(19)
(11)EP 2 976 540 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
27.02.2019 Bulletin 2019/09

(21)Application number: 14767555.7

(22)Date of filing:  13.03.2014
(51)International Patent Classification (IPC): 
F16D 27/00(2006.01)
H02K 7/11(2006.01)
(86)International application number:
PCT/IL2014/050286
(87)International publication number:
WO 2014/147612 (25.09.2014 Gazette  2014/39)

(54)

A DEVICE AND METHOD FOR USING A MAGNETIC CLUTCH IN BLDC MOTORS

VORRICHTUNG UND VERFAHREN ZUR VERWENDUNG EINER MAGNETKUPPLUNG BEI BLDC-MOTOREN

DISPOSITIF ET PROCÉDÉ D'UTILISATION D'UN EMBRAYAGE MAGNÉTIQUE DANS DES MOTEURS BLDC


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME

(30)Priority: 19.03.2013 WO PCT/IL2013/050253

(43)Date of publication of application:
27.01.2016 Bulletin 2016/04

(73)Proprietor: INTELLITECH PTY LTD
Malvern, Victoria 3144 (AU)

(72)Inventors:
  • MOSTOVOY, Alexander
    7868002 Ashkelon (IL)
  • SHLAKHETSKI, Victor
    7878704 Ashqelon (IL)

(74)Representative: Boult Wade Tennant LLP 
Verulam Gardens 70 Gray's Inn Road
London WC1X 8BT
London WC1X 8BT (GB)


(56)References cited: : 
EP-A1- 0 779 699
WO-A1-81/01633
FR-A1- 2 766 029
JP-A- 2003 199 283
US-A- 2 705 762
US-A- 4 115 040
US-A- 4 381 466
EP-B1- 2 330 724
WO-A1-96/07611
FR-A1- 2 766 029
JP-U- H02 139 461
US-A- 3 936 683
US-A- 4 115 040
US-A1- 2011 037 333
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of the Invention



    [0001] The present invention relates to a magnetic clutch architecture designed to couple mechanical power between the rotor of Brushless DC Motors (BLDC) and an external mechanical load, without using direct or indirect mechanical connection such as gears, wheels, strips or other similar arrangements.

    Background of the Invention



    [0002] In many common systems, the connection between different parts of the system is performed by mechanical components. A significant disadvantage of using such connecting parts is the energy loss, caused by friction. Another disadvantage caused by friction is the wear of the connecting surfaces of the parts. As the speed and force between the parts increase, so does the friction and therefore the damage to their surfaces, until they often can no longer function properly.

    [0003] In systems operating at high speeds, like motors that usually operate in extremely high speeds, the friction and its outcomes are substantial, resulting in the need for many maintenance services and frequent change of parts, which require a great investment of both time and money.

    [0004] The present invention relates to a device used in BLDC motors, such as the motor described in PCT patent application No. PCT/IL2013/050253.

    [0005] JP 2003 199283 discloses a magnetically coupled brushless DC motor which comprises two annular and cylindrical coaxial rotors, an outer motor rotor having a continuous annular drive magnet which is configured with circumferentially alternating poles and is connected to an annular mounting portion rotatably supported in the stator, and a central rotor having a continuous annular coupling magnet which is configured with circumferentially alternating poles and is rotatably mounted by a shaft in a partition wall separating the two rotors. Coil windings to which a control current is supplied are provided with the annular stator which surrounds the outer rotor, causing the outer rotor to be rotated by the generated electromagnetic force and the inner rotor to be rotated by the magnetic coupling between the two rotors despite the presence of the partition wall. The shaft to which the central rotor is connected drives the impeller of a pump, and the partition wall protects the coil windings from the pumped fluid.

    [0006] It is an object of the present invention to provide a device and method that overcome the drawbacks of the prior art.

    [0007] Other objects and advantages of the invention will become apparent as the description proceeds.

    Summary of the Invention



    [0008] An apparatus for coupling mechanical power between the rotor of a Brushless DC Motor and an external mechanical load is provided, as defined in claim 1. A method is provided, as defined in claim 9.

    [0009] In one embodiment of the invention the rings are flat ring-shaped plates. In another embodiment of the invention each couple of facing magnets are of the same size.

