(19)
(11)EP 2 975 506 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.11.2020 Bulletin 2020/45

(21)Application number: 15177454.4

(22)Date of filing:  20.07.2015
(51)International Patent Classification (IPC): 
G06F 3/044(2006.01)

(54)

ELECTRODE STRUCTURE AND TOUCH DETECTING SENSOR USING THE SAME

ELEKTRODENSTRUKTUR UND BERÜHRUNGSEMPFINDLICHER DETEKTIONSSENSOR DAMIT

STRUCTURE D'ÉLECTRODE ET CAPTEUR DE DÉTECTION TACTILE UTILISANT CELLE-CI


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 18.07.2014 KR 20140091127

(43)Date of publication of application:
20.01.2016 Bulletin 2016/03

(73)Proprietor: Samsung Electronics Co., Ltd.
Gyeonggi-do 443-742 (KR)

(72)Inventors:
  • KWAK, Chan
    Gyeonggi-do (KR)
  • CHOI, Jae-Young
    Gyeonggi-do (KR)
  • KIM, Kwanghee
    Seoul (KR)
  • ROH, Jong Wook
    Gyeonggi-do (KR)
  • PARK, Hyeon Cheol
    Gyeonggi-do (KR)
  • SHIN, Weonho
    Seocho-gu (KR)
  • WOO, Yun Sung
    Gyeonggi-do (KR)
  • LEE, Hyosug
    Gyeonggi-do (KR)
  • HWANG, Jinyoung
    Incheon-si (KR)

(74)Representative: Elkington and Fife LLP 
Prospect House 8 Pembroke Road
Sevenoaks, Kent TN13 1XR
Sevenoaks, Kent TN13 1XR (GB)


(56)References cited: : 
WO-A1-2014/054530
US-A1- 2004 099 438
US-A1- 2010 244 655
US-A1- 2011 139 516
WO-A2-2012/040637
US-A1- 2006 274 047
US-A1- 2011 123 866
  
  • Signe Brewster: "What is graphene? Here's what you need to know about a material that could be the next silicon | Gigaom", , 15 July 2013 (2013-07-15), XP055230172, Retrieved from the Internet: URL:https://gigaom.com/2013/07/15/what-is- graphene-heres-what-you-need-to-know-about -a-material-that-could-be-the-next-silicon / [retrieved on 2015-11-20]
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

Field of the Invention



[0001] The disclosure relates to an electrode structure and a touch detecting sensor including the electrode structure.

Background of the Invention



[0002] Electrodes having various shapes and functions are used in many electrical and electronic devices such as, but not limited to, for example, a display device. These electrodes include a transparent electrode providing sufficient transparency to transmit light, together with excellent conductivity. The material of the transparent electrode includes indium tin oxide ("ITO"), tin oxide (SnO2), zinc oxide (ZnO), or the like. Since ITO has insufficient flexibility, and a price rise is unavoidable due to the limited indium reserves, a substitute material thereof is desired to be developed. The tin oxide (SnO2) and the zinc oxide (ZnO) also have insufficient conductivity and unfavorable flexibility.

[0003] Recently, a touch detection function for interacting with a user in addition to an image display function have been widely incorporated together in a flat panel display such as, but not limited to, for example, a liquid crystal display ("LCD"), an organic light emitting diode display ("OLED"), and an electrophoretic display. The touch detection function is typically used to notify touch information of whether an object (e.g., a finger of a user or a touch pen) approaches or touches a screen of a display by detecting a change of pressure, charge, light, or the like on the display when the user approaches or touches the display using his/her finger or the touch pen to write a letter or to draw a picture. The display device may receive a video signal and display an image based on the touch information.

[0004] The touch detection function may be accomplished by the touch detecting sensor. The touch detecting sensor may be classified into a resistive type, a capacitive type, an electro-magnetic type ("EM"), an optical type, or the like according to the various methods.

[0005] For example, the capacitive type of touch detecting sensor includes a detection capacitor including a plurality of detection electrodes that transfers a detection signal, and detects a capacitance change and/or a charge change of the detection capacitor generated when a conductive material such as a finger approaches the touch detecting sensor, to notify whether and where a touch occurs. The capacitive type of touch detecting sensor includes a plurality of touch electrodes disposed in the touch detecting region, and a signal transmission wire connected to the touch electrode. The signal transmission wire may deliver a detection input signal to the touch electrode or may deliver a detection output signal of the touch electrode generated by a touch to a detection signal controller.

[0006] US2011/139516 teaches a touch screen structure having electrodes with multiple layers.

[0007] Another electrode structure is taught by US 2011/123866.

Summary of the Invention



[0008] A transparent electrode is widely used in a touch detecting sensor, and the transparent electrode is desired to have high transparency and low sheet resistance. In a touch detecting sensor for a flexible display device, the transparent electrode is also desired to be highly flexible. However, a conventional transparent electrode material such as indium tin oxide ("ITO") may not have such desired characteristics.

[0009] In a first aspect of the invention, there is provided a method of forming an electrode structure according to claim 1.

[0010] The conductive material of the first conductive layer and the conductive material of the second conductive layer are different from each other.

