(19)
(11)EP 2 973 957 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 14765046.9

(22)Date of filing:  14.03.2014
(51)International Patent Classification (IPC): 
H02K 9/22(2006.01)
H02K 5/12(2006.01)
H02K 11/33(2016.01)
(86)International application number:
PCT/AU2014/000275
(87)International publication number:
WO 2014/138815 (18.09.2014 Gazette  2014/38)

(54)

AIR-COOLED ELECTRIC MACHINE AND METHOD OF ASSEMBLING THE SAME

LUFTGEKÜHLTE ELEKTRISCHE MASCHINE UND VERFAHREN ZUR MONTAGE DAVON

MACHINE ÉLECTRIQUE REFROIDIE À L'AIR ET SON PROCÉDÉ D'ASSEMBLAGE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 15.03.2013 US 201313833207

(43)Date of publication of application:
20.01.2016 Bulletin 2016/03

(73)Proprietor: Regal Beloit Australia Pty, Ltd.
3178 Rowville, Victoria (AU)

(72)Inventors:
  • CAMILLERI, Steven Peter
    Rowville, Victoria 3178 (AU)
  • NURSE, Stephen Scott
    Rowville, Victoria 3178 (AU)
  • TURNER, Matthew John
    Rowville, Victoria 3178 (AU)
  • ROHOZA, Rafal Pawel
    Rowville, Victoria 3178 (AU)

(74)Representative: Patel, Nikesh et al
A.A. Thornton & Co. 10 Old Bailey
London EC4M 7NG
London EC4M 7NG (GB)


(56)References cited: : 
EP-A1- 0 854 560
DE-A1- 10 361 748
DE-A1-102005 032 969
US-A- 5 253 613
US-A1- 2007 273 220
WO-A1-2004/013944
DE-A1- 19 917 628
DE-A1-102010 036 358
US-A1- 2004 239 195
US-A1- 2010 201 211
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] The field of the invention relates generally to electrical machines, and more particularly, to air cooling systems for electric machines.

    [0002] One of many applications for an electric motor is to operate a pump or a blower. The electric motor may be configured to rotate an impeller within a pump or blower, which displaces a fluid, causing a fluid flow. Many gas burning appliances include an electric motor, for example, water heaters, boilers, pool heaters, space heaters, furnaces, and radiant heaters. In some examples, the electric motor powers a blower that moves air or a fuel/air mixture through the appliance. In other examples, the electric motor powers a blower that distributes air output from the appliance.

    [0003] A common motor used in such systems is an alternating current (AC) induction motor. Typically, the AC induction motor is a radial flux motor, where the flux extends radially from the axis of rotation. Another type of motor that may be used in the application described above is an electronically commutated motor (ECM). ECMs may include, but are not limited to, brushless direct current (BLDC) motors, permanent magnet alternating current (PMAC) motors, and variable reluctance motors. Typically, these motors provide higher electrical efficiency than an AC induction motor. Some ECMs have an axial flux configuration in which the flux in the air gap extends in a direction parallel to the axis of rotation of the rotor.

    [0004] One problem associated with electric machines is that it is necessary to cool them because they generate heat, which reduces their efficiency and useful life. Motor components such as the stator and electronics boards generate high temperatures and are subjected to substantial thermal stresses. Accordingly, efficient motor cooling systems are necessary to prevent overheating of the motor components and to improve the overall electrical and mechanical performance and lifetime of the motor. Some known electrical machines may be air cooled by blowing air through or over them. However, some known air cooling designs are inefficient.

    [0005] DE 19917628 A1 discloses a pump having a housing which accommodates electronics arranged axially on the ventilated side of the motor. Thermal decoupling of motor and electronics between both flange radial sucking of cool air is arranged, guaranteeing reversal of the direction of flow and acceleration of the cool air by a fan.

    [0006] DE 10361748 A1 discloses a compact drive consisting of an electric motor, whose rotor shaft carries its cooling fan and an axial housing for electronic component groups on fan side of motor. Housing is coupled to the motor via an external coupler. At least on front side, facing motor, the housing is fitted with cooling ribs. Preferably mains side component groups are incorporated into coupler. Motor facing front side of the housing consists of cooler with cooling ribs, while waste heat generating components and groups are directly mounted on cooler.

    [0007] DE 102010036358 A1 discloses a blade angle adjusting drive for a wind power installation, comprising at least one electric motor having an engine housing, which is electrically coupled to an inverter and mechanically to a rotor blade which rotates about a blade axis by means of the electric motor, Wherein the electric motor is controlled or regulated by means of the converter, and the electric motor and the converter are combined to form a structural unit.

    [0008] US 2007273220 A1 discloses a controller-integrated motor includes a motor main body and a controller integrated with the motor main body to control the motor main body, the motor main body, including a stator core, a shaft which rotates to exert driving force on the motor main body, a frame which holds the stator core and the shaft, and an outer fan provided around the shaft so that the motor main body is recessed inward toward a rotational center of the shaft, the outer fan discharging cooling air stream to cool the motor main body, the controller being provided in proximity to an outer periphery of the frame, the motor main body being formed so that a cooling air stream from the outer fan flows in an axial direction of the shaft along an outer peripheral surface of the frame.

    [0009] DE 102005032969 A1 discloses an inverter motor comprising of a motor unit, an inverter, and a fan, such that the engine has one side formed with cooling fins. The cooling fins are formed on the side of the motor unit facing the housing of the inverter. The motor unit has a housing with a thermal barrier made of plastics, and formed with respect to the inverter. The fan is axially arranged on a face of the motor unit.

    [0010] EP 0854560 A1 discloses an electrical motor having an in line housing that contains the drive electronics and coupled to this is a separate motor that drives a cooling fan. Mounted between the fan and the motor is a circular element with radial fins. Within the drive electronics housing are a series of axial cooling fins. External air is drawn in through an end cap and passes over the radial fins to be circulated through the axial fins to cool the electronics.

    Summary of the Invention



    [0011] An aspect of the invention provides an electric machine comprising: a housing including at least one air intake, an air outlet, and an air passage extending between the at least one air intake and the air outlet; a substantially air-tight electronics enclosure located within the housing, the electronics enclosure comprising a first heat sink positioned at least partially within the air passage and thermally coupled to an electronics component positioned within said electronics enclosure; a substantially air-tight motor enclosure located within the housing, wherein said electronics enclosure and said motor enclosure are substantially thermally isolated from each other within said housing at least partially by the air passage; a second heat sink located within said motor enclosure, the second heat sink positioned at least partially within the air passage downstream of said first heat sink and thermally coupled to a stator positioned within said motor enclosure, wherein a cooling airflow through the at least one air intake flows through the air passage to cool said first heat sink and said second heat sink before the cooling airflow is exhausted through the air outlet; and a fan rotatably mounted at least partially within the air passage downstream of said first heat sink, wherein said fan is configured to pull the cooling airflow into the at least one air intake and across said first heat sink, so that said cooling airflow through the at least one air intake flows through the air passage to cool said first heat sink and said second heat sink before the cooling airflow is exhausted through the air outlet.

    [0012] In another aspect, the invention provides an electric machine comprising: a housing including at least two air intakes, wherein the at least two air intakes comprises a first air intake and a second air intake, an air outlet and an air passage extending between the at least two air intakes and the air outlet and wherein a cooling airflow through the first air intake flows through a first portion of the air passage to cool a first heat sink, a cooling airflow through the second air intake flows through a second portion of the air passage to cool a second heat sink, wherein the cooling airflow through the first and second portions of the air passage flows through a third portion of the air passage and is exhausted through the air outlet; a substantially air-tight electronics enclosure located within the housing, the electronics enclosure comprising the first heat sink positioned at least partially within the first portion of the air passage and thermally coupled to an electronics component positioned within the electronics enclosure; a substantially air-tight motor enclosure located within the housing, the motor enclosure comprising the second heat sink positioned at least partially within the second portion of the air passage, wherein said electronics enclosure and said motor enclosure are substantially thermally isolated from each other within said housing at least partially by the second portion of the air passage, wherein the second heat sink is thermally coupled to a stator positioned within the motor enclosure; and a fan rotatably mounted at least partially within the second portion of the air passage downstream of the second air intake and the first air intake, wherein rotation of the fan facilitates pulling air into the at least two air intakes.

