(19)
(11)EP 2 975 697 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.06.2019 Bulletin 2019/26

(21)Application number: 15177227.4

(22)Date of filing:  17.07.2015
(51)International Patent Classification (IPC): 
H01R 24/00(2011.01)
A61B 18/00(2006.01)
G02B 6/38(2006.01)
A61B 5/00(2006.01)
H01R 107/00(2006.01)
H01R 9/03(2006.01)
H01R 13/516(2006.01)
A61B 18/14(2006.01)

(54)

ELECTRO-OPTICAL CONNECTOR WITH HOT ELECTRICAL CONTACT PROTECTION AND METHOD FOR FORMING SAID CONNECTOR

ELEKTRO-OPTISCHER VERBINDER MIT HEISSEM ELEKTROKONTAKTSCHUTZ UND VERFAHREN ZUR HERSTELLUNG DES VERBINDERS

CONNECTEUR ÉLECTRO-OPTIQUE AVEC PROTECTION DE CONTACT ÉLECTRIQUE À CHAUD ET MÉTHODE POUR FORMER CE CONNECTEUR


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 18.07.2014 US 201414334792

(43)Date of publication of application:
20.01.2016 Bulletin 2016/03

(73)Proprietor: Biosense Webster (Israel) Ltd.
2066717 Yokneam (IL)

(72)Inventors:
  • GOVARI, Assaf
    3440001 Haifa (IL)
  • BEECKLER, Christopher Thomas
    Brea, CA California 92821 (US)

(74)Representative: Carpmaels & Ransford LLP 
One Southampton Row
London WC1B 5HA
London WC1B 5HA (GB)


(56)References cited: : 
WO-A1-2014/003063
US-B1- 6 827 597
US-A1- 2006 056 769
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The present invention relates generally to connectors, and specifically to connectors intended for use in a medical procedure.

    BACKGROUND OF THE INVENTION



    [0002] A catheter may comprise a relatively large number of wires and optical fibers within the catheter tube, for the purpose of conveying signals between distal and proximal ends of the catheter. Coupling proximal ends of the wires and the optical fibers to a console may require a connector that is demanding in its specification, in order to meet all the requirements of medical equipment that is used in an invasive procedure.
    This is achieved by the features of appended independent claims 1 and 8.

    [0003] The description above is presented as a general overview of related art in this field.

    [0004] US 2006/0056769 A1 describes a junction box and hybrid fiber optic cable connector which permit repair of damaged fibers or copper conductors carried by a hybrid fiber/copper cable without requiring replacement of the entire cable assembly or retermination of the cable.

    SUMMARY OF THE INVENTION



    [0005] There is provided, in accordance with the invention a cable connector as claimed in claim 1.

    [0006] In some embodiments, the electrical signals are selected from a list consisting of radio frequency (RF) energy and sensor measurements. In additional embodiments, the optical signals are selected from a list consisting of optical radiation and data. In further embodiments, the housing and the two optical fiber terminals may include a non-conductive material. In supplemental embodiments, the two optical fiber terminals may include a conductive material which is grounded. The cable Connector includes a plurality of structures protruding from the base, wherein each of the two optical fiber terminals is contained within a corresponding structure.

    [0007] In some embodiments, the two optical fiber terminals may include two male optical fiber terminals, wherein the plurality of electrical contacts may include female contact sockets. In further embodiments, the cable connector may include a mating plug configured for insertion into the housing, the mating plug including a corresponding male contact pin for each of the plurality of female contact sockets, and a corresponding female optical fiber terminal for each of the one or more male optical fiber terminals. In supplemental embodiments, a combination of a given male optical fiber terminal and the corresponding female plug optical fiber terminal may include an optical fiber connector selected from a list consisting of a ferrule connector, a biconical connector, an expanded beam connector and a multi-fiber connector.

    [0008] There is also provided, in accordance with the invention a method as claimed in claim 8.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0009] The disclosure is herein described, by way of example only, with reference to the accompanying drawings, wherein:

    Figure 1 is a schematic pictorial illustration of a medical system comprising an electro-optical connector with hot electrical contact protection, in accordance with an embodiment of the present invention;

    Figure 2 is a schematic detailed view of the electro-optical connector, in accordance with an embodiment of the present invention; and

    Figure 3 is a schematic cross-sectional view of the electro-optical connector, in accordance with an embodiment of the present invention.


    DETAILED DESCRIPTION OF EMBODIMENTS


    OVERVIEW



    [0010] Embodiments of the present invention provide an electro-optical connector (also referred to herein as a connector) configured to prevent a finger from touching any of a plurality of electrical contacts that are "hot" (i.e., electrical contacts conveying electrical signals such as radio frequency energy). In addition to the electrical contacts, the connector comprises two optical fiber terminals, a base, and a lip which surrounds the base and defines an aperture configured to receive a mating plug.

    [0011] The electrical contacts are enclosed by a housing, and have respective first proximal and first distal ends. As explained hereinbelow, the first proximal ends are implanted in the base so that the first distal ends are recessed within the aperture at a first distance from the base.