[0011] In an example of an electrode, one of the first conductive layer and the second conductive layer includes a two-dimensional material, and the other of the first conductive layer and the second conductive layer includes a metal nanowire, graphene, a carbon nanotube or a combination. In this way, the beneficial properties of silver nanowire, graphene, or a carbon nanotube can be combined with a lower resistance achieved with the first conductive layer and second conductive layer in parallel. In a particular example the other of the first conductive layer and the second conductive layer may comprise a metal nanowire such as silver nanowire. The other of the first conductive layer and second conductive layer may comprise a plurality of nanowires, each nanowire having a nanometer scale width, less than 1 µm.

[0012] In an example, a conductive layer comprising metal nanowire comprises a plurality of metal nanowires arranged as a mat. The mat may be essentially transparent.

[0013] In an example, the electrode structure may further include an anti-reflection coating disposed between the first conductive layer and the second conductive layer, and the anti-reflection coating may have a refractive index in a range of about 1.6 to about 1.8 and a thickness in a range of about 75 nanometers (nm) to about 95 nm.

[0014] In an example, the electrode structure may further include a third conductive layer disposed on the third nonconductive layer and a fourth nonconductive layer disposed on the third conductive layer.

[0015] In an example, one of the conductive layers includes the two-dimensional conductive material, another of the conductive layers includes a silver nanowire, and another of the conductive layers may include a carbon nanotube, graphene or a metal mesh. In an example, the fourth nonconductive layer may include an overcoat layer including a polyacrylate-based material.

[0016] In an examplet, the electrode structure may further include a conductive connector disposed on a surface of a stacking structure including the first nonconductive layer, the first conductive layer, the second nonconductive layer, the second conductive layer, and the third nonconductive layer, where the conductive connector is electrically connected to the first conductive layer and the second conductive layer.

[0017] In an example, the conductive connector may include the conductive material of the first conductive layer, the conductive material of the second conductive layer, molybdenum (Mo), silver (Ag), titanium (Ti), copper (Cu), aluminum (Al), molybdenum/aluminum/molybdenum (Mo/AI/Mo) or a combination thereof.

[0018] In an example, the touch detecting sensor may further include a conductive connector disposed on a surface of the stacking structure, where the conductive connector is electrically connected to the conductive layers.

[0019] In an example, the conductive connector may cover a part of an upper surface of the stacking structure and a side surface of the stacking structure.

[0020] In an example, the conductive connector may be connected to a wire which connects the first touch electrodes and the second touch electrodes to the touch controller.

BRIEF DESCRIPTION OF THE DRAWINGS



[0021] 

FIGS. 1 to 3 are cross-sectional views of an example electrode structure ;

FIG. 4 is a block diagram showing a display device including a touch detecting sensor;

FIG. 5 is a top plan view showing a touch detecting sensor;

FIG. 6 is an enlarged view showing a part of the touch detecting sensor shown in FIG. 5; and

FIG. 7 is a cross-sectional view taken along line IV-IV of the touch detecting sensor shown in FIG. 6.


DETAILED DESCRIPTION



[0022] The embodiments will be described more fully hereinafter with reference to the accompanying drawing. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the scope of this disclosure.

[0023] It will be understood that when an element or layer is referred to as being "on", "connected to" or "coupled to" another element or layer, it can be directly on, connected or coupled to the other element or layer or intervening elements or layers may be present. In contrast, when an element is referred to as being "directly on," "directly connected to" or "directly coupled to" another element or layer, there are no intervening elements or layers present. Like numbers refer to like elements throughout. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.

[0024] It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of this disclosure.

[0025] Spatially relative terms, such as "beneath", "below", "lower", "above", "upper" and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example If when the device in the figures is turned over, elements described as "below" or "beneath" other elements or features would then be oriented "above" the other elements or features. Thus, the exemplary term "below" can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.

[0026] The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms, "a," "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms "includes" and/or "including," when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.

[0027] "About" or "approximately" as used herein is inclusive of the stated value and means within an acceptable range of deviation for the particular value as determined by one of ordinary skill in the art, considering the measurement in question and the error associated with measurement of the particular quantity (i.e., the limitations of the measurement system). For example, "about" can mean within one or more standard deviations, or within ± 30%, 20%, 10%, 5% of the stated value.

[0028] Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.

[0029] Exemplary embodiments are described herein with reference to cross section illustrations that are schematic illustrations of idealized electrode structures. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments described herein should not be construed as limited to the particular shapes of regions as illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, a region illustrated or described as flat may, typically, have rough and/or nonlinear features. Moreover, sharp angles that are illustrated may be rounded. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the precise shape of a region and are not intended to limit the scope of the present claims.

[0030] In the drawings, the thickness of layers, films, panels, regions, etc., are exaggerated for clarity. Like reference numerals designate like elements throughout the specification.

[0031] Hereinafter, exemplary embodiments will be described in further detail with reference to the accompanying drawings.

[0032] First, an electrode structure will be described with reference to FIGS. 1 to 3.

[0033] FIG. 1 shows an exemplary electrode structure including a stacking structure, in which a first nonconductive layer 51, a first conductive layer 41, a second nonconductive layer 52, a second conductive layer 42, a third nonconductive layer 53 are sequentially disposed on a substrate 10, and a conductive connecting member (also referred to as a "conductive connector") 30 disposed on a side surface of the stacking structure. The first conductive layer 41 includes a first conductive material 11, and the second conductive layer 42 includes a second conductive material 21.