    [0013] In another aspect, the invention provides a method of fabricating an electric motor, said method comprising: providing a housing including at least one air intake, an air outlet, and an air passage extending between the at least one air intake and the air outlet; positioning a substantially air-tight electronics enclosure located within the housing, the electronics enclosure including a first heat sink at least partially within the air passage and thermally coupled to an electronics component positioned within the electronics enclosure; providing a substantially air-tight motor enclosure within the housing, wherein the electronics enclosure and the motor enclosure are substantially thermally isolated from each other within the housing at least partially by the air passage; positioning a second heat sink located within the motor enclosure, the second heat sink at least partially within the air passage downstream of the first heat sink and thermally coupled to a stator positioned within the motor enclosure, wherein a cooling airflow through the at least one air intake flows through the air passage to cool the first heat sink and the second heat sink before the cooling airflow is exhausted through the air outlet; and providing a fan rotatably mounted at least partially within the air passage downstream of said first heat sink, wherein said fan is configured to pull the cooling airflow into the at least one air intake and across said first heat sink, so that said cooling airflow through the at least one air intake flows through the air passage to cool said first heat sink and said second heat sink before the cooling airflow is exhausted through the air outlet.

    [0014] In another aspect, the invention provides A method of fabricating an electric motor, said method comprising: providing a housing including: at least two air intakes, wherein the at least two air intakes comprises a first air intake and a second air intake, an air outlet and an air passage extending between the at least two air intakes and the air outlet and wherein a cooling airflow through the first air intake flows through a first portion of the air passage to cool a first heat sink, a cooling airflow through the second air intake flows through a second portion of the air passage to cool a second heat sink, wherein the cooling airflow through the first and second portions of the air passage flows through a third portion of the air passage and is exhausted through the air outlet; positioning a substantially air-tight electronics enclosure located within the housing, the electronics enclosure comprising the first heat sink positioned at least partially within the first portion of the air passage and thermally coupled to an electronics component positioned within the electronics enclosure; providing a substantially air-tight motor enclosure located within the housing, the motor enclosure comprising the second heat sink positioned at least partially within the second portion of the air passage, wherein said electronics enclosure and said motor enclosure are substantially thermally isolated from each other within said housing at least partially by the second portion of the air passage, wherein the second heat sink is thermally coupled to a stator positioned within the motor enclosure; and providing a fan rotatably mounted at least partially within the second portion of the air passage downstream of the second air intake and the first air intake, wherein rotation of the fan facilitates pulling air into the at least two air intakes.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0015] 

    FIG. 1 is a perspective cut-away view of an exemplary electric machine;

    FIG. 2 is an exploded view of the electric machine shown in FIG. 1;

    FIG. 3 is a perspective view of a motor heat sink shown in FIGS. 1 and 2:

    FIG. 4 is a perspective view of an electronics heat sink shown in FIGS. 1 and 2;

    FIG. 5 is a cross-sectional view of the electric machine shown in FIGS. 1 and 2;

    FIG. 6 is a perspective view of another exemplary electric machine; and

    FIG. 7 is a cross-sectional view of the electric machine shown in FIG. 6 and taken along line 7-7.


    DETAILED DESCRIPTION



    [0016] Systems and methods described herein provide an electric machine having an air cooling system. Electric machines such as motors typically include a motor assembly and electronics that generate high amounts of heat. To extend the lifetime of the electronics, it is important to keep the operating temperature down. The electric machine includes an air passage that facilitates a cooling airflow to cool an electronics heat sink before or separately from a motor heat sink to prevent thermal energy from the motor assembly increasing the electronics temperature and shortening its life. Additionally, a motor enclosure and an electronics enclosure are thermally isolated from each other to facilitate heat exchange between components in the enclosures.

    [0017] FIG. 1 is a perspective cut-away view of an exemplary axial flux electric machine 10 and FIG. 2 is an exploded view of electric machine 10. Components common to FIGS. 1 and 2 are identified with the same reference numerals. In the exemplary embodiment, electric machine 10 is an electric motor having a first end 12 and a second end 14. Alternatively, electric machine 10 may operate as an electric generator and/or be constructed as a radial flux electric machine. Electric machine 10 generally includes a housing 16, an adaptor plate 18, a motor heat sink 20, a motor assembly 22, a motor enclosure 24, a top controller board 26, a top housing 28, a fan assembly 30, an electronics heat sink 32, an electronics enclosure 34, a controller board or electronics component 36, and an inlet cover 38. Electric machine 10 also includes an air cooling system 100 that facilitates cooling motor assembly 22 and electronics component 36.

    [0018] In the exemplary embodiment, housing 16 is generally defined by adaptor plate 18, motor enclosure 24, top housing 28, inlet cover 38, and electronics enclosure 34, which is formed by a controller housing 40 and a controller cover 42. Motor assembly 22 generally includes a stator 44 and a rotor 46 coupled to a shaft 48, and a plurality of permanent magnets 49 are coupled to rotor 46 in any suitable configuration. In the exemplary embodiment, stator 44 is oriented adjacent rotor 46 in an axial flux configuration. Alternatively, stator 44 may be oriented at least partially surrounding rotor 46 in a radial flux configuration. Fan assembly 30 generally includes a fan 50 and a fan inlet 52. Fan 50 is coupled to a shaft first end 54, and a shaft second end 56 extends from housing 16 for coupling to a component (not shown) to be driven by rotating shaft 48, for example, a pump. In the exemplary embodiment, rotor 46 is rotatable within housing 16 and, more specifically, rotor 46 is rotatable within motor enclosure 24. Rotor 46 is driven through stator 44 by electronic control 36, for example, a sinusoidal or trapezoidal electronic control.

    [0019] In the exemplary embodiment, electronics enclosure 34 includes an inner cavity 58 defined by controller housing 40 and controller cover 42. Top controller board 26 is mounted within electronics enclosure 34 and facilitates control of a component of electric machine 10, for example, a user interface (not shown). Electronic control 36 is also mounted within electronics enclosure 34 and facilitates control of motor assembly 22. Electronics enclosure 34 is substantially air-tight and inner cavity 58 is substantially thermally isolated from other portions of electric machine 10. In particular, inner cavity 58 is substantially thermally isolated from motor enclosure 24 to facilitate preventing transfer of thermal energy to electronic control 36, which in many known motors directly affects the useful lifetime of electric machine 10.

    [0020] Electronic control 36 is thermally coupled to electronics heat sink 32 (shown in FIG. 3), which facilitates removal of thermal energy generated by electronic control 36 from electronics enclosure 34 as indicated by arrows 33. In the exemplary embodiment, electronics heat sink 32 extends through and seals an aperture 60 within controller housing 40 and includes a body portion 62 having a plurality of generally cylindrical heat fins 64 extending therefrom. However, heat fins 64 may have any suitable shape that enables heat sink 32 to function as described herein. Body portion 62 is thermally coupled to electronics control 36 and transfers thermal energy generated by electronics control 36 out of inner cavity 58 via heat fins 64, as described herein in more detail.