    [0012] The two optical fiber terminals contain end portions of respective optical fibers configured to convey optical signals, and have respective second proximal and second distal ends. The second proximal ends are implanted in the base so that the second distal ends are recessed within the aperture at a second distance from the base, which is greater than the first distance.

    [0013] Since the second distal ends of the two optical fiber terminals are closer to the lip than first distal ends of the electrical contacts, connectors implementing embodiments of the present invention can help prevent an operator's finger entering the aperture from touching the electrical contacts, thereby protecting the operator, the patient, and any equipment coupled to the connector.

    SYSTEM DESCRIPTION



    [0014] Figure 1 is a schematic pictorial illustration of a medical system 20, in accordance with an embodiment of the present invention. System 20 may be based, for example, on the CARTO™ system, produced by Biosense Webster Inc. (Diamond Bar, California). System 20 comprises a probe 22, such as a catheter, and a control console 24. In the embodiment described hereinbelow, it is assumed that probe 22 is used for diagnostic or therapeutic treatment, such as performing ablation of heart tissue in a heart 26. Alternatively, probe 22 may be used, mutatis mutandis, for other therapeutic and/or diagnostic purposes in the heart or in other body organs.

    [0015] Probe 22 comprises a flexible insertion tube 28, and a handle 30 coupled to a proximal end of the insertion tube. By manipulating handle 30, an operator 32 can insert probe 22 into a body cavity in a patient 34. For example, operator 32 can insert probe 22 through the vascular system of a patient 34 so that a distal end 36 of probe 22 enters a chamber of heart 26 and engages endocardial tissue at a desired location or locations.

    [0016] System 20 typically uses magnetic position sensing to determine position coordinates of distal end 36 inside heart 26. Console 24 comprises a driver circuit 38 which drives field generators 40 to generate magnetic fields within the body of patient 34. Typically, field generators 40 comprise coils, which are placed below the patient's torso at known positions external to patient 34. These coils generate magnetic fields in a predefined working volume that contains heart 26. A magnetic field sensor 42 (also referred to herein as position sensor 42) within distal end 36 of probe 22 generates electrical signals in response to the magnetic fields from the coils, thereby enabling console 24 to determine the position of distal end 36 within the chamber.

    [0017] Although in the present example system 20 measures the position of distal end 36 using magnetic-based sensors, other position tracking techniques may be used (e.g., impedance-based sensors). Magnetic position tracking techniques are described, for example, in U.S. Patents 5,391,199 and 6,690,963 referenced above, and in in U.S. Patents 5,443,489, 6,788,967, 5,558,091, 6,172,499 and 6,177,792. Impedance-based position tracking techniques, are described, for example, in U.S. Patents 5,983,126, 6,456,864 and 5,944,022. Both systems generate signals which vary according to the position of distal end 36.

    [0018] A processor 44 processes these signals in order to determine the position coordinates of distal end 36, typically including both location and orientation coordinates. The method of position sensing described hereinabove is implemented in the above-mentioned CARTO™ system and is described in detail in the patents and patent applications cited herein.

    [0019] Processor 44 typically comprises a general-purpose computer, with suitable front end and interface circuits for receiving signals from probe 22 and controlling the other components of console 24. Processor 44 may be programmed in software to carry out the functions that are described herein. The software may be downloaded to console 24 in electronic form, over a network, for example, or it may be provided on non-transitory tangible media, such as optical, magnetic or electronic memory media. Alternatively, some or all of the functions of processor 44 may be carried out by dedicated or programmable digital hardware components.

    [0020] Based on the signals received from probe 22 and other components of system 20, processor 44 drives a display 46 to present operator 32 with an image 48 showing the position of distal end 36 in the patient's body, as well as status information and guidance regarding the procedure that is in progress. Processor 44 stores data representing image 48 in a memory 50. In some embodiments, operator 32 can manipulate image 48 using one or more input devices 52.

    [0021] Probe 22 typically also comprises a force sensor 54 contained within distal end 36. Force sensor 54 measures a force applied by a distal tip 56 of probe 22 to endocardial tissue of heart 26 by generating a signal to the console that is indicative of the force exerted by the distal tip on the endocardial tissue. In one embodiment, the force sensor may comprise a magnetic field transmitter and receiver connected by a spring in distal tip 56, and may generate an indication of the force based on measuring the deflection of the spring. Further details of this sort of probe and force sensor are described in U.S. Patent Application Publications 2009/0093806 and 2009/0138007. Alternatively, distal end 36 may comprise another type of force sensor.

    [0022] In the present embodiment, an electrode 58 is mounted on distal end 36. Electrode 58 typically comprises a thin metal layer formed over an insulating sheath 60 of insertion tube 28. Probe 22 comprises channels 62 within insertion tube 28 and distal end 36 that are configured to hold optical fibers 64 having respective distal tips 66. Transparent windows 68 are mounted on distal end 36, and are configured to enable optical radiation (i.e., light) to pass through the windows.

    [0023] In the example shown in Figure 1, channels 62, optical fibers 64, distal tips 66 and windows 68 may be differentiated by appending a letter to the identifying numeral so that the channels comprise channels 62A and 62B, the optical fibers comprise optical fibers 64A and 64B, the distal tips of the optical fibers comprise distal tips 66A and 66B, and windows 68 comprise windows 68A and 68B. In some embodiments, optical fiber 64A can be configured to transmit, via distal tip 66A and window 68A, optical radiation in order to irradiate endocardial tissue in proximity to distal tip 56, and optical fiber 64B can be configured to acquire, via window 68B and distal tip 66B, optical radiation returning from the irradiated tissue.