[0034] In an example, at least one of the first conductive material 11 and the second conductive material 21 includes a two-dimensional conductive material, and the remaining one includes a transparent conductive material such as a two-dimensional conductive material, a silver nanowire ("AgNw"), a metal mesh, a carbon nanotube ("CNT"), graphene, and the like, for example. In such an example, the two-dimensional conductive material is a conductive material including an alkaline metal suboxide, an alkaline metal subcarbide, an alkaline-earth metal subnitride, a transition metal subcarbide, a transition metal suboxide, a transition element-rich chalcogenide, a transition metal-containing subhalide, a boride compound, an oxide, or the like, for example. In such an example, the alkaline metal may include Cs, Rb, K, Na or a combination thereof, the alkaline-earth metal may include Ca, Mg, Sr, Ba or a combination thereof, and the transition metal may include Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Ag or a combination thereof. The alkaline metal suboxide may be represented by A3O, A2O, A6O, or A7O (where A is Cs, Rb, K, Na or a combination thereof). The alkaline-earth metal subnitride may be represented by AE2N (where AE is Mg, Sr, Ba or a combination thereof), or AE3N (where AE is Mg, Ca, Sr, Ba or a combination thereof). The transition element subcarbide may be represented by M2C or M4C (where M is Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Ag or a combination thereof). The transition element-rich chalcogenide may be a transition metal-rich chalcogenide. The transition metal-rich chalcogenide may be represented by M3E2, M2E, M5E, M4E3, or ME, (where M is Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Ag or a combination thereof, and E is S, Se, or Te). The transition element-containing subhalide may be represented by M2X or MX (where M is Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Mn, Tc, Re, Ag or a combination thereof, and X is F, CI, Br, or I). The boride compound may include AuB2, AlB2, AgB2, MgB2, TaB2, NbB2, YB2, WB2, VB2, MoB2, ScB2 or a combination thereof. The oxide may include RuO2, and the like. In an example, the two-dimensional conductive material may include a repeating unit structure including at least two metal atom layers, and a two-dimensional electron gas layer between repeating unit structures.

[0035] In such an example, at least one of the first conductive material 11 and the second conductive material 21 includes a two-dimensional conductive material, such that the flexibility of the electrode structure including a stacking structure is improved.

[0036] The conductive connecting member 30 may include a low resistance material such as molybdenum (Mo), silver (Ag), titanium (Ti), copper (Cu), aluminum (Ti), and molybdenum/aluminum/molybdenum (Mo/AI/Mo), for example, or a conductive material included in the first conductive layer 41 or the second conductive layer 42.

[0037] In an example, a part of the first conductive material 11 may extend to the first nonconductive layer 51 or the second nonconductive layer 52 from a boundary surface between the first conductive layer 41 and the first nonconductive layer 51 or between the first conductive layer 41 and the second nonconductive layer 52, or a part of the second conductive material 21 may extend to the second nonconductive layer 52 or the third nonconductive layer 53 from a boundary planar surface between the second conductive layer 42 and the second nonconductive layer 52 or between the second conductive layer 42 and the third nonconductive layer 53. Accordingly, in such an example, extending portions of the first conductive material 11 and the second conductive material 21 may contact each other in the second nonconductive layer 52, such that the first conductive layer 41 and the second conductive layer 42 may be electrically connected to each other. In an alternative example, the first conductive material 11 and the second conductive material 21 may not contact each other, and the first conductive material 11 and the second conductive material 21 may be connected to each other via the conductive connecting member 30.

[0038] Hereinafter, an exemplary embodiment of a method of forming the electrode structure having a structure described above will now be described. In an exemplary embodiment, the first conductive material 11 is mixed with a first binder and coated (e.g., wet-coated) on the substrate 10 in a predetermined thickness and dried, then a nonconductive material for the first binder defines the first nonconductive layer 51 and a part of the second nonconductive layer 52, and the middle portion where the first conductive material 11 is dominantly or mainly distributed defines the first conductive layer 41. In such an embodiment, the second conductive material 21 is mixed with a second binder and coated (e.g., wet-coated) thereon and dried, then an nonconductive material for the second binder defines the remaining part of the second nonconductive layer 52 and a part of the third nonconductive layer 53, and the middle portion where the second conductive material 21 is dominantly or mainly distributed defines the second conductive layer 42. In such an embodiment, the first conductive material 11 and the second conductive material 21 may not be uniformly distributed, such that a part of the first conductive material 11 and the second conductive material 21 may intrude into the adjacent nonconductive layer. Accordingly, in such an embodiment, a part of the first conductive material 11 may be exposed by the second nonconductive layer 52, and the part of the first conductive material 11 may contact a part of the second conductive material 21, such that the first conductive layer 41 and the second conductive layer 42 may be electrically connected to each other. In such an embodiment, a hole may be defined through the second nonconductive layer 52, and a part of the first conductive material 11 or the second conductive material 21 may be disposed in the hole such that the first conductive material 11 may be connected to the second conductive material 21. In such an embodiment, where the first conductive material 11 is connected to the second conductive material 21, the flexibility of the stacking structure may be improved.