    [0021] In the exemplary embodiment, motor enclosure 24 includes an inner cavity 66 defined by motor enclosure 24 and motor heat sink 20. Motor assembly 22 is mounted within motor enclosure 24 and shaft first end 54 extends through an aperture 68 defined in motor enclosure 24. Shaft second end 56 extends through an aperture 70 defined in heat sink 20 and through an aperture 72 defined in adaptor plate 18. In the exemplary embodiment, adaptor plate 18 facilitates attachment of electric machine 10 to a system (not shown) to be driven by shaft 48. Aperture 70 is sealed by shaft 48 and bearings 74 such that air does not pass therethrough. Motor enclosure 24 is substantially air-tight and inner cavity 66 is substantially thermally isolated from other portions of electric machine 10. In particular, inner cavity 66 is substantially thermally isolated from electronics enclosure 34 to facilitate preventing transfer of thermal energy to electronic control 36.

    [0022] Motor assembly 22 is thermally coupled to motor heat sink 20 (shown in FIG. 4), which facilitates removal of thermal energy generated by motor assembly 22 from motor enclosure 24 as indicated by arrows 21. In the exemplary embodiment, motor heat sink 20 extends through and seals aperture 68 and includes a body portion 76 and a plurality of heat fins 78 extending therefrom. Body portion 76 is thermally coupled to stator 44 and thermal energy produced by stator 44 is transferred out of inner cavity via heat fins 78, as described herein in more detail.

    [0023] As shown in FIG. 1, electric machine 10 includes air cooling system 100 defined by housing 16. Air cooling system 100 generally includes an air intake 102 and an air outlet 104 fluidly connected by an air passage 106 defined through housing 16. In the exemplary embodiment, air passage 106 facilitates a flow of cooling airflow (shown by arrows 101) therethrough to dissipate heat from electronics heat sink 32 and motor heat sink 20. Air passage 106 includes a first portion 108, a second portion 110, a third portion 112, a fourth portion 114, and a fifth portion.

    [0024] In the exemplary embodiment, heat fins 64 are oriented at least partially within passage second portion 110 and heat fins 78 are oriented at least partially within passage fifth portion 116. Fan 50 is coupled to shaft first end 54 and is rotatably mounted within passage third portion 112. Rotation of fan 50 facilitates pulling air into air intake 102 such that the cooling airflow (shown by arrows 101) passes through passage first portion 108 and into passage second portion 110. The cooling airflow contacts heat sink 32 and removes heat generated by electronics component 36 and transferred through electronics heat sink body 62 and heat fins 64. The cooling airflow then passes through passage third portion 112, through passage fourth portion 114, and subsequently through passage fifth portion 116 where the cooling airflow removes heat generated by motor assembly 22 and transferred through motor heat sink body 76 and heat fins 78. The heated airflow is then exhausted from housing 16 through air outlet 104. In the exemplary embodiment, air outlet 104 is located a suitable distance from air intake 102 to facilitate preventing hot exhaust from being drawn back into air intake 102. Moreover, in the exemplary embodiment, electronics heat sink 32 is positioned at least partially within air passage 106 upstream of motor heat sink 20 positioned at least partially within air passage 106. Positioning electronics heat sink 32 upstream of motor heat sink 20 facilitates preventing the motor enclosure thermal energy being transferred to electronics enclosure 34 and electronics component 36 by the cooling airflow.

    [0025] Air cooling system 100 may also include a first air opening 118 and a second air opening 120 to facilitate directing the cooling airflow through electronics enclosure 34 (as shown by arrows 122). In the exemplary embodiment, first air opening 118 is formed through a wall 124 of motor enclosure 24 such that the cooling airflow passes from passage fourth portion 114 into inner cavity 58. Second air opening 120 is formed through a wall 126 of controller housing 40 such that the cooling airflow passing through first air opening 118 is directed back into air passage 106 past electronics heat sink 32. Alternatively, first and second air openings 118 and 120 may be formed in any suitable location within housing 16 that enables air cooling system 100 to function as described herein. Rotation of fan 50 facilitates directing the cooling airflow through electronics enclosure inner cavity 58 between first air opening 118 and second air opening 120 to facilitate cooling top controller board 26, electronics component 36, and/or any other components positioned within electronics enclosure 34.

    [0026] Air cooling system 100 may also include a third air opening 128 and a fourth air opening 130 to facilitate directing the cooling airflow through motor enclosure 24 (as shown by arrows 132). In the exemplary embodiment, third air opening 128 is formed through a wall 134 of motor enclosure 24 such that cooling airflow passes from passage fourth portion 114 into inner cavity 66. In the exemplary embodiment, third air opening 128 is positioned substantially across from first air opening 118. Fourth air opening 130 is formed through a wall 136 of motor enclosure 24 and/or may be defined by aperture 68 after shaft 48 is inserted therethrough. Fourth air opening 130 is formed such that the cooling airflow passing through third air opening 130 is directed back into air passage 106 behind fan 50 and downstream of electronics heat sink 32. Alternatively, third and fourth air openings 128 and 130 may be formed in any suitable location within housing 16 that enables air cooling system 100 to function as described herein. Rotation of fan 50 facilitates directing the cooling airflow through motor enclosure inner cavity 66 between third air opening 128 and fourth air opening 130 to facilitate cooling motor assembly 22.

    [0027] FIG. 5 is a cross-sectional view of electric machine 10 that is similar to the electric machine shown in FIGS. 1 and 2, except electric machine includes a shaft locking assembly 150. Like reference numerals have been used to represent like parts. In the exemplary embodiment, shaft locking assembly 150 includes a locking passage 152 formed through housing 16 and a locking aperture 154 formed at least partially through shaft 48. Passage 152 and aperture 154 are substantially aligned such that an object such as a screwdriver 156 may be inserted into passage 152 and aperture 154 to facilitate preventing rotation of shaft 48. When screwdriver 156 is inserted into passage 152 and aperture 154, any torque on shaft 48 is transferred to housing 16 by screwdriver 156 and prevents rotation of shaft 48. This is particularly useful when connecting and disconnecting shaft second end 56 to a driven system (not shown) such as a threaded pump impeller. In the exemplary embodiment, locking passage 152 and locking aperture 154 are located such that screwdriver 156 extends into housing 16 between rotor 46 and fan 50. Alternatively, locking passage 152 may be formed in housing 16 and locking aperture may be formed in shaft 48 in any suitable location that enables shaft locking assembly 150 to function as described herein.

    [0028] An exemplary method of assembling electric machine 10 is described herein. The method includes providing housing 16 having air intake 102, air outlet 104, and air passage 106 extending between air intake 102 and air outlet 104. Motor enclosure 24 and electronics enclosure 34 are located within housing 16 and are substantially thermally isolated from each other. Motor assembly 22 is coupled within motor enclosure 24 and electronics component 36 is coupled within electronics enclosure 34. Motor heat sink 20 is thermally coupled to motor assembly 22 and is positioned at least partially within air passage 106. Electronics heat sink 32 is thermally coupled to electronics component 36 and is positioned at least partially within air passage 106 upstream of motor heat sink 20. Fan 50 is rotatably mounted within air passage 106 to shaft 48 downstream of electronics heat sink 32, upstream of motor heat sink 20, and generally between motor enclosure 24 and electronics enclosure 34. Moreover, first air opening 118 and second air opening 120 may be formed in housing 16 to fluidly couple air passage 106 to electronics enclosure 34 to facilitate a cooling airflow therethrough. Similarly, third air opening 128 and fourth air opening 130 may be formed in housing 16 to fluidly couple air passage 106 to motor enclosure 24 to facilitate a cooling airflow therethrough. A locking passage 152 may be formed through housing 16 and a locking aperture passage 154 may be formed at least partially through shaft 48 to facilitate receiving an object and preventing rotation of shaft 48.

