des Trenners zwischen der Vielzahl von Leitern nach der Bildung des Trenners mit der vorbestimmten Form und ohne weitere Manipulation des Trenners; und

Extrudieren eines Außenmantels, der den genannten Trenner und die genannte Vielzahl von Leitern umgibt.


 
14. Die Methode nach Anspruch 13, wobei die vorgegebene Form ein Kreuzgewebe ist.
 
15. Das Verfahren nach Anspruch 13, wobei die vorgegebene Form ein im Wesentlichen flaches Element ist.
 


Revendications

1. Séparateur de câble, comprenant :

un corps préformé ayant une longueur longitudinale,

dans lequel ledit corps préformé est sensiblement entièrement formé d'un polymère thermoplastique expansé ayant une température de transition vitreuse supérieure à 160 °C et est sélectionné dans le groupe constitué d'une polyéthersulfone, d'une poly(aryléther sulfone), d'une poly(biphényléther sulfone), d'une polysulfone, d'un polyphénylène, d'un polyimide, d'une polyphénylsulfone, d'une poly(aryléthercétone), d'une poly(éther-éthercétone), et des mélanges de ceux-ci ; et

dans lequel le corps préformé est sans halogène.


 
2. Séparateur de câble selon la revendication 1, dans lequel
ledit polymère thermoplastique expansé présente un taux de mousse situé entre 30 % et 80 %.
 
3. Séparateur de câble selon la revendication 1, dans lequel
ledit corps préformé inclut une ou plusieurs saillies s'étendant dans une direction vers l'extérieur.
 
4. Séparateur de câble selon la revendication 3, dans lequel
ledit corps préformé est une bande en croix.
 
5. Séparateur de câble selon la revendication 1, dans lequel
ledit corps préformé est un élément sensiblement plat.
 
6. Câble de communication de données, comprenant :

une pluralité de conducteurs ; et

un séparateur, comprenant :

un corps préformé ayant une longueur longitudinale,

dans lequel ledit corps préformé est sensiblement entièrement formé d'un polymère thermoplastique expansé ayant une température de transition vitreuse supérieure à 160 °C et est sélectionné dans le groupe constitué d'une polyéthersulfone, d'une poly(aryléther sulfone), d'une poly(biphényléther sulfone), d'une polysulfone, d'un polyphénylène, d'un polyimide, d'une polyphénylsulfone, d'une poly(aryléthercétone), d'une poly(éther-éthercétone), et des mélanges de ceux-ci ; et dans lequel le corps préformé est sans halogène, et

dans lequel ledit séparateur sépare ladite pluralité de conducteurs.


 
7. Câble de communication de données selon la revendication 6, dans lequel
ledit polymère thermoplastique expansé présente un taux de mousse situé entre 30 % et 80 %.
 
8. Câble de communication de données selon la revendication 6, dans lequel
ledit corps préformé inclut une ou plusieurs saillies s'étendant dans une direction vers l'extérieur.
 
9. Câble de communication de données selon la revendication 8, dans lequel
ledit corps préformé est une bande en croix.
 
10. Câble de communication de données selon la revendication 6, dans lequel
ledit corps préformé est un élément sensiblement plat.
 
11. Câble de communication de données selon la revendication 6, dans lequel
ladite pluralité de conducteurs comprend une pluralité de paires de conducteurs torsadés.
 
12. Câble de communication de données selon la revendication 6, comprenant en outre
une gaine de protection entourant ladite pluralité de conducteurs.
 
13. Procédé de fabrication d'un câble, comprenant les étapes suivante :

la fourniture d'un polymère thermoplastique expansé ayant une température de transition vitreuse supérieure à 160 °C et est sélectionné dans le groupe constitué d'une polyéthersulfone, d'une poly(aryléther sulfone), d'une poly(biphényléther sulfone), d'une polysulfone, d'un polyphénylène, d'un polyimide, d'une polyphénylsulfone, d'une poly(aryléthercétone), d'une poly(étheréthercétone), et des mélanges de ceux-ci ; et dans lequel le polymère thermoplastique expansé est sans halogène ;

l'extrusion dudit polymère thermoplastique expansé pour former un séparateur ayant une forme prédéterminée ;

la fourniture d'une pluralité de conducteurs ;

le positionnement dudit séparateur entre ladite pluralité de conducteurs après la formation dudit séparateur ayant ladite forme prédéterminée et sans manipulation supplémentaire dudit séparateur ; et

l'extrusion d'une gaine externe qui entoure ledit séparateur et ladite pluralité de conducteurs.


 
14. Procédé selon la revendication 13, dans lequel
ladite forme prédéterminée est une bande en croix.
 
15. Procédé selon la revendication 13, dans lequel
ladite forme prédéterminée est un élément sensiblement plat.
 




Drawing