[0039] In such an embodiment, a binder for forming at least a part of the first nonconductive layer 51, the second nonconductive layer 52 and the third nonconductive layer 53 may include a cellulose-based binder such as hydroxypropyl methylcellulose ("HPMC"), polyvinyl alcohol, polyvinyl acrylic acid or a combination thereof. The third nonconductive layer 53 may be defined by a portion formed by a second binder and a portion formed by an overcoating material separately stacked thereon. The overcoating material for the third nonconductive layer 53 may include a polyacrylate-based material, for example.

[0040] According to an example, as shown in FIG. 1, the electrode structure may include two conductive layers and three nonconductive layers, but not being limited thereto. In an alternative exemplary example, the number of conductive layers and nonconductive layers may be greater than or equal to 3.

[0041] Referring to FIG. 2, in an alternative example of an electrode structure, a first nonconductive layer 51, a first conductive layer 41, a second nonconductive layer 52, a second conductive layer 42, a third nonconductive layer 53, a third conductive layer 43 and a fourth nonconductive layer 54 are sequentially disposed on a substrate 10. In such an example, a conductive connecting member 30 is disposed on a side surface of the stacking structure to electrically connect the first conductive layer 41, the second conductive layer 42 and the third conductive layer 43 to each other. The conductive connecting member 30 may extend to contact a part of the upper surface of the fourth nonconductive layer 54, which may be the uppermost layer of the stacking structure, as well as the side surface of the stacking structure.

[0042] The substrate 10 may define a basal member (e.g., a base layer) of the stacking structure, and may be a nonconductive layer. The substrate 10 may include or be formed of plastic or glass, for example. A material of the substrate 10 may be determined based on the configuration of the device employing the electrode structure.

[0043] In such an example, at least one of the first conductive layer 41, the second conductive layer 42 and the third conductive layer 43 may include the two-dimensional conductive material. In one example, for example, one of the first conductive layer 41, the second conductive layer 42 and the third conductive layer 43 may be a layer including the two-dimensional conductive material, and the remaining two may be layers including the two-dimensional conductive material, an AgNw, a metal mesh, a CNT, graphene or a combination thereof. In such an example, the first conductive layer 41, the second conductive layer 42 and the third conductive layer 43 may include one of various combinations of conductive materials, e.g., the conductive materials described above. The conductive materials of the first conductive layer 41, the second conductive layer 42 and the third conductive layer 43 may be different from each other. In one example, for example, where the first conductive layer 41 includes the two-dimensional conductive material, the second conductive layer 42 may include an AgNw, and the third conductive layer 43 may include a CNT, graphene or a metal mesh. In one example, for example, the first conductive layer 41 includes graphene, the second conductive layer 42 includes a two-dimensional conductive material, and the third conductive layer 43 includes a CNT, a metal mesh, AgNw or a combination thereof. The conductive materials of the first conductive layer 41, the second conductive layer 42 and the third conductive layer 43 may include different two-dimensional conductive materials from each other. The first conductive layer 41, the second conductive layer 42 and the third conductive layer 43 may each include a combination of conductive materials. In one example, for example, the first conductive layer 41, the second conductive layer 42 and the third conductive layer 43 may each include a combination of the AgNw and the two-dimensional conductive material or a combination of the two-dimensional conductive material, AgNw and graphene. In an example, the first conductive layer 41, the second conductive layer 42 and the third conductive layer 43 may include different combination of conductive materials. In one example, for example, the first conductive layer 41 may include an AgNw, the second conductive layer 42 may include an AgNw and graphene, and the third conductive layer 43 may include the two-dimensional conductive material and a CNT or a metal mesh. In one alternative example, for example, the first conductive layer 41 may include graphene and the two-dimensional conductive material, the second conductive layer 42 may include an AgNw and the two-dimensional conductive material, and the third conductive layer 43 may include graphene and a metal mesh or the two-dimensional conductive material.

[0044] The first nonconductive layer 51, the second nonconductive layer 52, the third nonconductive layer 53 and the fourth nonconductive layer 54 may include a binder, which is mixed with the material for the first conductive layer 41, the second conductive layer 42 and the third conductive layer 43, and coated. The binder may include a cellulose-based binder such as HPMC, polyvinyl alcohol, polyvinyl acrylic acid, or the like. The fourth nonconductive layer 54 may be defined by a portion formed by the binder and a portion formed by the overcoating material separately stacked thereon. The overcoating material for the fourth nonconductive layer 54 may include a polyacrylate-based material, for example.

[0045] In an example, the conductive connecting member 30 may include the conductive material included in the first conductive layer 41, the second conductive layer 42 or the third conductive layer 43, or a low resistance material such as molybdenum (Mo), silver (Ag), titanium (Ti), copper (Cu), aluminum (Ti), molybdenum/aluminum/molybdenum (Mo/AI/Mo) and the like.

[0046] In an example, the second nonconductive layer 52 may cover the entire first conductive layer 41 therebelow, or may cover a part of the first conductive layer 41. In an example, the third nonconductive layer 53 may cover the entire second conductive layer 42 therebelow, or may cover a part of the second conductive layer 42. In such an example, the first conductive layer 41 and the second conductive layer 42 may contact each other and be electrically connected to each other, and the second conductive layer 42 and the third conductive layer 43 may contact each other and be electrically connected to each other.

[0047] The first nonconductive layer 51, the second nonconductive layer 52, the third nonconductive layer 53 and the fourth nonconductive layer 54 may include a single layer including the binder, but not being limited thereto. In an alternative example, the first nonconductive layer 51, the second nonconductive layer 52, the third nonconductive layer 53 and the fourth nonconductive layer 54 may include a dielectric layer and a layer including the binder.