    [0029] FIG. 6 is a perspective view of another exemplary axial flux electric machine 200, and FIG. 7 is a cross-sectional view of electric machine 200 that includes an air cooling system 202. In the exemplary embodiment, electric machine 200 is an electric motor having a first end 212 and a second end 214. Alternatively, electric machine 200 may operate as an electric generator and/or be constructed as a radial flux electric machine. Electric machine 200 generally includes a housing 216, an adaptor plate 218, a motor heat sink 220, a motor assembly 222, a motor enclosure 224, a top housing 228, a fan assembly 230, an electronics heat sink 232, an electronics enclosure 234, a controller board or electronics component 236, and an inlet cover 238.

    [0030] In the exemplary embodiment, housing 216 is generally defined by adaptor plate 218, motor enclosure 224, top housing 228, electronics enclosure 234, and inlet cover 238. Motor assembly 222 generally includes a stator 244, a rotor 246 coupled to a shaft 248, and a plurality of permanent magnets 249 coupled to rotor 246 in any suitable configuration. In the exemplary embodiment, stator 244 is oriented adjacent rotor 246 in an axial flux producing configuration. Alternatively, stator 244 may be oriented in a radial flux producing configuration. Fan assembly 230 generally includes a fan 250, a cowl 251, and a fan inlet 252. Fan 250 is coupled to a shaft first end 254, and a shaft second end 256 extends from housing 216. Motor assembly 222 and fan assembly 230 operate in a manner similar to motor assembly 22 and fan assembly 30.

    [0031] In the exemplary embodiment, electronics enclosure 234 includes an inner cavity 258 defined by a controller housing 240 and inlet cover 238. Electronic control 236 is mounted within electronics enclosure 234 and facilitates control of motor assembly 222. Electronics enclosure 234 is substantially air-tight and inner cavity 258 is substantially thermally isolated from other portions of electric machine 200. In particular, inner cavity 258 is substantially thermally isolated from motor enclosure 224 to facilitate preventing transfer of thermal energy to electronic control 236.

    [0032] Electronic control 236 is thermally coupled to electronics heat sink 232, which facilitates removal of thermal energy generated by electronic control 236 from electronics enclosure 234. In the exemplary embodiment, electronics heat sink 232 includes a body portion 262 having a plurality of heat fins 264 extending therefrom. Heat fins 264 may have any suitable shape and configuration that enables heat sink 232 to function as described herein. Body portion 262 is thermally coupled to electronics control 236 and transfers thermal energy generated by electronics control 236 out of inner cavity 258 via heat fins 264, as described herein in more detail.

    [0033] In the exemplary embodiment, motor enclosure 224 includes an inner cavity 266 defined by adaptor plate 218, motor enclosure 224, and motor heat sink 220. Motor assembly 222 is mounted within motor enclosure 224, and shaft first end 254 extends through an aperture 268 defined in motor enclosure 224. Shaft second end 256 extends through an aperture 270 defined in heat sink 220 and through an aperture 272 defined in adaptor plate 218. Aperture 270 is sealed by shaft 248 and bearings 274 such that air does not pass therethrough. Motor enclosure 224 is substantially air-tight and inner cavity 266 is substantially thermally isolated from other portions of electric machine 200. In particular, inner cavity 266 is substantially thermally isolated from electronics enclosure 234 to facilitate preventing transfer of thermal energy to electronic control 236.

    [0034] Motor assembly 222 is thermally coupled to motor heat sink 220, which facilitates removal of thermal energy generated by motor assembly 222 from motor enclosure 224. In the exemplary embodiment, motor heat sink 220 extends through aperture 268 and includes a body portion 276 and a plurality of radial heat fins 278 extending therefrom. Body portion 276 is thermally coupled to stator 244 and thermal energy produced by stator 244 is transferred out of inner cavity 266 via heat fins 278, as described herein in more detail.

    [0035] As shown in FIG. 7, electric machine 200 includes air cooling system 202 defined by housing 216. Air cooling system 202 generally includes a first air intake 280, a second air intake 282, and an air outlet 284 fluidly connected by an air passage 286 defined through housing 216. In the exemplary embodiment, air passage 286 facilitates a flow of cooling airflow (shown by arrows) therethrough to dissipate heat from electronics heat sink 232 and motor heat sink 220. Air passage 286 includes a motor air passage 290, an electronics air passage 292, and an exhaust passage 294.

    [0036] In the exemplary embodiment, heat fins 278 are oriented at least partially within motor air passage 290 and heat fins 264 are oriented at least partially within electronics air passage 292. Fan 250 is coupled to shaft first end 254 and is rotatably mounted within exhaust passage 294. Rotation of fan 250 facilitates pulling air into air intakes 280 and 282 such that the cooling airflow is directed through electronics air passage 292. The cooling airflow contacts electronics heat sink 232 and removes heat generated by electronics component 236 through electronics heat sink body 262 and heat fins 264. Similarly, the cooling airflow flows through motor air passage 290 where the cooling airflow contacts motor heat sink 220 and removes heat generated by motor assembly 222 and transferred through motor heat sink body 276 and heat fins 278. The cooling airflows from passages 290 and 292 are combined and pass through exhaust passage 294, and the combined heated airflow is subsequently exhausted from housing 216 through air outlet 284. Alternatively, motor air passage 290 and electronics air passage 292 may not be fluidly connected and, instead, each passage 290 and 292 connects to separate exhaust passages (not shown). Accordingly, one fan is rotatably mounted in each separate exhaust passage to facilitate a cooling airflow through the separate air passages.

    [0037] An exemplary method of assembling electric machine 200 is described herein. The method includes providing housing 216 having first air intake 280, second air intake 282, air outlet 284, and air passage 286 extending between air intakes 280 and 282 and air outlet 284. Motor enclosure 224 and electronics enclosure 234 are formed within housing 216 and are substantially thermally isolated from each other. Motor assembly 222 is coupled within motor enclosure 224 and electronics component 236 is coupled within electronics enclosure 234. Motor heat sink 220 is thermally coupled to motor assembly 222 and is positioned at least partially within motor air passage 290. Electronics heat sink 232 is thermally coupled to electronics component 236 and is positioned at least partially within electronics air passage 292. Fan 250 is rotatably mounted within exhaust passage 294 to shaft 248 downstream of motor heat sink 220 and electronics heat sink 232, and generally between motor enclosure 224 and electronics enclosure 234.

    [0038] Described herein are systems and methods for air cooling an electric machine such as a motor or a generator. The electric machine includes a housing having at least one air intake, an air outlet, and an air passage between the at least one air intake and air outlet. Substantially air-tight enclosures for a motor assembly and electronics components are formed within the housing. Heat sinks thermally couple the enclosures and the air passage such that a cooling airflow through the air passage facilitates cooling of the components within the enclosures. In one aspect, the electronics enclosure heat sink is located within the air passage upstream of the motor enclosure heat sink. Moreover, the enclosures are substantially thermally isolated from each other at least by the air passage to prevent transfer of thermal energy between the enclosures. Accordingly, the electronics components are cooled and protected from other heat generating components of the electric machine to prevent thermal degradation and to facilitate longer life of the electronics components. The electric machine described herein enables cooling air to be better concentrated over hot areas of the system

    [0039] Further, a fan is rotatably mounted within the air passage internally within the electric machine to facilitate the cooling airflow through the air passage and to prevent external access to the moving fan. Because the fan is located internally within the electric machine (i.e., not accessible from outside the housing), the electric machine produces less audible noise pollution and prevents injuries associated with contacting the fan.

    [0040] In another aspect, the housing includes two air intakes that are each connected to the air outlet by the air passage. The cooling airflow flows through each of the two air intakes and separately past the motor heat sink and the electronics heat sink. The two cooling airflows are subsequently combined and exhausted through the air outlet.

    [0041] In yet another aspect, a locking passage is formed in the housing and a locking aperture is formed in a motor shaft. An object may be inserted into the locking passage and the locking aperture to prevent rotation of the shaft. This facilitates rotatably locking the shaft for ease of assembly and disassembly of the electric machine from a system driven by the electric machine.