    [0024] Console 24 also comprises a radio frequency (RF) ablation module 70 and an optical module 72. Processor 44 uses the ablation module to monitor and control ablation parameters such as the level of ablation power applied via electrode 58. The ablation module may also monitor and control the duration of the ablation that is provided. Ablation module 70 conveys ablation power to electrode 58 via a first electrical line 74. In the configuration shown in Figure 1, position sensor 42 and force sensor 54 convey respective measurements to processor 44 via additional electrical lines 74.

    [0025] Optical module 72 is configured to manage optical signals carried by optical fibers 64. In the example described hereinabove, optical module 72 conveys optical radiation to optical fiber 64A (i.e., for transmission through window 68A), and processes optical radiation conveyed by optical fiber 64B that was received through window 68B. In alternative configurations, optical module 72 can be configured to manage other types of data carried by optical fibers 64. For example, the optical fibers may convey location measurements from position sensor 42 and force measurements from force sensor 54 (or measurements from any other type of sensor).

    [0026] A cable 76 coupled to handle 30 and console 24 comprises electrical lines 74 and optical fibers 64. As described in Figures 2 and 3 hereinbelow, a cable connector 78 (also referred to herein as an electro-optical connector) couples a distal end 80 of cable 76 to console 24.

    [0027] Figures 2 and 3 are schematic detailed views of cable connector 78, in accordance with an embodiment of the present invention. Cable connector 78 comprises a housing 90 mounted on console 24, and a mating plug 92 coupled to distal end 80. Housing 90 may be formed of a polymer, for example a polycarbonate, and typically by injection molding. Housing 90 comprises a base 94, a lip 96, and structures 98 that protrude from base 94. Lip 96 surrounds base 94, thereby defining an aperture 100 configured to receive mating plug 92. Cable connector 78 also comprises female contact sockets 102 implanted in base 94 and optical fiber terminals 104. In embodiments herein, female contact sockets 102 may also be referred to as electrical contacts 102, and optical fiber terminals 104 may also be referred to as male optical fiber terminals 104.

    [0028] In the configuration shown in Figures 2 and 3, each optical fiber terminal 104 is contained within a given structure 98 (i.e., each optical fiber terminal 104 has a corresponding structure 98).

    [0029] Each optical fiber terminal 104 contains a first end portion of an optical fiber 106 (or first end portions of multiple optical fibers 106) whose second end portion is coupled to optical module 72. Optical fiber terminals 104 comprise an outer sleeve 108, an alignment sleeve 110, a ferrule 112, and an axial spring 114. Outer sleeve 108, alignment sleeve 110 and ferrule 112 are typically tubular structures configured so that outer sleeve 108 encompasses alignment sleeve 110, and alignment sleeve 110 encompasses ferrule 112. A given optical fiber terminal 104 is mounted within a given structure 98 so that a distal end 116 of alignment sleeve 110 is flush with a distal end 118 of the given structure, as shown in Figure 3.

    [0030] Housing 90 (i.e., base 94, lip 96 and structures 98) is typically are molded using a non-conductive material. In some embodiments optical fiber terminals 104 can also be fabricated using a non-conductive material. In alternative embodiments, optical fiber terminals 104 can be fabricated from a conductive material which is grounded.

    [0031] Mating plug 92 comprises a base 120 having cavities 122 and 124, and configured for insertion into housing 90. Like housing 90, mating plug 92 may be formed of a polymer, for example a polycarbonate, and typically by injection molding. Mating plug 92 also comprises male contact pins 126 mounted within cavities 122 and optical fiber terminals 128 mounted in cavities 124. In embodiments herein, each optical fiber terminal 128 may also be referred to as a female optical fiber terminal 128.

    [0032] Each male pin 126 has a corresponding female socket 102, and each female optical fiber terminal 128 has a corresponding male optical fiber terminal 104. As described supra, each optical fiber terminal 104 may be encased within a given structure 98. Therefore, in the configuration shown in Figure 2, each cavity 124 has a corresponding structure 98.

    [0033] When mating plug 92 is inserted into housing 90, the insertion mates male contact pins 126 with female sockets 102 and male optical fiber terminals 104 with female optical fiber terminals 128 (i.e., by mating protruding structures 98 with cavities 124). Contact pins 126 and female sockets 102 comprise electrically conductive material, so that mating a given male contact pin 126 with a given socket 102 establishes an electrical connection between console 24 and probe 22.

    [0034] For example, a first male contact pin 126 can be connected to a proximal end of a first electrical line 74 whose distal end is connected to electrode 58, a second male contact pin 126 can be connected to a proximal end of a second electrical line 74 whose distal end is connected to position sensor 42, and a third male contact pin 126 can be connected to a proximal end of a third electrical line 74 whose distal end is connected to force sensor 54.