    [0010] In some embodiments of the invention the magnetic strengths of two facing magnets are essentially the same. In another embodiment of the invention each of the magnets in the inner ring has a facing magnet in the outer ring.

    [0011] Typically, the distances between the components of the apparatus are consistent with the desired forces and in some embodiments of the invention the distance between two adjacent magnets on the ring is not the same as the distance between two other adjacent magnets on the same ring.

    Brief Description of the Drawings



    [0012] In the drawings:

    Fig. 1 shows two concentric rings, provided with magnets, according to one embodiment of the invention, in a static state;

    Fig. 2 shows the two rings of Fig. 1 in a dynamic state;

    Fig. 3 shows the measurements of the force on a single couple of magnets mounted at distance d from each other and shifted linearly;

    Fig. 4 shows the measurements of the force in a demo system, according to another embodiment of the invention;

    Fig. 5 shows exemplary physical measures of the components in a BLDC demo system, according to another embodiment of the invention;

    Fig. 6 shows a schematic setup of two magnets, according to another embodiment of the invention;

    Fig. 7 shows solenoids illustrated as consisting of a collection of infinitesimal current loops, stacked one on top of the other; and

    Fig. 8 shows two loops of infinitesimal thickness, each one belonging to a magnet.


    Detailed Description of the Invention



    [0013] Fig. 1 shows two concentric rotating rings 101 and 102 at rest. The inner ring 101 consists of the rotor of a BLDC motor (which can be, for example, the motor of PCT/IL2013/050253 - WO/2013/140400), and the outer ring 102 is connected to a mechanical load and provides the power for it. A number of permanent magnets, equal to the number of the magnets in the rotor of the BLDC motor, are mechanically fixed on the outer ring 102 with their S-N axes oriented tangentially to the circumference.

    [0014] At rest, each one of the magnets 104 located on the outer ring 102, is facing the corresponding magnet 103 located on the rotor 101. The S-N axis orientation of each magnet 104 on the outer ring 102 is opposite to the S-N axis orientation of the corresponding (facing) magnet 103 on the rotor 101. As a result, the magnets 104 on the outer ring 102 are positioned with alternating polarity. It should be emphasized that there is no physical connection between the rotor 101 and the outer ring 102. For reasons that will be thoroughly explained later on in this description, based on the laws of magnetostatics, the relative position of the rotor 101 with respect to the outer ring 102, depends on the state of the system - if the system is in a static state or a dynamic state, as will be further described.

    [0015] In a static state - when the BLCD rotor is at rest, each magnet 104 on the outer ring 102 is exactly aligned in front of the corresponding magnet 103 on the rotor 101, as shown in Fig. 1. In a dynamic state - when the BLCD rotor 101 turns, while the outer ring 102 is connected to a load (not completely free to move), the relative position of each magnet 103 on the rotor ring 101 with respect to the corresponding magnet 104 on the load ring 102, will change and will stabilize to a new state.

    [0016] The corresponding magnets 103 and 104 will no longer be perfectly aligned. The relative position of the magnets will shift in a quasi-linear fashion tangentially to the circumference of the rings 101 and 102. The magnets 103 and 104 will reach an offset h as shown in Fig. 2, and will stabilize there. The offset h will depend on the opposing force exercised by the load. It will be seen that under proper conditions h will increase directly proportionally to the force needed to make the load ring 102 rotate along with the rotor ring 101.

    [0017] It will be presented that in the range of interest, the offset h is roughly directly proportional to the force transfer, and as long as h is not too large, the rotor ring 101 will be able to "pull along" the load ring 102, without the occurrence of any physical contact between the two ring 101 and 102. When the size of h approaches the width of the gap between the magnets 103 and 104, the force transferred drops. The maximal force that the rotor ring 101 will be able to apply to the load ring 102 will depend on the strength and on the geometry of the permanent magnets, on the number of magnets, as well as on the gap between the two rings 101 and 102.

    [0018] Fig. 3 shows the measurements of the force on a single couple of magnets mounted at distance d from each other and shifted linearly. The shaded area 301 shows the range for which the pulling force between the magnets 103 and 104 is roughly proportional to the offset h.