    [0042] This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.


    Claims

    1. An electric machine (10) comprising:

    a housing (16) including at least one air intake (102), an air outlet (104), and an air passage (106) extending between the at least one air intake and the air outlet;

    a substantially air-tight electronics enclosure (34) located within the housing, the electronics enclosure comprising a first heat sink (32) positioned at least partially within the air passage and thermally coupled to an electronics component positioned within said electronics enclosure;

    a substantially air-tight motor enclosure (24) located within the housing (16), wherein said electronics enclosure and said motor enclosure are substantially thermally isolated from each other within said housing at least partially by the air passage;

    a second heat sink (20) located within said motor enclosure (24), the second heat sink positioned at least partially within the air passage downstream of said first heat sink and thermally coupled to a stator positioned within said motor enclosure, wherein a cooling airflow through the at least one air intake flows through the air passage to cool said first heat sink and said second heat sink before the cooling airflow is exhausted through the air outlet; and

    a fan (50) rotatably mounted at least partially within the air passage downstream of said first heat sink, wherein said fan (50) is configured to pull the cooling airflow into the at least one air intake and across said first heat sink, so that said cooling airflow through the at least one air intake flows through the air passage to cool said first heat sink and said second heat sink before the cooling airflow is exhausted through the air outlet.


     
    2. The electric machine of claim 1, wherein said housing further includes an electronics component therein, said electronics component thermally coupled to said first heat sink.
     
    3. The electric machine of claim 2, further comprising a first air opening (118) and a second air opening (120) between the air passage and said electronics enclosure, the first air opening positioned along the air passage downstream of said first heat sink and the second air opening, wherein the first and second air openings are configured to enable at least a portion of the cooling airflow to flow through the first air opening into said electronics enclosure and out the second air opening back to the air passage at a location upstream of the first air opening.
     
    4. The electric machine of claim 1, wherein said housing further includes a motor assembly therein, said motor assembly thermally coupled to said second heat sink.
     
    5. The electric machine of claim 4, further comprising a first air opening and a second air opening between the air passage and said motor enclosure, the first air opening positioned along the air passage downstream of said first heat sink and the second air opening, wherein the first and second air openings are configured to enable at least a portion of the cooling airflow to flow through the first air opening into said motor enclosure and out the second air opening back to the air passage at a location downstream of said first heat sink.
     
    6. An electric machine (200) comprising:

    a housing (228) including:
    at least two air intakes (280, 282), wherein the at least two air intakes comprises a first air intake (280) and a second air intake (282), an air outlet (284) and an air passage (286) extending between the at least two air intakes and the air outlet and wherein a cooling airflow through the first air intake flows through a first portion (292) of the air passage to cool a first heat sink (232), a cooling airflow through the second air intake flows through a second portion (290) of the air passage to cool a second heat sink (220), wherein the cooling airflow through the first and second portions of the air passage flows through a third portion (294) of the air passage and is exhausted through the air outlet (284);

    a substantially air-tight electronics enclosure (234) located within the housing (228), the electronics enclosure comprising the first heat sink positioned at least partially within the first portion of the air passage and thermally coupled to an electronics component positioned within the electronics enclosure;

    a substantially air-tight motor enclosure (224) located within the housing (228), the motor enclosure comprising the second heat sink positioned at least partially within the second portion of the air passage, wherein said electronics enclosure and said motor enclosure are substantially thermally isolated from each other within said housing at least partially by the second portion of the air passage, wherein the second heat sink is thermally coupled to a stator positioned within the motor enclosure; and

    a fan (250) rotatably mounted at least partially within the second portion of the air passage downstream of the second air intake and the first air intake, wherein rotation of the fan (250) facilitates pulling air into the at least two air intakes (280, 282).


     
    7. A method of fabricating an electric motor (10), said method comprising:

    providing a housing (16) including at least one air intake (102), an air outlet (104), and an air passage (106) extending between the at least one air intake and the air outlet;

    positioning a substantially air-tight electronics enclosure (34) located within the housing (16), the electronics enclosure including a first heat sink (32) at least partially within the air passage and thermally coupled to an electronics component positioned within the electronics enclosure;

    providing a substantially air-tight motor enclosure (24) within the housing, wherein the electronics enclosure and the motor enclosure are substantially thermally isolated from each other within the housing at least partially by the air passage;

    positioning a second heat sink (20) located within the motor enclosure (24), the second heat sink at least partially within the air passage downstream of the first heat sink and thermally coupled to a stator positioned within the motor enclosure, wherein a cooling airflow through the at least one air intake flows through the air passage to cool the first heat sink and the second heat sink before the cooling airflow is exhausted through the air outlet; and

    providing a fan (50) rotatably mounted at least partially within the air passage downstream of said first heat sink, wherein said fan (50) is configured to pull the cooling airflow into the at least one air intake and across said first heat sink, so that said cooling airflow through the at least one air intake flows through the air passage to cool said first heat sink and said second heat sink before the cooling airflow is exhausted through the air outlet.


     
    8. The method of claim 7, further comprising forming a first air opening (118) and a second air opening (120) between the air passage and the electronics enclosure, the first air opening positioned along the air passage downstream of the first heat sink and the second air opening, wherein at least a portion of the cooling airflow is directed through the first air opening into the electronics enclosure and out the second air opening to a location upstream of the first air opening.
     
    9. The method of claim 7, further comprising positioning a rotor (46) and a stator (44) within the motor enclosure, thermally coupling the motor to the second heat sink; and forming a first air opening and a second air opening between the air passage and the motor enclosure, the first air opening positioned along the air passage downstream of the first heat sink and the second air opening, wherein at least a portion of the cooling airflow is directed through the first air opening into the motor enclosure and out the second air opening back into the air passage at a location downstream of the first heat sink.
     
    10. A method of fabricating an electric motor (200), said method comprising:

    providing a housing (228) including:
    at least two air intakes (280, 282), wherein the at least two air intakes comprises a first air intake (280) and a second air intake (282), an air outlet (284) and an air passage (286) extending between the at least two air intakes and the air outlet and wherein a cooling airflow through the first air intake flows through a first portion (292) of the air passage to cool a first heat sink (232), a cooling airflow through the second air intake flows through a second portion (290) of the air passage to cool a second heat sink (220), wherein the cooling airflow through the first and second portions of the air passage flows through a third portion (294) of the air passage and is exhausted through the air outlet (284);

    positioning a substantially air-tight electronics enclosure (234) located within the housing (228), the electronics enclosure comprising the first heat sink positioned at least partially within the first portion of the air passage and thermally coupled to an electronics component positioned within the electronics enclosure;

    providing a substantially air-tight motor enclosure (224) located within the housing (228), the motor enclosure comprising the second heat sink positioned at least partially within the second portion of the air passage, wherein said electronics enclosure and said motor enclosure are substantially thermally isolated from each other within said housing at least partially by the second portion of the air passage, wherein the second heat sink is thermally coupled to a stator positioned within the motor enclosure; and

    providing a fan (250) rotatably mounted at least partially within the second portion of the air passage downstream of the second air intake and the first air intake, wherein rotation of the fan (250) facilitates pulling air into the at least two air intakes (280, 282).