[0048] Referring to FIG. 3, in another alternative example of an electrode structure, the first nonconductive layer 51, the first conductive layer 41, the second nonconductive layer 52, the second conductive layer 42 and the third nonconductive layer 53 are sequentially disposed on the substrate 10. In such an example, a conductive connecting member (not shown) is disposed on the side surface of the stacking structure. In such an example, the conductive connecting member electrically connected to the first conductive layer 41 and the second conductive layer 42 to connect the first conductive layer 41 with the second conductive layer 42.

[0049] In such an example, as shown in FIG. 3, the second nonconductive layer 52 may include two binder films 52' disposed opposite to each other, and an anti-reflection coating 52" disposed between the two binder films 52'. In such an example, as shown in FIG. 3, the third nonconductive layer 53 includes a binder film 53' disposed on the second conductive layer 42 and an overcoat layer 53" disposed on the binder film 53'.

[0050] The anti-reflection coating 52" is a layer that reduces light reflection on the interface between a plurality of layers having different refractive indexes while transmitting light through the electrode structure, and the refractive index and the thickness of the anti-reflection coating 52" may be determined based on the thickness and refractive index of layers of the electrode structure. According to an example, the anti-reflection coating 52" may include a transparent dielectric material having a refractive index (n) of about 1.7 and may have a thickness of about 85 nanometers (nm). In such an example, the nonconductive layers of the electrode structure may include a polycarbonate film having a refractive index of about 1.59, a HPMC binder having a refractive index of about 1.55, and a urethane acrylate overcoat layer having a refractive index of about 1.47. In such an example, the conductive layer has different refractive indexes according to the wavelength. The anti-reflection coating 52" may be provided by stacking the transparent dielectric material having a refractive index (n) in a range of about 1.6 to about 1.8 to have a thickness in a range of about 75 nm to about 95 nm.

[0051] The following Table 1 compares sheet resistance and haze of one example of an electrode structure, where one of two conductive layers 41 and 42 is formed with AgNw and the other of the two conductive layers 41 and 42 is formed with RuO2, which is one of two-dimensional conductive materials, (hereinafter, such an electrode structure will be referred to as "composite electrode structure") with each of an AgNw single layer and a RuO2 single layer. The thickness of the AgNw layer of the composite electrode structure is about 40 nm, and the thickness of the RuO2 layer of the composite electrode structure is less than or equal to about 10 nm
(Table 1)
 Sheet resistance (ohm/sq)Haze (%)
AgNw 50 1.0
Two-dimensional conductive material (RuO2) 50 0.0
Composite electrode structure 25 1.0


[0052] As shown in Table 1, the composite electrode structure, in which the AgNw layer and the RuO2 layer are stacked together with nonconductive layers and parallel-connected to each other, has less sheet resistance than the AgNw single layer or the RuO2 single layer, and the haze of the composite electrode structure is substantially the same as the haze of the AgNw single layer. Accordingly, an example, where the electrode structure is formed by compositing the two-dimensional conductive material film with the AgNw layer, the sheet resistance is substantially decreased, and the haze is substantially maintained at a comparative level to that of the AgNw layer. Accordingly, an example of an electrode structure may be effectively used as a transparent electrode or the like.

[0053] The electrode structure may be used in the various fields, for example, for an electrode of a touch detecting sensor employed in the display device.

[0054] Hereinafter, an example of a display device including a touch detecting sensor will now be described with reference to FIG. 4 to FIG. 7.

[0055] FIG. 4 is a block diagram showing an example of a display device including a touch detecting sensor; FIG. 5 is a top plan view showing an example of a touch detecting sensor; FIG. 6 is an enlarged view showing a part of the touch detecting sensor shown in FIG. 5; and FIG. 7 is a cross-sectional view taken along line IV-IV of the touch detecting sensor shown in FIG. 6.

[0056] Referring to FIG. 4, an example of a display device including the touch detecting sensor includes a display panel 300, a display controller 600 connected to the display panel 300, and a touch controller 700.

[0057] The display panel 300 may display an image and detect a touch. The display panel 300 includes a display area DA for displaying an image and a peripheral area PA around the display area DA when viewed from a plan view (e.g., a top plan view as shown in FIG. 4).

[0058] In such an example, a touch active area TA may be defined in a partial area or the entire area of display panel 300 for sensing a touch. The touch active area TA is an area, in which a touch is sensed when an object substantially approaches the display panel 300 or touches the display panel 300. Herein, the term 'touch' includes the case of having the external object approach the display panel 300 or hover in the approached state as well as the case of directly touching the external object such as a user's hand to the display panel 300.

[0059] In an example, as shown in FIG. 5, almost the entire display area DA defines a touch active region TA, but is not limited thereto. In an alternative example, a part of the peripheral area PA may also be used as a touch active area TA, and only a part of display area DA may be used as a touch active area TA.

[0060] Referring to FIG. 4, a plurality of pixels PX and a plurality of display signal lines (not shown) connected to the pixels PX and which transfers a driving signal are disposed in the display area DA.