    [0035] The electrical connection between console 24 and probe 22 enables electrical signals to be conveyed between contact pins 126 and sockets 102. Examples of electrical energy include, but are not limited to, radio frequency energy from ablation module 70 and measurements from sensors 42 and 54.

    [0036] Mating optical fiber terminals 104 and 128 enables a given optical fiber terminal 104 to convey optical signals to a given optical fiber terminal 128 and to convey optical signals from the given optical fiber terminal 128. Examples of optical signals include optical radiation and data. In the configuration shown in Figure 2, optical fiber terminals 104 and 128 can convey optical radiation from optical module 72, and convey optical radiation from optical fiber 64B. In some embodiments, optical fiber terminals 104 and 128 can be configured to convey analog and/or digital data between console 24 and probe 22.

    [0037] Each optical fiber terminal 128 contains a first end portion of optical fiber 64 (or first end portions of multiple optical fibers 64) whose second end is inserted in channel 62. Optical fiber terminal 128 comprises an outer sleeve 130, a ferrule 132, and an axial spring 134. Outer sleeve 130 and ferrule 132 are typically tubular structures configured so that outer sleeve 132 encompasses ferrule 132. In some embodiments, a given optical fiber terminal 128 can be mounted within a given cavity 124 so that a proximal end 136 of ferrule 132 protrudes within the given cavity.

    [0038] Ferrule 112 encompasses a channel 138 configured to convey optical radiation to and/or from optical fiber 106, and ferrule 132 encompasses a channel 142 configured to convey the optical radiation to and/or from optical fiber 64. When mating plug 92 is inserted into housing 90, ferrule 132 enters a first mating cavity 142 in alignment sleeve 110, and the alignment sleeve enters a second mating cavity between outer sleeve 130 and ferrule 132. Upon mating, channels 138 and 140 are aligned so that optical radiation 144 can be conveyed between optical fibers 64 and 106 via the channels.

    [0039] Each optical fiber terminal 104 and its corresponding optical fiber terminal 128 form an optical fiber connector. While the optical fiber connector shown in Figure 2 comprises a ferrule connector, other types of optical fiber connectors that can mate optical fibers 64 and 106 are considered to be within the spirit and scope of the present invention. Examples of other types of optical fiber connectors include, but are not limited to, biconical connectors, expanded beam connectors, and multi-fiber connectors.

    [0040] While the optical fiber connectors shown in Figure 2 comprise male optical fiber terminals 104 and female optical fiber terminals 128, any other type of optical fiber terminal pair configured to convey optical radiation 144 between optical fibers 64 and 106 is considered to be within the scope of the present invention. Likewise, while the configuration in Figure 2 shows female contact sockets 102 and male pins 26, any other pair of electrical connectors configured to convey electrical signals between console 24 and probe 22 is considered to be within the scope of the present invention.

    [0041] As shown in Figure 3, sockets 102 have distal ends 146 and proximal ends 148 that protrude from base 94 so that distal ends 146 are recessed within aperture 100 at a distance D1 from base 94. Each optical fiber terminal 104 has distal ends 150 and proximal ends 152 that protrude from base 94 so that distal ends 150 are recessed within aperture 100 at a distance D2 from base 94. Distance D2 is greater than distance D1. Therefore, a finger 154 entering aperture 100 will press against the distal end of one or more optical fiber terminals 104 and/or structures 98, and not touch sockets 102.

    [0042] In some embodiments (as shown in Figure 2), each socket 102 comprise a tubular structure having a socket aperture at distal end 146 configured to mate with the corresponding male pin 126. The inside of the tubular structure of socket 102 may be lined with a wire braid, so when a given male pin 126 is inserted into a corresponding socket 102, the male pin engages the wire braid, thereby establishing an electrical connection between the given male pin and the corresponding female socket.


    Claims

    1. A cable connector (78), comprising:

    a housing (90) comprising a base (94) and a lip (96), which surrounds the base (94) and defines an aperture (100) configured to receive a mating plug;

    a plurality of electrical contacts (102) enclosed by the housing (90) and configured to convey electrical signals, the electrical contacts (102) having respective first proximal and first distal ends, the first proximal ends being implanted in the base (94) so that the first distal ends are recessed within the aperture (100) at a first distance (D1) from the base (94);

    two optical fiber terminals (104) containing end portions of respective optical fibers (106) configured to convey optical signals and having respective second proximal and second distal ends (116), the second proximal ends being implanted in the base (94) so that the second distal ends (116) are recessed within the aperture (100) at a second distance (D2) from the base (94), which is greater than the first distance (D1); and characterised by:

    a plurality of structures (98) protruding from the base (94), wherein the plurality of structures (98) comprises

    a central structure disposed centrally within the plurality of electrical contacts;

    two optical fiber terminal containing structures diametrically opposed relative the central structure, wherein each optical fiber terminal (104) is contained within a corresponding one of the two optical fiber terminal containing structures; and

    two further structures diametrically opposed relative the central structure; wherein

    the two optical fiber terminal containing structures and the two further structures are regularly spaced around the central structure and partially surround the plurality of electrical contacts (102); and wherein

    each of the plurality of structures (98) has a third distal end (118), each third distal end being recessed in the aperture (100) at the second distance from the base (94), such that a finger entering the aperture (100) will press against at least one of the plurality of structures (98) and not touch the plurality of electrical contacts (102).