     


    Ansprüche

    1. Elektrische Maschine (10), umfassend:

    ein Gehäuse (16) mit zumindest einem Lufteinlass (102), einem Luftauslass (104) und einem Luftkanal (106), der sich zwischen dem zumindest einen Lufteinlass und dem Luftauslass erstreckt;

    eine im Wesentlichen luftdichte Elektronikumhausung (34), die innerhalb des Gehäuses angeordnet ist, wobei die Elektronikumhausung einen ersten Kühlkörper (32) umfasst, der zumindest teilweise innerhalb des Luftkanals positioniert ist und thermisch mit einer Elektronikkomponente gekoppelt ist, die innerhalb der Elektronikumhausung positioniert ist;

    eine im Wesentlichen luftdichte Motorumhausung (24), die innerhalb des Gehäuses (16) angeordnet ist, wobei die Elektronikumhausung und die Motorumhausung innerhalb des Gehäuses zumindest teilweise durch den Luftkanal im Wesentlichen thermisch voneinander isoliert sind;

    einen zweiten Kühlkörper (20), der innerhalb der Motorumhausung (24) angeordnet ist, wobei der zweite Kühlkörper zumindest teilweise innerhalb des Luftkanals stromabwärts des ersten Kühlkörpers positioniert und thermisch mit einem Stator gekoppelt ist, der innerhalb der Motorumhausung positioniert ist, wobei ein Kühlluftstrom durch den mindestens einen Lufteinlass durch den Luftkanal strömt, um den ersten Kühlkörper und den zweiten Kühlkörper zu kühlen, bevor der Kühlluftstrom durch den Luftauslass abgeführt wird; und

    einen Lüfter (50), der zumindest teilweise innerhalb des Luftkanals stromabwärts des ersten Kühlkörpers drehbar montiert ist, wobei der Lüfter (50) so konfiguriert ist, dass er den Kühlluftstrom in den mindestens einen Lufteinlass und über den ersten Kühlkörper zieht, sodass der Kühlluftstrom durch den mindestens einen Lufteinlass durch den Luftkanal strömt, um den ersten Kühlkörper und den zweiten Kühlkörper zu kühlen, bevor der Kühlluftstrom durch den Luftauslass abgeführt wird.


     
    2. Elektrische Maschine nach Anspruch 1, wobei das Gehäuse ferner eine Elektronikkomponente darin beinhaltet, wobei die Elektronikkomponente thermisch mit dem ersten Kühlkörper gekoppelt ist.
     
    3. Elektrische Maschine nach Anspruch 2, ferner umfassend eine erste Luftöffnung (118) und eine zweite Luftöffnung (120) zwischen dem Luftkanal und der Elektronikumhausung, wobei die erste Luftöffnung entlang des Luftkanals stromabwärts des ersten Kühlkörpers und der zweiten Luftöffnung angeordnet ist, wobei die erste und die zweite Luftöffnung so konfiguriert sind, dass zumindest ein Teil des Kühlluftstroms durch die erste Luftöffnung in die Elektronikumhausung und aus der zweiten Luftöffnung zurück zum Luftkanal an einer Stelle stromaufwärts der ersten Luftöffnung strömen kann.
     
    4. Elektrische Maschine nach Anspruch 1, wobei das Gehäuse ferner eine Motoranordnung darin beinhaltet, wobei die Motoranordnung thermisch mit dem zweiten Kühlkörper gekoppelt ist.
     
    5. Elektrische Maschine nach Anspruch 4, ferner umfassend eine erste Luftöffnung und eine zweite Luftöffnung zwischen dem Luftkanal und der Motorumhausung, wobei die erste Luftöffnung entlang des Luftkanals stromabwärts des ersten Kühlkörpers und der zweiten Luftöffnung angeordnet ist, wobei die erste und die zweite Luftöffnung so konfiguriert sind, dass zumindest ein Teil des Kühlluftstroms durch die erste Luftöffnung in die Motorumhausung und aus der zweiten Luftöffnung zurück zum Luftkanal an einer Stelle stromabwärts des ersten Kühlkörpers strömen kann.
     
    6. Elektrische Maschine (200), umfassend:

    ein Gehäuse (228), beinhaltend:
    mindestens zwei Lufteinlässe (280, 282), wobei die mindestens zwei Lufteinlässe einen ersten Lufteinlass (280) und einen zweiten Lufteinlass (282) umfassen, einen Luftauslass (284) und einen Luftkanal (286), der sich zwischen den mindestens zwei Lufteinlässen und dem Luftauslass erstreckt, und wobei ein Kühlluftstrom durch den ersten Lufteinlass durch einen ersten Abschnitt (292) des Luftkanals strömt, um einen ersten Kühlkörper (232) zu kühlen, wobei ein Kühlluftstrom durch den zweiten Lufteinlass durch einen zweiten Abschnitt (290) des Luftkanals strömt, um einen zweiten Kühlkörper (220) zu kühlen, wobei der Kühlluftstrom durch den ersten und den zweiten Abschnitt des Luftkanals durch einen dritten Abschnitt (294) des Luftkanals strömt und durch den Luftauslass (284) abgeführt wird;

    eine im Wesentlichen luftdichte Elektronikumhausung (234), die innerhalb des Gehäuses (228) angeordnet ist, wobei die Elektronikumhausung den ersten Kühlkörper umfasst, der zumindest teilweise innerhalb des ersten Abschnitts des Luftkanals positioniert ist und thermisch mit einer innerhalb der Elektronikumhausung positionierten Elektronikkomponente gekoppelt ist;

    eine im Wesentlichen luftdichte Motorumhausung (224), die innerhalb des Gehäuses (228) angeordnet ist, wobei die Motorumhausung den zweiten Kühlkörper umfasst, der zumindest teilweise innerhalb des zweiten Abschnitts des Luftkanals positioniert ist, wobei die Elektronikumhausung und die Motorumhausung innerhalb des Gehäuses zumindest teilweise durch den zweiten Abschnitt des Luftkanals im Wesentlichen thermisch voneinander isoliert sind, wobei der zweite Kühlkörper thermisch mit einem innerhalb der Motorumhausung positionierten Stator gekoppelt ist; und

    einen Lüfter (250), der zumindest teilweise innerhalb des zweiten Abschnitts des Luftkanals stromabwärts des zweiten Lufteinlasses und des ersten Lufteinlasses drehbar montiert ist, wobei die Rotation des Lüfters (250) das Ansaugen von Luft in die mindestens zwei Lufteinlässe (280, 282) erleichtert.


     
    7. Verfahren zum Herstellen eines Elektromotors (10), wobei das Verfahren Folgendes umfasst:

    Bereitstellen eines Gehäuses (16) mit zumindest einem Lufteinlass (102), einem Luftauslass (104) und einem Luftkanal (106), der sich zwischen dem zumindest einen Lufteinlass und dem Luftauslass erstreckt;

    Positionieren einer im Wesentlichen luftdichten Elektronikumhausung (34), die innerhalb des Gehäuses (16) angeordnet ist, wobei die Elektronikumhausung einen ersten Kühlkörper (32) beinhaltet, der sich zumindest teilweise innerhalb des Luftkanals befindet und thermisch mit einer innerhalb der Elektronikumhausung positionierten Elektronikkomponente gekoppelt ist;

    Bereitstellen einer im Wesentlichen luftdichten Motorumhausung (24) innerhalb des Gehäuses, wobei die Elektronikumhausung und die Motorumhausung innerhalb des Gehäuses zumindest teilweise durch den Luftkanal im Wesentlichen thermisch voneinander isoliert sind;

    Positionieren eines zweiten Kühlkörpers (20), der innerhalb der Motorumhausung (24) angeordnet ist, wobei der zweite Kühlkörper zumindest teilweise innerhalb des Luftkanals stromabwärts des ersten Kühlkörpers angeordnet und thermisch mit einem innerhalb der Motorumhausung positionierten Stator gekoppelt ist, wobei ein Kühlluftstrom durch den mindestens einen Lufteinlass durch den Luftkanal strömt, um den ersten Kühlkörper und den zweiten Kühlkörper zu kühlen, bevor der Kühlluftstrom durch den Luftauslass abgeführt wird; und

    Bereitstellen eines Lüfters (50), der zumindest teilweise innerhalb des Luftkanals stromabwärts des ersten Kühlkörpers drehbar montiert ist, wobei der Lüfter (50) so konfiguriert ist, dass er den Kühlluftstrom in den mindestens einen Lufteinlass und über den ersten Kühlkörper zieht, sodass der Kühlluftstrom durch den mindestens einen Lufteinlass durch den Luftkanal strömt, um den ersten Kühlkörper und den zweiten Kühlkörper zu kühlen, bevor der Kühlluftstrom durch den Luftauslass abgeführt wird.