    [0019] To illustrate the order of magnitude of the forces involved, two magnets with front-to-front separation of 29mm, can provide roughly a maximal force transfer of 140N (about 14 Kg) in direction tangential to the ring.

    [0020] In the BLDC motor demo system built according to the invention, there are 8 magnets were provided with face-to-face separation of about 30 mm. The demo system is capable to apply a force of 140x8=1120N (about 112Kg). Since the outer ring 102 in the demo system has a radius of about 420mm, the magnetic clutch should be able to transfer a torque of about 470N-m.

    [0021] In a measurement carried out on the BLDC demo system, and as shown in Fig. 4, the inventors did not try to achieve and measure the maximal power transfer, however, they showed force transfer measurements of the order of 600N, which is in good agreement with the order of magnitude of the maximal possible force (1120N) predicted by the measurements on one couple of magnets. Also it shows that the total force is proportional to the relative offset.

    [0022] The physical measures of the components in the BLDC demo system, as provided by the inventors, are shown in Fig. 5. From the figure one can see that the system includes 8 magnets, and the separation between the rotor ring 101 and the load ring 102 is 30mm.

    [0023] Magnetostatic computations are among the most difficult and complex tasks to be carried out analytically, and even when a closed-form analytical expression can be found, the resulting formulas are often too complex to provide a clear understanding of the phenomena. Moreover, most often, one can only perform computerized simulations obtained by numerically solving the field equations. Numerical solutions, however, although precise for a specific setup, do not provide an insight to the general behavior of the system.

    [0024] Fortunately, in the specific case under consideration, general conclusions can be drawn by means of a relatively simple mathematical analysis. This is made possible because, in the system under consideration, the magnets are free to move only along a direction tangential to their S-N axis, and they are fixed in all other directions. Therefore, it is only needed to compute the component of the force in a direction parallel to the S-N axes of the magnets, which results in major mathematical simplifications that allow us to draw conclusion regarding general system features, without the need of actually solving the complex three-dimensional integrals involved.

    [0025] What was analyzed is the setup shown in Fig. 6. , and are mutually perpendicular unit vectors. Two cubic magnets 601 and 602 are positioned so that their S-N axes are parallel to direction . Their S-N orientation is opposite, and they are displaced with an offset h in direction . The magnets 601 and 602 are assumed cubic, for the purpose of this exemplary analysis, however the general conclusions hold true for other shapes as well. The measurements shown in Fig. 3 have been carried out on a similar setup.

    [0026] Under this setup, as long as the offset h is small relatively to the physical dimension of the gap between the magnets 601 and 602, the component of the force acting on either magnet 601 and 602 in the direction , is directly proportional to the offset h. The size of h is relatively small, roughly when the offset h is less than 1/3 of the separation d between the magnets 601 and 602. As the offset becomes larger than that, the force reaches a maximal value, and then decreases with increasing h.

    [0027] As a first step, by using the Amperian model, a permanent magnet with magnetization M in direction , may be modeled in the form of a uniform surface current density Js flowing on the surface of the magnet in direction perpendicular to . M is the net magnetic dipole moment per unit volume, and Js is the equivalent surface current per unit length. Therefore we may replace each magnet 601 and 601 in Fig.6 by the equivalent "solenoids" shown in Fig. 7, with equal currents in opposite directions.

    [0028] Each solenoid 701 in Fig. 7 can be represented as consisting of a collection of infinitesimal current loops, stacked one on top of the other, carrying currents of amplitudes dI = Jsdz and dI' = Jsdz', flowing in the x̂ŷ plane in opposite directions. Let us consider now, two loops of infinitesimal thickness, each one belonging to one of the magnets as shown in Fig 8.

    [0029] The force caused on the left-side loop L located at vertical position z by the right-side loop L' located at vertical position z', is directly derived from Ampere's law of force, and is given by the expression

    where

    r̂-r̂'=(x-x')x̂+(y-y')ŷ+(z-z')ẑ,

    and

    and

    are infinitesimal lengths in the direction of the current flow in the corresponding loops, and therefore they lie in the x̂ŷ plane.