     
    2. The cable connector according to claim 1, wherein the electrical signals are selected from a list consisting of radio frequency (RF) energy and sensor measurements.
     
    3. The cable connector according to claim 1, wherein the optical signals are selected from a list consisting of optical radiation and data.
     
    4. The cable connector according to claim 1, wherein the housing and the two optical fiber terminals comprise a non-conductive material.
     
    5. The cable connector according to claim 1, wherein the two optical fiber terminals are fabricated from a conductive material, and the terminals are connected to ground.
     
    6. The cable connector according to claim 1, wherein the two optical fiber terminals comprise two male optical fiber terminals, and wherein the plurality of electrical contacts comprise female contact sockets, and comprising a mating plug configured for insertion into the housing, the mating plug comprising a corresponding male contact pin for each of the plurality of female contact sockets, and a corresponding female optical fiber terminal for each of the two male optical fiber terminals.
     
    7. The cable connector according to claim 6, wherein a combination of a given male optical fiber terminal and the corresponding female plug optical fiber terminal comprises an optical fiber connector selected from a list consisting of a ferrule connector, a biconical connector, an expanded beam connector and a multi-fiber connector.
     
    8. A method for forming a cable connector (78), comprising:

    providing a housing (90) comprising a base (94) and a lip (96), which surrounds the base (94) and defines an aperture (100) configured to receive a mating plug;

    enclosing a plurality of electrical contacts (102) within the housing;

    configuring the plurality of electrical contacts to convey electrical signals, the electrical contacts having respective first proximal and first distal ends;

    implanting the first proximal ends in the base so that the first distal ends are recessed within the aperture at a first distance (D1) from the base;

    enclosing, within the housing, two optical fiber terminals (104) containing end portions of respective optical fibers (106);

    configuring the one or more optical fiber terminals to convey optical signals, the one or more optical fiber terminals having respective second proximal and second distal ends (116); and

    implanting the second proximal ends in the base so that the second distal ends (116) are recessed within the aperture at a second distance (D2) from the base, which is greater than the first distance (D1); and

    protruding a plurality of structures from the base, wherein the plurality of structures comprises

    a central structure disposed centrally within the plurality of electrical contacts;

    two optical fiber terminal containing structures diametrically opposed relative the central structure, wherein each optical fiber terminal is contained within a corresponding one of the two optical fiber terminal containing structures and

    two further structures diametrically opposed relative the central structure; wherein

    the two optical fiber terminal containing structures and the two further structures are regularly spaced around the central structure and partially surround the plurality of electrical contacts; and wherein

    each of the plurality of structures (98) has a third distal end (118), each third distal end being recessed in the aperture (100) at the second distance (D2) from the base (94), such that a finger entering the aperture (100) will press against at least one of the plurality of structures (98) and not touch the plurality of electrical contacts(102).


     
    9. The method according to claim 8, wherein the electrical signals are selected from a list consisting of radio frequency (RF) energy and sensor measurements.
     
    10. The method according to claim 8, wherein the optical signals are selected from a list consisting of optical radiation and data.
     
    11. The method according to claim 8, wherein the housing and the two optical fiber terminals comprise a non-conductive material.
     
    12. The method according to claim 8, wherein the two optical fiber terminals are fabricated from a conductive material and the terminals are connected to ground.
     
    13. The method according to claim 8, wherein the one or more optical fiber terminals comprises one or more male optical fiber terminals, and wherein the plurality of electrical contacts comprise female contact sockets, and comprising configuring a mating plug for insertion into the housing, the mating plug comprising a corresponding male contact pin for each of the plurality of female contact sockets, and a corresponding female optical fiber terminal for each of the one or more male optical fiber terminals.
     
    14. The method according to claim 8, wherein a given male optical fiber terminal and the corresponding female optical fiber terminal comprises an optical fiber connector selected from a list consisting of a ferrule connector, a biconical connector, an expanded beam connector and a multi-fiber connector.
     


    Ansprüche

    1. Kabelverbinder (78), umfassend:

    ein Gehäuse (90) umfassend eine Basis (94) und eine Lippe (96), die die Basis (94) umgibt und eine Öffnung (100) definiert, die zum Empfangen eines passenden Steckers ausgebildet ist;

    mehrere elektrische Kontakte (102), die durch das Gehäuse (90) eingeschlossen und ausgebildet sind zum Übertragen von elektrischen Signalen, wobei die elektrischen Kontakte (102) jeweilige erste proximale und erste distale Enden besitzen, wobei die ersten proximalen Enden so in die Basis (94) implantiert sind, dass die ersten distalen Enden innerhalb der Öffnung (100) mit einer ersten Distanz (D1) von der Basis (94) vertieft sind;

    zwei Glasfaseranschlüsse (104), die Endabschnitte von jeweiligen Glasfasern (106) enthalten, die ausgebildet sind zum Übertragen von optischen Signalen und jeweilige zweite proximale und zweite distale Enden (116) besitzen, wobei die zweiten proximalen Enden so in die Basis (94) implantiert sind, dass die zweiten distalen Enden (116) innerhalb der Öffnung (100) mit einer zweiten Distanz (D2) von der Basis (94) vertieft sind, die größer ist als die erste Distanz (D1); und gekennzeichnet durch:

    mehrere Strukturen (98), die von der Basis (94) vorstehen, wobei die mehreren Strukturen (98) umfassen

    eine zentrale Struktur, die mittig innerhalb der mehreren elektrischen Kontakte angeordnet ist;

    zwei glasfaseranschlusshaltige Strukturen, die relativ zu der zentralen Struktur diametral gegenüber angeordnet sind, wobei jeder Glasfaseranschluss (104) innerhalb einer entsprechenden der zwei glasfaseranschlusshaltigen Strukturen enthalten ist; und

    zwei weitere Strukturen, die relativ zu der zentralen Struktur diametral gegenüberliegen; wobei

    die beiden glasfaseranschlusshaltigen Strukturen und die beiden weiteren Strukturen regelmäßig um die zentrale Struktur beabstandet sind und die mehreren elektrischen Kontakte (102) teilweise umgeben; und wobei

    jede der mehreren Strukturen (98) ein drittes distales Ende (118) besitzt, wobei jedes dritte distale Ende in der Öffnung (100) mit der zweiten Distanz von der Basis (94) vertieft ist, so dass ein in die Öffnung (100) eintretender Finger gegen mindestens eine der mehreren Strukturen (98) drücken wird und nicht die mehreren elektrischen Kontakte (102) berührt.


     
    2. Kabelverbinder nach Anspruch 1, wobei die elektrischen Signale ausgewählt sind aus einer Liste bestehend aus Hochfrequenz(HF)-Energie- und Sensormessungen.
     
    3. Kabelverbinder nach Anspruch 1, wobei die optischen Signale ausgewählt sind aus einer Liste bestehend aus optischer Strahlung und Daten.
     
    4. Kabelverbinder nach Anspruch 1, wobei das Gehäuse und die beiden Glasfaseranschlüsse ein nichtleitendes Material umfassen.
     
    5. Kabelverbinder nach Anspruch 1, wobei die beiden Glasfaseranschlüsse aus einem leitenden Material hergestellt sind und die Anschlüsse mit Masse verbunden sind.
     
    6. Kabelverbinder nach Anspruch 1, wobei die beiden Glasfaseranschlüsse zwei Glasfasersteckanschlüsse umfassen und wobei die mehreren elektrischen Kontakte Buchsenkontakte umfassen und umfassend einen passenden Stecker, der ausgebildet ist zum Einsetzen in das Gehäuse, wobei der passende Stecker einen entsprechenden Steckkontaktstift für jeden der mehreren Buchsenkontakte umfasst, und einen entsprechenden Glasfaserbuchsenanschluss für jeden der beiden Glasfasersteckanschlüsse.
     
    7. Kabelverbinder nach Anspruch 6, wobei eine Kombination aus einem gegebenen Glasfasersteckanschluss und dem entsprechenden Glasfaserbuchsenanschluss einen Glasfaserverbinder, ausgewählt aus einer Liste bestehend aus einem Steckverbinder, einem bikonischen Verbinder, einem Expanded-Beam-Verbinder und einem Mehrfaserverbinder, umfasst.
     
    8. Verfahren zum Ausbilden eines Kabelverbinders (78), umfassend:

    Bereitstellen eines Gehäuses (90), das eine Basis (94) und eine Lippe (96) umfasst, die die Basis umgibt und eine Öffnung (100) definiert, die zum Aufnehmen eines passenden Steckers ausgebildet ist;

    Einschließen von mehreren elektrischen Kontakten (102) innerhalb des Gehäuses;

    Ausbilden der mehreren elektrischen Kontakte zum Übertragen von elektrischen Signalen, wobei die elektrischen Kontakte jeweilige erste proximale und erste distale Enden besitzen;

    Implantieren der ersten proximalen Enden in die Basis, so dass die ersten distalen Enden innerhalb der Öffnung mit einer ersten Distanz (D1) von der Basis vertieft sind;

    Einschließen, innerhalb des Gehäuses, von zwei Glasfaseranschlüssen (104), die Endabschnitte von jeweiligen Glasfasern (106) enthalten;

    Ausbilden der einen oder mehreren Glasfaseranschlüsse zum Übertragen von optischen Signalen, wobei der eine oder die mehreren Glasfaseranschlüsse jeweilige zweite proximale und zweite distale Enden (116) besitzen; und

    Implantieren der zweiten proximalen Enden in die Basis, so dass die zweiten distalen Enden (116) innerhalb der Öffnung mit einer zweiten Distanz (D2) von der Basis vertieft sind, die größer ist als die erste Distanz (D1); und

    Vorstehen von mehreren Strukturen von der Basis, wobei die mehreren Strukturen umfassen

    eine zentrale Struktur, die mittig innerhalb der mehreren elektrischen Kontakte angeordnet ist;

    zwei glasfaseranschlusshaltige Strukturen, die relativ zu der zentralen Struktur diametral gegenüber angeordnet sind, wobei jeder Glasfaseranschluss (104) innerhalb einer entsprechenden der zwei glasfaseranschlusshaltigen Strukturen enthalten ist; und

    zwei weitere Strukturen, die relativ zu der zentralen Struktur diametral gegenüberliegen; wobei

    die beiden glasfaseranschlusshaltigen Strukturen und die beiden weiteren Strukturen regelmäßig um die zentrale Struktur beabstandet sind und die mehreren elektrischen Kontakte teilweise umgeben; und wobei

    jede der mehreren Strukturen (98) ein drittes distales Ende (118) besitzt, wobei jedes dritte distale Ende in der Öffnung (100) mit der zweiten Distanz (D2) von der Basis (94) vertieft ist, so dass ein in die Öffnung (100) eintretender Finger gegen mindestens eine der mehreren Strukturen (98) drücken wird und nicht die mehreren elektrischen Kontakte (102) berührt.