[0061] The display signal line includes a plurality of scanning signal lines (not shown) for transferring a scan signal and a plurality of data lines (not shown) for transferring a data signal. The scanning signal line and the data line may extend in different directions from each other to cross each other. The display signal line may extend toward the peripheral area PA in which a pad part (not shown) is disposed.

[0062] In an example, the plurality of pixels PX may be arranged substantially in a matrix form, but is not limited thereto. Each pixel PX may include a switch (not shown) connected to a gate line and a data line, and a pixel electrode (not shown) connected to the switch. The switch may be a three-terminal element, e.g., a thin film transistor, integrated with the display panel 300. The switch may be turned on or turned off in response to the gate signal transferred by the gate line to selectively transfer a data signal transferred by a data line to the pixel electrode. The pixel PX may further include an opposed electrode (not shown) opposed to the pixel electrode. In an example of a display device, where the display device is the organic light emitting diode ("OLED") display, an emission layer is disposed between the pixel electrode and the opposed electrode, thereby defining a light emitting element. The opposed electrode may apply a common voltage.

[0063] Each pixel PX may express or display one of primary colors for expressing a color display, and desirable colors may be recognized by associating such primary colors. In one example, for example, the primary colors may include three primary colors such as red, green and blue, or four primary colors. Each pixel PX is defined to correspond to each pixel electrode and may further include a color filter for expressing one of the primary colors, and the emission layer including a light emitting element may emit light having a predetermined color.

[0064] A touch detecting sensor is disposed in the touch active area TA. The touch detecting sensor may detect a touch thereon through various methods. In one example, for example, the touch detecting sensor may be classified as a resistive type, a capacitive type, an electro-magnetic ("EM") type, or an optical type according to the various methods.

[0065] Hereinafter, for convenience of description, an example including a capacitive type of touch detecting sensor will be described in greater detail, but not being limited thereto.

[0066] Referring to FIG. 5, in an example of a display device, the touch detecting sensor may include a plurality of touch electrodes, and the plurality of touch electrodes may include a plurality of first touch electrodes 410 and a plurality of second touch electrodes 420. The first touch electrode 410 is separated from the second touch electrode 420.

[0067] Referring to FIGS. 5 and 6, a plurality of first touch electrodes 410 and a plurality of second touch electrodes 420 are alternatively disposed and positioned to not overlap each other in the touch active area TA. The first touch electrodes 410 may be disposed along a first direction, e.g., a column direction, and a second direction, e.g., a row direction, and the second touch electrodes 420 may be disposed along the first direction and the second direction. Herein, the first and second directions cross each other (e.g., perpendicular to each other), and may be referred to as a horizontal direction and a vertical direction, respectively.

[0068] In such an example, the first touch electrode 410 and the second touch electrode 420 may be disposed in the same layer.

[0069] In an example, as shown in FIGS. 5 and 6, each of the first touch electrode 410 and the second touch electrode 420 may have a quadrangular shape, but is not limited thereto. In an alternative example, the first touch electrode 410 and the second touch electrode 420 may have various shapes, for example, a shape having a protruding portion to improve sensitivity of the touch detecting sensor.

[0070] In an example, the first touch electrodes 410 arranged in a same column or row may be connected to each other at the inside or the outside of the touch active area TA, or may be electrically separated from each other. In such an example, at least some of the plurality of second touch electrodes 420 arranged in the same column or row may be connected to each other at the inside or the outside of touch active area TA or may be electrically separated from each other. In one example, for example, as shown in FIG. 5, the first touch electrodes 410 arranged in a same row are connected to each other at the inside of the touch active area TA, and the second touch electrodes 420 arranged in a same column may be connected to each other at the inside of the touch active area TA.

[0071] In such an example, the plurality of first touch electrodes 410 positioned in each row may be connected to each other through a first connection part 412, and the plurality of second touch electrodes 420 positioned in each column may be connected to each other through a second connection part 422.

[0072] Referring to FIG. 6 and FIG. 7, in an example, a first connection part 412 connected between adjacent first touch electrodes 410 may be positioned on the same layer as the first touch electrode 410, and may include or be made of the same material as the first touch electrode 410. In such an example, the first touch electrode 410 and the first connection part 412 may be integrated and may be simultaneously patterned.

[0073] The second connection part 422 connected between adjacent second touch electrodes 420 may be positioned on a different layer from that of the second touch electrode 420. In such an example, the second touch electrode 420 and the first connection part 412 may be spaced apart from each other, and may be separately patterned. The second touch electrode 420 and the second connection part 422 may be connected to each other by direct contact.

[0074] A nonconductive layer 430 is disposed between the first connection part 412 and the second connection part 422 to insulate the first connection part 412 and the second connection part 422 from each other. The nonconductive layer 430 may include a plurality of independent island insulators disposed at every crossing region of the first connection part 412 and the second connection part 422, as shown in FIG. 6 and FIG. 7

[0075] The nonconductive layer 430 may expose at least a part of the second touch electrode 420 to connect the second connection part 422 with the second touch electrode 420.

[0076] The insulation layer 430 may have a round edge or may have a polygonal edge.

[0077] According to another example, the insulation layer 430 is disposed substantially on the entire touch active area TA, and a hole may be defined in the insulation layer 430 at a part of the second touch electrode 420 to connect the adjacent second touch electrodes 420 in a column direction.