    [0030] Now, referring to Fig. 8, it points out several preliminary remarks:
    1. 1. We know that |y-y'|≥d and we denote

      It follows that Rd. R = R(x,x',y,y') is independent from z and z', and we may write

    2. 2. In the present setting, d is comparable to the size of the magnet, and we assume offsets small enough so that h2 << d2 (for instance

      ).
    3. 3. Since we are interested only in the force in the direction, the only relevant component of -r̂' in the numerator of the integrand, is the one in direction . All other forces are of no interest, since the magnets cannot move in other directions. Thus, in order to compute the force acting on the magnets in direction, we may replace -r̂' in the numerator of the integrand by (z-z').
    4. 4.

      and

      are incremental vectors in the x̂ŷ plane. More precisely, in the present setting of square magnets, the scalar product

      is either ±dxdx' or ±dydy'. Therefore z and z' are constant with respect to the integration variables when integrating over the path of the loops. Moreover, if dx,dx' have opposite signs, their direction of integration is opposite too, and therefore, the limit of the corresponding integrals are reversed, and similarly for dy,dy'. The outcome is that the sign of the integral for all the various sub-integration ranges defined by

      remains unchanged. Therefore the sign value of the double integral over the loop paths, is the same as the sign of the integrand.


    [0031] With the above understanding, the force ΔFz in direction acting on the current loop L because of the current loop L', is the result of the following integral:



    [0032] The cumulative force ΔF,L applied by all the current loops on the right side on one single current loop L on the left side (see fig. 8) is given by



    [0033] The total force F(h) acting on the magnet located at the origin is the sum of all the forces on its loops



    [0034] Changing the order of integration we obtain



    [0035] Noting that

    is independent from z and z', and therefore is constant when integrating with respect to dz and dz', the inner integrals can be computed analytically, and yield

    where we used

    and



    [0036] Since Rd, then if

    (for instance

    ) then

    and we may expand the last expression in a first-order Taylor series as follows



    [0037] Since

    it follows that the function g(x,x',y,y') is some negative function of x,x',y,y', namely g(x,x',y,y')=-|g(x,x',y,y')|. Therefore, recalling that the sign of the double integral over x,x',y,y' is the same as the sign of the integrand, and setting

    the total force F(h), acting on the magnet at the origin, due to the offset of the other magnet, has the form

    h2 << d2
    where K is some proportionality constant. Finally, recalling that M = Js is the net magnetization per unit volume in the direction, and referring to figure 6, the force acting on the left magnet is



    [0038] Thus, for any offset h < d/3, the force transferred by the clutch is directly proportional to the offset h and to the square magnetization per unit volume. Moreover, the force is in direction of the offset itself.

    [0039] All the above description has been provided for the purpose of illustration and is not meant to limit the invention in any way. The computations shown above are provided as an aid in understanding the invention, and should not be construed as intending to limit the invention in any way.


    Claims

    1. An apparatus for coupling mechanical power between the rotor of a Brushless DC Motor and an external mechanical load, comprising:

    a) two concentric rings each ring having an inner edge and an outer edge, including an inner ring (101) constituting a rotor of a Brushless DC Motor and an outer ring (102);

    b) an equal number of magnets connected to the inner ring and to the outer ring;

    c) an opposite orientation of the poles of each couple of facing magnets, wherein one magnet is placed on the inner ring, and its facing magnet is placed on the outer ring, wherein the magnets (103, 601) connected to the inner ring are circumferentially spaced one from each other and the magnets (104, 602) connected to the outer ring are circumferentially spaced one from each other; and

    d) non-geared connecting means which connect the outer ring to a mechanical load of an external system, and

    e) a plurality of circumferentially spaced and stationary air-core solenoids (701) constituting a stator of said Brushless DC Motor, each of said air-core solenoids encircling both said inner edge and said outer edge of the inner ring so that through an interior of each of said air-core solenoids the magnets of the inner ring can pass, which, when energized, generate an electromagnetic field that produces a torque on a magnetic field of the magnet passing through their interior to cause the inner ring to turn around its axis,
    wherein when the inner concentric ring rotates through the interior of each of said air-core solenoids in response to the generated electromagnetic field, the outer ring rotates as well by the action of magnetic forces between each couple of the facing magnets.