     
    8. Verfahren nach Anspruch 7, ferner umfassend das Bilden einer ersten Luftöffnung (118) und einer zweiten Luftöffnung (120) zwischen dem Luftkanal und der Elektronikumhausung, wobei die erste Luftöffnung entlang des Luftkanals stromabwärts des ersten Kühlkörpers und der zweiten Luftöffnung angeordnet ist, wobei zumindest ein Teil des Kühlluftstroms durch die erste Luftöffnung in die Elektronikumhausung und aus der zweiten Luftöffnung heraus zu einer Stelle stromaufwärts der ersten Luftöffnung geleitet wird.
     
    9. Verfahren nach Anspruch 7, ferner umfassend das Positionieren eines Rotors (46) und eines Stators (44) innerhalb der Motorumhausung, thermisches Koppeln des Motors mit dem zweiten Kühlkörper; und Bilden einer ersten Luftöffnung und einer zweiten Luftöffnung zwischen dem Luftkanal und der Motorumhausung, wobei die erste Luftöffnung entlang des Luftkanals stromabwärts des ersten Kühlkörpers und der zweiten Luftöffnung positioniert ist, wobei zumindest ein Teil des Kühlluftstroms durch die erste Luftöffnung in die Motorumhausung und aus der zweiten Luftöffnung zurück in den Luftkanal an einer Stelle stromabwärts des ersten Kühlkörpers geleitet wird.
     
    10. Verfahren zum Herstellen eines Elektromotors (200), wobei das Verfahren Folgendes umfasst:

    Bereitstellen eines Gehäuses (228), beinhaltend:
    mindestens zwei Lufteinlässe (280, 282), wobei die mindestens zwei Lufteinlässe einen ersten Lufteinlass (280) und einen zweiten Lufteinlass (282) umfassen, einen Luftauslass (284) und einen Luftkanal (286), der sich zwischen den mindestens zwei Lufteinlässen und dem Luftauslass erstreckt, und wobei ein Kühlluftstrom durch den ersten Lufteinlass durch einen ersten Abschnitt (292) des Luftkanals strömt, um einen ersten Kühlkörper (232) zu kühlen, wobei ein Kühlluftstrom durch den zweiten Lufteinlass durch einen zweiten Abschnitt (290) des Luftkanals strömt, um einen zweiten Kühlkörper (220) zu kühlen, wobei der Kühlluftstrom durch den ersten und den zweiten Abschnitt des Luftkanals durch einen dritten Abschnitt (294) des Luftkanals strömt und durch den Luftauslass (284) abgeführt wird;

    Positionieren einer im Wesentlichen luftdichten Elektronikumhausung (234), die innerhalb des Gehäuses (228) angeordnet ist, wobei die Elektronikumhausung den ersten Kühlkörper umfasst, der zumindest teilweise innerhalb des ersten Abschnitts des Luftkanals positioniert ist und thermisch mit einer innerhalb der Elektronikumhausung positionierten Elektronikkomponente gekoppelt ist;

    Bereitstellen einer im Wesentlichen luftdichten Motorumhausung (224), die innerhalb des Gehäuses (228) angeordnet ist, wobei die Motorumhausung den zweiten Kühlkörper umfasst, der zumindest teilweise innerhalb des zweiten Abschnitts des Luftkanals positioniert ist, wobei die Elektronikumhausung und die Motorumhausung innerhalb des Gehäuses zumindest teilweise durch den zweiten Abschnitt des Luftkanals im Wesentlichen thermisch voneinander isoliert sind, wobei der zweite Kühlkörper thermisch mit einem innerhalb der Motorumhausung positionierten Stator gekoppelt ist; und

    Bereitstellen eines Lüfters (250), der zumindest teilweise innerhalb des zweiten Abschnitts des Luftkanals stromabwärts des zweiten Lufteinlasses und des ersten Lufteinlasses drehbar montiert ist, wobei die Rotation des Lüfters (250) das Ansaugen von Luft in die mindestens zwei Lufteinlässe (280, 282) erleichtert.


     


    Revendications

    1. Machine électrique (10) comprenant :

    un boîtier (16) comportant au moins une admission d'air (102), une sortie d'air (104) et un passage d'air (106) qui s'étend entre l'au moins une admission d'air et la sortie d'air ;

    une enceinte électronique (34) sensiblement étanche à l'air située dans le boîtier, l'enceinte électronique comprenant un premier dissipateur thermique (32) positionné au moins partiellement dans le passage d'air et couplé thermiquement à un composant électronique positionné dans ladite enceinte électronique ;

    une enceinte moteur (24) sensiblement étanche à l'air située dans le boîtier (16), dans laquelle ladite enceinte électronique et ladite enceinte moteur sont sensiblement isolées thermiquement l'une par rapport à l'autre dans ledit boîtier au moins partiellement par le passage d'air ;

    un deuxième dissipateur thermique (20) situé dans ladite enceinte moteur (24), le deuxième dissipateur thermique étant positionné au moins partiellement dans le passage d'air en aval dudit premier dissipateur thermique et couplé thermiquement à un stator positionné dans ladite enceinte moteur, dans laquelle un flux d'air de refroidissement à travers l'au moins une admission d'air circule à travers le passage d'air pour refroidir ledit premier dissipateur thermique et ledit deuxième dissipateur thermique avant que le flux d'air de refroidissement ne soit évacué par la sortie d'air ; et

    un ventilateur (50) monté de manière rotative au moins partiellement dans le passage d'air en aval dudit premier dissipateur thermique, dans laquelle ledit ventilateur (50) est configuré pour extraire le flux d'air de refroidissement dans l'au moins une admission d'air et dans ledit premier dissipateur thermique, de sorte que ledit flux d'air de refroidissement à travers l'au moins une admission d'air circule à travers le passage d'air pour refroidir ledit premier dissipateur thermique et ledit deuxième dissipateur thermique avant que le flux d'air de refroidissement ne soit évacué par la sortie d'air.


     
    2. Machine électrique selon la revendication 1, dans laquelle ledit boîtier comporte en outre un composant électronique dans celui-ci, ledit composant électronique étant couplé thermiquement audit premier dissipateur thermique.
     
    3. Machine électrique selon la revendication 2, comprenant en outre une première ouverture d'air (118) et une deuxième ouverture d'air (120) entre le passage d'air et ladite enceinte électronique, la première ouverture d'air étant positionnée le long du passage d'air en aval dudit premier dissipateur thermique et de ladite deuxième ouverture d'air, dans laquelle les première et deuxième ouvertures d'air sont configurées pour permettre à au moins une portion du flux d'air de refroidissement de circuler à travers la première ouverture d'air dans ladite enceinte électronique et de sortir de la deuxième ouverture d'air revenant vers le passage d'air au niveau d'un emplacement en amont de la première ouverture d'air.
     
    4. Machine électrique selon la revendication 1, dans laquelle ledit boîtier comporte en outre un ensemble moteur dans celui-ci, ledit ensemble moteur étant couplé thermiquement audit deuxième dissipateur thermique.
     