[0078] In an alternative example, the second connection part 422 for connecting the adjacent second touch electrodes 420 to each other may be positioned in the same layer as the first touch electrode 410 and may be integrated with the first touch electrode 410, and the first connection part 412 for connecting the adjacent first touch electrodes 410 to each other may be positioned in the different layer from that of the first touch electrode 410.

[0079] Referring to FIG. 5, the first touch electrodes 410 connected to each other in each row are connected to a touch controller 700 through a first touch wire 411, and the second touch electrodes 420 connected to each other in each column may be connected to the touch controller 700 through a second touch wire 421. In an example, the first touch wire 411 and the second touch wire 421 may be positioned in the peripheral area PA of the display panel 300, as shown in FIG. 5, but not being limited thereto. In an alternative example, the first touch wire 411 and the second touch wire 421 may be positioned in the touch active area TA.

[0080] The terminal end of the first touch wire 411 and the second touch wire 421 may define a pad part 450 in the peripheral area PA of display panel 300.

[0081] The first touch electrode 410 and the second touch electrode 420 may have a transmittance equal to or greater than a predetermined transmittance to allow light from the display panel 300 to transmit therethrough. The first touch electrode 410 and the second touch electrode 420 may include an electrode structure in which a conductive layer (e.g., one or more conductive layer) including a two-dimensional conductive material and a conductive layer including at least one conductive material of a two-dimensional conductive material, an AgNw, a metal mesh, a CNT, graphene, and the like are alternately stacked with a plurality of nonconductive layers therebetween.

[0082] In such an example, the nonconductive layer may be an organic binder used for coating liquid-phase AgNw, a CNT, graphene, or the like. The organic binder may include a cellulose-based binder such as HPMC, polyvinyl alcohol, polyvinyl acrylic acid, or the like. In such an example, the uppermost nonconductive layer may be a polyacrylate-based overcoating layer. The plurality of conductive layers may include a conductive layer including a conductive material such as a two-dimensional conductive material, an AgNw, a metal mesh, a CNT, and graphene, and a conductive layer including a two-dimensional conductive material, and each layer may include a different kind of conductive material. The two-dimensional conductive material is mixed with a binder and coated (e.g., wet-coated) and dried to provide a first conductive layer positioned in the lowermost layer of the conductive layers, then an AgNw is mixed with an organic binder and coated (e.g., wet-coated) thereon and dried to provide a second conductive layer including an AgNw and an nonconductive layer including an organic binder, and a CNT or graphene may be mixed with an organic binder and coated (e.g., wet-coated) and dried to provide a third conductive layer including a CNT or graphene and an nonconductive layer including an organic binder. The organic binder may be disposed on the surface of either a CNT or graphene to provide a nonconductive layer on the third conductive layer. The plurality of conductive layers may be electrically connected to each other through a connecting member disposed on a side surface of the electrode structure. Referring back to FIG. 5, according to an example, the second connection part 422 for connecting between the second touch electrodes 420 may define a connecting member that connects a plurality of conductive layers of the electrode structure on the side surface thereof. In an example, the first touch wire 411 and the second touch wire 421 may defined connecting members that connect a plurality of conductive layers of the electrode structure, and may be disposed on the side surface thereof. In an alternative example, the connecting member may be provided separately from the second connection part 422, the first touch wire 411 and the second touch wire 421.

[0083] The first touch wire 411 and the second touch wire 421 may include the transparent conductive material included in the first touch electrode 410 and the second touch electrode 420, or a low resistance material such as molybdenum (Mo), silver (Ag), titanium (Ti), copper (Cu), aluminum (Ti), molybdenum/aluminum/molybdenum (Mo/AI/Mo) or a combination thereof.

[0084] The adjacent first touch electrode 410 and second touch electrode 420 may define a mutual sensing capacitor that functions as a touch detecting sensor. The mutual sensing capacitor may receive the detection input signal through one of the first touch electrode 410 and the second touch electrode 420, and may output the charge change due to a touch thereon by the external object as a detection output signal through the remaining touch electrode.

[0085] In an alternative example, a plurality of first touch electrodes 410 and a plurality of second touch electrodes 420 may be separated from each other and may each be connected to a touch controller 700 through a touch wire (not shown). In such an example, each touch electrode may define a self-sensing capacitor as a touch detecting sensor. The self-sensing capacitor may be charged in a predetermined column when the detection input signal is received, and the charge of the column may be changed when it is touched by the external object such as a finger, to thereby discharge the detection output signal that is different from the received detection input signal.

[0086] Referring back to FIG. 4, the display controller 600 controls an image display operation of the display panel 300.

[0087] In an example, the display controller 600 receives an input video signal including luminance information of each pixel PX and an input control signal for controlling the display of the input video signal from the outside. The display controller 600 processes the input video signal based on the input video signal and the input control signal, such that the display controller 600 converts the input video signal into the output video signal and generates a control signal such as a gate control signal and a data control signal. The display controller 600 sends the gate control signal to the gate driver (not shown), and sends the data control signal and the output video signal to the data driver (not shown).

[0088] In an example, the data driver receives the output video signal for one column pixel PX based on the data control signal, converts the output video signal into the data voltage by selecting a gray voltage corresponding to each output video signal, and then applies the selected gray voltage to the corresponding data line. In such an example, the gate driver applies a gate-on-voltage to a gate line according to the gate control signal to turn on a switch connected to the gate line such that the data voltage applied to the data line is applied to the corresponding pixel PX through the turned-on switch. When the data voltage is applied to the pixel PX, the pixel PX may express luminance corresponding to the data voltage by various optical converters such as a light emitting element.