     
    2. Apparatus according to claim 1, wherein the inner (101) and outer (102) rings are flat ring-shaped plates.
     
    3. Apparatus according to claim 1, wherein each couple of facing magnets (103, 601; 104, 602) are of the same size.
     
    4. Apparatus according to claim 1, wherein the magnetic strengths of two facing magnets (103, 601; 104, 602) are essentially the same.
     
    5. Apparatus according to claim 1, wherein each of the magnets (103, 601) in the inner ring (101) has a facing magnet (104, 602) in the outer ring (102).
     
    6. Apparatus according to claim 5, wherein the distance (d) between the facing magnets (103, 601; 104, 602) of each couple is about 30 mm.
     
    7. Apparatus according to claim 5, wherein the distance (d) between the facing magnets (103, 601; 104, 602) of each couple is selected from the group consisting of 18 mm, 22 mm, 29 mm, 30 mm and 35 mm.
     
    8. Apparatus according to claim 1, wherein the distance between two adjacent magnets on the inner (101) or outer (102) ring is not the same as the distance between two other adjacent magnets on the same ring.
     
    9. A method comprising providing the apparatus of any preceding claim.
     


    Ansprüche

    1. Vorrichtung zum Koppeln von mechanischer Leistung zwischen dem Rotor eines bürstenlosen Gleichstrommotors und einer externen mechanischen Last, folgendes aufweisend:

    a) zwei konzentrische Ringe, jeder Ring mit einer Innenkante und einer Außenkante,
    einen Innenring (101), der einen Rotor eines bürstenlosen Gleichstrommotors aufbaut, und einem Außenring (102) einschließend;

    b) eine gleiche Anzahl von mit dem Innenring und dem Außenring verbundenen Magneten;

    c) eine entgegengesetzte Ausrichtung der Pole jedes Paares von gegenüberliegenden Magneten, wobei ein Magnet auf dem Innenring angeordnet ist, und sein gegenüberliegender Magnet auf dem Außenring angeordnet ist, wobei die mit dem Innenring verbundenen Magnete (103, 601) in Umfangsrichtung voneinander beabstandet sind und die mit dem Außenring verbundenen Magnete (104, 602) in Umfangsrichtung voneinander beabstandet sind; und

    d) ungezahnte Verbindungsmittel, die den Außenring mit einer mechanischen Belastung eines externen Systems verbinden, und

    e) eine Vielzahl von in Umfangsrichtung beabstandeten und stationären Luftkernsolenoiden (701), die einen Stator des bürstenlosen Gleichstrommotors bilden, wobei jeder der Luftkernsolenoide sowohl die Innenkante als auch die Außenkante des Innenrings umschließt, so dass durch ein Inneres jedes der Luftkernsolenoide die Magnete des Innenrings hindurchtreten können, die, wenn sie erregt werden, ein elektromagnetisches Feld erzeugen, das ein Drehmoment auf einem Magnetfeld des Magneten erzeugt, der durch ihr Inneres hindurchgeht, um eine Drehung des Innenrings um seine Achse zu bewirken,
    wobei, wenn sich der innere konzentrische Ring durch das Innere jedes der Luftkernmagnete als Reaktion auf das erzeugte elektromagnetische Feld dreht, sich der äußere Ring ebenfalls durch die Wirkung von Magnetkräften zwischen jedem Paar der gegenüberliegenden Magnete dreht.


     
    2. Vorrichtung nach Anspruch 1, wobei der innere (101) und der äußere (102) Ring flache ringförmige Platten sind.
     
    3. Vorrichtung nach Anspruch 1, wobei jedes Paar von gegenüberliegenden Magneten (103, 601; 104, 602) von gleicher Größe ist.
     
    4. Vorrichtung nach Anspruch 1, wobei die magnetischen Stärken von zwei gegenüberliegenden Magneten (103, 601; 104, 602) im Wesentlichen gleich sind.
     
    5. Vorrichtung nach Anspruch 1, wobei jeder der Magnete (103, 601) im Innenring (101) einen gegenüberliegenden Magneten (104, 602) im Außenring (102) aufweist.
     