     
    9. Verfahren nach Anspruch 8, wobei die elektrischen Signale ausgewählt sind aus einer Liste bestehend aus Hochfrequenz(HF)-Energie- und Sensormessungen.
     
    10. Verfahren nach Anspruch 8, wobei die optischen Signale ausgewählt sind aus einer Liste bestehend aus optischer Strahlung und Daten.
     
    11. Verfahren nach Anspruch 8, wobei das Gehäuse und die beiden Glasfaseranschlüsse ein nichtleitendes Material umfassen.
     
    12. Verfahren nach Anspruch 8, wobei die beiden Glasfaseranschlüsse aus einem leitenden Material hergestellt sind und die Anschlüsse mit Masse verbunden sind.
     
    13. Verfahren nach Anspruch 8, wobei das eine oder die mehreren Glasfaseranschlüsse einen oder mehrere Glasfasersteckanschlüsse umfassen und wobei die mehreren elektrischen Kontakte Buchsenkontakte umfassen und umfassend das Ausbilden eines passenden Steckers zum Einsetzen in das Gehäuse, wobei der passende Stecker einen entsprechenden Steckkontaktstift für jeden der mehreren Buchsenkontakte umfasst, und einen entsprechenden Glasfaserbuchsenanschluss für jeden des einen oder der mehreren Glasfasersteckanschlüsse.
     
    14. Verfahren nach Anspruch 8, wobei ein gegebener Glasfasersteckanschluss und der entsprechende Glasfaserbuchsenanschluss einen Glasfaserverbinder, ausgewählt aus einer Liste bestehend aus einem Steckverbinder, einem bikonischen Verbinder, einem Expanded-Beam-Verbinder und einem Mehrfaserverbinder, umfassen.
     


    Revendications

    1. Connecteur (78) de câble, comportant :

    un boîtier (90) comportant une base (94) et un rebord (96), qui entoure la base (94) et définit une ouverture (100) configurée pour recevoir une fiche complémentaire ;

    une pluralité de contacts électriques (102) enveloppés par le boîtier (90) et configurés pour transmettre des signaux électriques, les contacts électriques (102) présentant des premières extrémités proximales et des premières extrémités distales respectives, les premières extrémités proximales étant implantées dans la base (94) de telle façon que les premières extrémités distales soient en retrait à l'intérieur de l'ouverture (100) à une première distance (D1) de la base (94) ;

    deux terminaisons (104) de fibres optiques contenant des parties d'extrémités de fibres optiques (106) respectives configurées pour transmettre des signaux optiques et présentant des deuxièmes extrémités proximales et des deuxièmes extrémités distales (116) respectives, les deuxièmes extrémités proximales étant implantées dans la base (94) de telle façon que les deuxièmes extrémités distales (116) soient en retrait à l'intérieur de l'ouverture (100) à une deuxième distance (D2) de la base (94), qui est supérieure à la première distance (D1) ; et caractérisé par :

    une pluralité de structures (98) dépassant de la base (94), la pluralité de structures (98) comportant

    une structure centrale disposée de façon centrale à l'intérieur de la pluralité de contacts électriques ;

    deux structures contenant des terminaisons de fibres optiques, diamétralement opposées par rapport à la structure centrale, chaque terminaison (104) de fibre optique étant contenue à l'intérieur d'une structure correspondante parmi les deux structures contenant des terminaisons de fibres optiques ; et

    deux structures supplémentaires diamétralement opposées par rapport à la structure centrale ;

    les deux structures contenant des terminaisons de fibres optiques et les deux structures supplémentaires étant espacées régulièrement autour de la structure centrale et entourant partiellement la pluralité de contacts électriques (102) ; et

    chaque structure de la pluralité de structures (98) présentant une troisième extrémité distale (118), chaque troisième extrémité distale étant en retrait dans l'ouverture (100) à la deuxième distance de la base (94), de telle façon qu'un doigt pénétrant dans l'ouverture (100) appuie contre au moins une structure de la pluralité de structures (98) et ne touche pas la pluralité de contacts électriques (102).


     
    2. Connecteur de câble selon la revendication 1, les signaux électriques étant sélectionnés dans une liste constituée d'une énergie à radiofréquence (RF) et de mesures de capteurs.
     
    3. Connecteur de câble selon la revendication 1, les signaux optiques étant sélectionnés dans une liste constituée d'un rayonnement optique et de données.
     