    5. Machine électrique selon la revendication 4, comprenant en outre une première ouverture d'air et une deuxième ouverture d'air entre le passage d'air et ladite enceinte moteur, la première ouverture d'air étant positionnée le long du passage d'air en aval dudit premier dissipateur thermique et de ladite deuxième ouverture d'air, dans laquelle les première et deuxième ouvertures d'air sont configurées pour permettre à au moins une portion du flux d'air de refroidissement de circuler à travers la première ouverture d'air dans ladite enceinte moteur et de sortir de la deuxième ouverture d'air revenant vers le passage d'air au niveau d'un emplacement en aval dudit premier dissipateur thermique.
     
    6. Machine électrique (200) comprenant :

    un boîtier (228) comportant :
    au moins deux admissions d'air (280, 282), dans laquelle les au moins deux admissions d'air comprennent une première admission d'air (280) et une deuxième admission d'air (282), une sortie d'air (284) et un passage d'air (286) qui s'étend entre les au moins deux admissions d'air et la sortie d'air, et dans laquelle un flux d'air de refroidissement à travers la première admission d'air circule à travers une première portion (292) du passage d'air pour refroidir un premier dissipateur thermique (232), un flux d'air de refroidissement à travers la deuxième admission d'air circule à travers une deuxième portion (290) du passage d'air pour refroidir un deuxième dissipateur thermique (220), dans laquelle le flux d'air de refroidissement à travers les première et deuxième portions du passage d'air circule à travers une troisième portion (294) du passage d'air et est évacué par la sortie d'air (284) ;

    une enceinte électronique (234) sensiblement étanche à l'air située dans le boîtier (228), l'enceinte électronique comprenant le premier dissipateur thermique positionné au moins partiellement dans la première portion du passage d'air et couplé thermiquement à un composant électronique positionné dans l'enceinte électronique ;

    une enceinte moteur sensiblement étanche à l'air (224) située dans le boîtier (228), l'enceinte moteur comprenant le deuxième dissipateur thermique positionné au moins partiellement dans la deuxième portion du passage d'air, dans laquelle ladite enceinte électronique et ladite enceinte moteur sont sensiblement isolées thermiquement l'une par rapport à l'autre dans ledit boîtier au moins partiellement par la deuxième portion du passage d'air, dans laquelle le deuxième dissipateur thermique est couplé thermiquement à un stator positionné dans l'enceinte moteur ; et

    un ventilateur (250) monté de manière rotative au moins partiellement dans la deuxième portion du passage d'air en aval de la deuxième admission d'air et de la première admission d'air, dans laquelle la rotation du ventilateur (250) facilite l'extraction d'air dans les au moins deux admissions d'air (280, 282) .


     
    7. Procédé de fabrication d'un moteur électrique (10), ledit procédé comprenant :

    la fourniture d'un boîtier (16) comportant au moins une admission d'air (102), une sortie d'air (104) et un passage d'air (106) qui s'étend entre l'au moins une admission d'air et la sortie d'air ;

    le positionnement d'une enceinte électronique (34) sensiblement étanche à l'air située dans le boîtier (16), l'enceinte électronique comportant un premier dissipateur thermique (32) au moins partiellement dans le passage d'air et couplé thermiquement à un composant électronique positionné dans l'enceinte électronique ;

    la fourniture d'une enceinte moteur (24) sensiblement étanche à l'air dans le boîtier, dans lequel l'enceinte électronique et l'enceinte moteur sont sensiblement isolées thermiquement l'une par rapport à l'autre dans le boîtier au moins partiellement par le passage d'air ;

    le positionnement d'un deuxième dissipateur thermique (20) situé dans l'enceinte moteur (24), le deuxième dissipateur thermique étant au moins partiellement dans le passage d'air en aval du premier dissipateur thermique et couplé thermiquement à un stator positionné dans l'enceinte moteur, dans lequel un flux d'air de refroidissement à travers l'au moins une admission d'air circule à travers le passage d'air pour refroidir le premier dissipateur thermique et le deuxième dissipateur thermique avant que le flux d'air de refroidissement ne soit évacué par la sortie d'air ; et

    la fourniture d'un ventilateur (50) monté de manière rotative au moins partiellement dans le passage d'air en aval dudit premier dissipateur thermique, dans lequel ledit ventilateur (50) est configuré pour extraire le flux d'air de refroidissement dans l'au moins une admission d'air et dans ledit premier dissipateur thermique, de sorte que ledit flux d'air de refroidissement à travers l'au moins une admission d'air circule à travers le passage d'air pour refroidir ledit premier dissipateur thermique et ledit deuxième dissipateur thermique avant que le flux d'air de refroidissement ne soit évacué par la sortie d'air.


     
    8. Procédé selon la revendication 7, comprenant en outre la formation d'une première ouverture d'air (118) et d'une deuxième ouverture d'air (120) entre le passage d'air et l'enceinte électronique, la première ouverture d'air étant positionnée le long du passage d'air en aval du premier dissipateur thermique et de la deuxième ouverture d'air, dans lequel au moins une portion du flux d'air de refroidissement est dirigée à travers la première ouverture d'air dans l'enceinte électronique et à l'extérieur de la deuxième ouverture d'air vers un emplacement en amont de la première ouverture d'air.
     
    9. Procédé selon la revendication 7, comprenant en outre le positionnement d'un rotor (46) et d'un stator (44) dans l'enceinte moteur, couplant thermiquement le moteur au deuxième dissipateur thermique ; et la formation d'une première ouverture d'air et d'une deuxième ouverture d'air entre le passage d'air et l'enceinte moteur, la première ouverture d'air étant positionnée le long du passage d'air en aval du premier dissipateur thermique et de la deuxième ouverture d'air, dans lequel au moins une portion du flux d'air de refroidissement est dirigée à travers la première ouverture d'air dans l'enceinte moteur et à l'extérieur de la deuxième ouverture d'air revenant dans le passage d'air au niveau d'un emplacement en aval du premier dissipateur thermique.
     
    10. Procédé de fabrication d'un moteur électrique (200), ledit procédé comprenant :

    la fourniture d'un boîtier (228), comportant :
    au moins deux admissions d'air (280, 282), dans lequel les au moins deux admissions d'air comprennent une première admission d'air (280) et une deuxième admission d'air (282), une sortie d'air (284) et un passage d'air (286) qui s'étend entre les au moins deux admissions d'air et la sortie d'air, et dans lequel un flux d'air de refroidissement à travers la première admission d'air circule à travers une première portion (292) du passage d'air pour refroidir un premier dissipateur thermique (232), un flux d'air de refroidissement à travers la deuxième admission d'air circule à travers une deuxième portion (290) du passage d'air pour refroidir un deuxième dissipateur thermique (220), dans lequel le flux d'air de refroidissement à travers les première et deuxième portions du passage d'air circule à travers une troisième portion (294) du passage d'air et est évacué par la sortie d'air (284) ;

    le positionnement d'une enceinte électronique (234) sensiblement étanche à l'air située dans le boîtier (228), l'enceinte électronique comprenant le premier dissipateur thermique positionné au moins partiellement dans la première portion du passage d'air et couplé thermiquement à un composant électronique positionné dans l'enceinte électronique ;

    la fourniture d'une enceinte moteur sensiblement étanche à l'air (224) située dans le boîtier (228), l'enceinte moteur comprenant le deuxième dissipateur thermique positionné au moins partiellement dans la deuxième portion du passage d'air, dans lequel ladite enceinte électronique et ladite enceinte moteur sont sensiblement isolées thermiquement l'une par rapport à l'autre dans ledit boîtier au moins partiellement par la deuxième portion du passage d'air, dans lequel le deuxième dissipateur thermique est couplé thermiquement à un stator positionné dans l'enceinte moteur ; et

    la fourniture d'un ventilateur (250) monté de manière rotative au moins partiellement dans la deuxième portion du passage d'air en aval de la deuxième admission d'air et de la première admission d'air, dans lequel la rotation du ventilateur (250) facilite l'extraction d'air dans les au moins deux admissions d'air (280, 282).


     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description