    6. Vorrichtung nach Anspruch 5, wobei der Abstand (d) zwischen den gegenüberliegenden Magneten (103, 601; 104, 602) jedes Paares etwa 30 mm beträgt.
     
    7. Vorrichtung nach Anspruch 5, wobei der Abstand (d) zwischen den gegenüberliegenden Magneten (103, 601; 104, 602) jedes Paares aus der Gruppe ausgewählt ist bestehend aus 18 mm, 22 mm, 29 mm, 30 mm und 35 mm.
     
    8. Vorrichtung nach Anspruch 1, wobei der Abstand zwischen zwei benachbarten Magneten auf dem inneren (101) oder äußeren (102) Ring nicht der gleiche ist wie der Abstand zwischen zwei anderen benachbarten Magneten auf dem gleichen Ring.
     
    9. Verfahren, umfassend das Bereitstellen der Vorrichtung nach einem vorhergehenden Anspruch.
     


    Revendications

    1. Appareil permettant d'accoupler la puissance mécanique entre le rotor d'un moteur à courant continu sans balai et une charge mécanique externe, comprenant :

    a) deux bagues concentriques, chaque bague ayant un bord interne et un bord externe, comportant une bague interne (101) constituant un rotor d'un moteur à courant continu sans balai et une bague externe (102) ;

    b) un nombre égal d'aimants reliés à la bague interne et à la bague externe ;

    c) une orientation opposée des pôles de chaque couple d'aimants en vis-à-vis, où un aimant est placé sur la bague interne, et son aimant en vis-à-vis est placé sur la bague externe, où les aimants (103, 601) reliés à la bague interne sont espacés de manière circonférentielle l'un de l'autre et les aimants (104, 602) reliés à la bague externe sont espacés de manière circonférentielle l'un de l'autre ; et

    d) des moyens de liaison sans engrenage qui relient la bague externe à une charge mécanique d'un système externe, et

    e) une pluralité de solénoïdes à noyau d'air (701) stationnaires et espacés de manière circonférentielle constituant un stator dudit moteur à courant continu sans balai, chacun desdits solénoïdes à noyau d'air encerclant à la fois ledit bord interne et ledit bord externe de la bague interne de sorte que, à travers la partie intérieure de chacun desdits solénoïdes à noyau d'air, les aimants de la bague interne puissent passer, qui, lorsqu'ils sont excités, génèrent un champ électromagnétique qui produit un couple sur un champ magnétique de l'aimant passant à travers leur partie intérieure pour amener la bague interne à tourner autour de son axe,

    où lorsque la bague concentrique interne tourne à travers la partie intérieure de chacun desdits solénoïdes à noyau d'air en réponse au champ électromagnétique généré, la bague externe tourne également par l'action de forces magnétiques entre chaque couple d'aimants en vis-à-vis.
     
    2. Appareil selon la revendication 1, dans lequel les bagues interne (101) et externe (102) sont des plaques annulaires plates.
     
    3. Appareil selon la revendication 1, dans lequel chaque couple d'aimants en vis-à-vis (103, 601 ; 104, 602) sont de la même taille.
     
    4. Appareil selon la revendication 1, dans lequel les intensités magnétiques de deux aimants en vis-à-vis (103, 601 ; 104, 602) sont essentiellement les mêmes.
     
    5. Appareil selon la revendication 1, dans lequel chacun des aimants (103, 601) dans la bague interne (101) a un aimant en vis-à-vis (104, 602) dans la bague externe (102) .
     
    6. Appareil selon la revendication 5, dans lequel la distance (d) entre les aimants en vis-à-vis (103, 601 ; 104, 602) de chaque couple est d'environ 30 mm.
     
    7. Appareil selon la revendication 5, dans lequel la distance (d) entre les aimants en vis-à-vis (103, 601 ; 104, 602) de chaque couple est choisie dans le groupe consistant en 18 mm, 22 mm, 29 mm, 30 mm et 35 mm.
     
    8. Appareil selon la revendication 1, dans lequel la distance entre deux aimants adjacents sur la bague interne (101) ou externe (102) n'est pas la même que la distance entre deux autres aimants adjacents sur la même bague.
     
    9. Procédé comprenant le fait de fournir l'appareil de l'une des revendications précédentes.
     




    Drawing





























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description