    4. Connecteur de câble selon la revendication 1, le boîtier et les deux terminaisons de fibres optiques comportant un matériau non conducteur.
     
    5. Connecteur de câble selon la revendication 1, les deux terminaisons de fibres optiques étant réalisées à partir d'un matériau conducteur, et les terminaisons étant reliées à la terre.
     
    6. Connecteur de câble selon la revendication 1, les deux terminaisons de fibres optiques comportant deux terminaisons mâles de fibres optiques, et la pluralité de contacts électriques comportant des réceptacles femelles de contact, et comportant une fiche complémentaire configurée pour être insérée dans le boîtier, la fiche complémentaire comportant une broche mâle de contact correspondante pour chaque réceptacle de la pluralité de réceptacles femelles de contact, et une terminaison femelle correspondante de fibre optique pour chacune des deux terminaisons mâles de fibres optiques.
     
    7. Connecteur de câble selon la revendication 6, une combinaison d'une terminaison mâle de fibre optique donnée et de la terminaison de prise femelle correspondante de fibre optique comportant un connecteur de fibre optique sélectionné dans une liste constituée d'un connecteur à ferrule, d'un connecteur biconique, d'un connecteur à faisceau élargi et d'un connecteur à fibres multiples.
     
    8. Procédé de formation d'un connecteur (78) de câble, comportant les étapes consistant à :

    mettre en place un boîtier (90) comportant une base (94) et un rebord (96), qui entoure la base (94) et définit une ouverture (100) configurée pour recevoir une fiche complémentaire ;

    envelopper une pluralité de contacts électriques (102) à l'intérieur du boîtier ;

    configurer la pluralité de contacts électriques pour transmettre des signaux électriques, les contacts électriques présentant des premières extrémités proximales et des premières extrémités distales respectives ;

    implanter les premières extrémités proximales dans la base de telle façon que les premières extrémités distales soient en retrait à l'intérieur de l'ouverture à une première distance (D1) de la base ;

    envelopper, à l'intérieur du boîtier, deux terminaisons (104) de fibres optiques contenant des parties d'extrémités de fibres optiques (106) respectives ;

    configurer la ou les terminaisons de fibres optiques pour transmettre des signaux optiques, la ou les terminaisons de fibres optiques présentant des deuxièmes extrémités proximales et des deuxièmes extrémités distales (116) respectives ; et

    implanter les deuxièmes extrémités proximales dans la base de telle façon que les deuxièmes extrémités distales (116) soient en retrait à l'intérieur de l'ouverture à une deuxième distance (D2) de la base, qui est supérieure à la première distance (D1) ; et

    faire dépasser une pluralité de structures de la base, la pluralité de structures comportant

    une structure centrale disposée de façon centrale à l'intérieur de la pluralité de contacts électriques ;

    deux structures contenant des terminaisons de fibres optiques, diamétralement opposées par rapport à la structure centrale, chaque terminaison de fibre optique étant contenue à l'intérieur d'une structure correspondante parmi les deux structures contenant des terminaisons de fibres optiques et

    deux structures supplémentaires diamétralement opposées par rapport à la structure centrale ;

    les deux structures contenant des terminaisons de fibres optiques et les deux structures supplémentaires étant espacées régulièrement autour de la structure centrale et entourant partiellement la pluralité de contacts électriques ; et

    chaque structure de la pluralité de structures (98) présentant une troisième extrémité distale (118), chaque troisième extrémité distale étant en retrait dans l'ouverture (100) à la deuxième distance (D2) de la base (94), de telle façon qu'un doigt pénétrant dans l'ouverture (100) appuie contre au moins une structure de la pluralité de structures (98) et ne touche pas la pluralité de contacts électriques (102).


     
    9. Procédé selon la revendication 8, les signaux électriques étant sélectionnés dans une liste constituée d'une énergie à radiofréquence (RF) et de mesures de capteurs.
     
    10. Procédé selon la revendication 8, les signaux optiques étant sélectionnés dans une liste constituée d'un rayonnement optique et de données.
     
    11. Procédé selon la revendication 8, le boîtier et les deux terminaisons de fibres optiques comportant un matériau non conducteur.
     
    12. Procédé selon la revendication 8, les deux terminaisons de fibres optiques étant réalisées à partir d'un matériau conducteur et les terminaisons étant reliées à la terre.
     
    13. Procédé selon la revendication 8, la ou les terminaisons de fibres optiques comportant une ou plusieurs terminaisons mâles de fibres optiques, et la pluralité de contacts électriques comportant des réceptacles femelles de contact, et comportant le fait de configurer une fiche complémentaire pour être insérée dans le boîtier, la fiche complémentaire comportant une broche mâle de contact correspondante pour chaque réceptacle de la pluralité de réceptacles femelles de contact, et une terminaison femelle correspondante de fibre optique pour chaque terminaison parmi la ou les terminaisons mâles de fibres optiques.
     
    14. Procédé selon la revendication 8, une terminaison mâle de fibre optique donnée et la terminaison femelle correspondante de fibre optique comportant un connecteur de fibre optique sélectionné dans une liste constituée d'un connecteur à ferrule, un connecteur biconique, d'un connecteur à faisceau élargi et d'un connecteur à fibres multiples.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description