[0089] The touch controller 700 is connected to a touch detecting sensor positioned in the touch active area to control the operation of the touch detecting sensor. The touch controller 700 may be operated by transmitting the detection input signal to the touch detecting sensor or receiving the detection output signal. The touch controller 700 operates the detection output signal to generate touch information such as occurrence and position of a touch thereon.

[0090] The driving device, such as a data driver, a gate driver and a display controller 600, may be mounted directly on the display panel 300 as a form of an integrated circuit ("IC") chip or may be mounted on a flexible printed circuit film (not shown) to be attached onto the display panel 300 as a form of a tape carrier package ("TCP"), or may be mounted on an additional printed circuit board (not shown). Alternatively, the driving device may be integrated to a display panel 300 together with a display signal line and a switch or the like.

[0091] The touch controller 700 may also be mounted directly on the display panel 300 as a form of an IC chip or may be mounted on the flexible printed circuit film to be attached onto the display panel 300 as a form of a TCP, or may be mounted on the additional printed circuit board. The touch controller 700 may be connected to the first touch wire 411 and second touch wire 421 through the pad part 450 of display panel 300.

[0092] While the operative principle has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the inventive scope is not limited to the disclosed embodiments.


Claims

1. A method of forming an electrode structure, comprising:

mixing a first conductive material (11) with a first binder and coating the mixture on a substrate (10) to form a first conductive layer (52);

drying the mixture of the first conductive material and the binder;

mixing a second conductive material (21) with a second binder and coating the mixture on the first conductive layer to form a second conductive layer (53);

drying the mixture of the second conductive material and the second binder;

wherein one of the first conductive material and the second conductive material comprises a plurality of silver nanowires, and the other of the first conductive material and the second conductive material comprises RuO2; and

the conductive layer comprising silver nanowires has a thickness of 40 nm, and the other conductive layer, which comprises RuO2, has a thickness of equal to or less than 10 nm.


 
2. The method of claim 1, wherein the binder comprises a cellulose-based binder.
 
3. The method of claim 1 or claim 2 further comprising forming an overcoat layer on the second conductive layer, the overcoat layer comprising a polyacrylate-based material.
 


Ansprüche

1. Verfahren zum Bilden einer Elektrodenstruktur, umfassend:

Mischen eines ersten leitfähigen Materials (11) mit einem ersten Bindemittel und Auftragen des Gemischs auf ein Substrat (10), um eine erste leitfähige Schicht (52) zu bilden;

Trocknen des Gemischs des ersten leitfähigen Materials und des Bindemittels;

Mischen eines zweiten leitfähigen Materials (21) mit einem zweiten Bindemittel und Auftragen des Gemischs auf die erste leitfähige Schicht, um eine zweite leitfähige Schicht (53) zu bilden;

Trocknen des Gemischs des zweiten leitfähigen Materials und des zweiten Bindemittels;

wobei ein Material des ersten leitfähigen Materials und des zweiten leitfähigen Materials eine Mehrzahl von Silbernanodrähten umfasst, und wobei das andere Material des ersten leitfähigen Materials und des zweiten leitfähigen Materials RuO2 umfasst; und

wobei die leitfähige Schicht, die Silbernanodrähte umfasst, eine Dicke von 40 nm aufweist, und wobei die andere leitfähige Schicht, die RuO2 umfasst, eine Dicke von kleiner oder gleich 10 nm aufweist.


 
2. Verfahren nach Anspruch 1, wobei das Bindemittel ein Bindemittel auf Cellulosebasis umfasst.
 
3. Verfahren nach Anspruch 1 oder Anspruch 2, das ferner das Bilden einer Überzugsschicht auf der zweiten leitfähigen Schicht umfasst, wobei die Überzugsschicht ein Material auf Polyacrylatbasis umfasst.
 


Revendications

1. Procédé de formation d'une structure d'électrode, comprenant les étapes consistant à :

mélanger un premier matériau conducteur (11) avec un premier liant et appliquer le mélange sur un substrat (10) pour former une première couche conductrice (52) ;

sécher le mélange du premier matériau conducteur et du liant ;

mélanger un second matériau conducteur (21) avec un second liant et appliquer le mélange sur la première couche conductrice pour former une seconde couche conductrice (53) ;

sécher le mélange du second matériau conducteur et du second liant ;

l'un du premier matériau conducteur et du second matériau conducteur comprenant une pluralité de nanofils d'argent, et l'autre du premier matériau conducteur et du second matériau conducteur comprenant du RuO2 ; et

la couche conductrice comprenant des nanofils d'argent ayant une épaisseur de 40 nm, et l'autre couche conductrice, qui comprend du RuO2, ayant une épaisseur égale ou inférieure à 10 nm.


 
2. Procédé selon la revendication 1, le liant comprenant un liant à base de cellulose.
 
3. Procédé selon la revendication 1 ou 2, comprenant en outre l'étape consistant à former une couche de surcouche sur la seconde couche conductrice, la couche de surcouche comprenant un matériau à base de polyacrylate.
 




Drawing


























Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description