(19)
(11)EP 2 977 285 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
20.05.2020 Bulletin 2020/21

(21)Application number: 14872899.1

(22)Date of filing:  16.12.2014
(51)International Patent Classification (IPC): 
B61B 3/00(2006.01)
(86)International application number:
PCT/MX2014/000206
(87)International publication number:
WO 2015/093931 (25.06.2015 Gazette  2015/25)

(54)

PERSONALISED ELEVATED URBAN TRANSPORT

PERSONALISIERTER ERHÖHTER TRANSPORT IN EINER STADT

MOYEN DE TRANSPORT URBAIN ÉLEVÉ PERSONNALISÉ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 18.12.2013 MX 2013015095
05.12.2014 AR P014104553 P

(43)Date of publication of application:
27.01.2016 Bulletin 2016/04

(73)Proprietor: Zamorano Morfin, Luis Rodolfo
Distrito Federal (MX)

(72)Inventor:
  • Zamorano Morfin, Luis Rodolfo
    Distrito Federal (MX)

(74)Representative: Manasse, Uwe 
Boehmert & Boehmert Anwaltspartnerschaft mbB Pettenkoferstrasse 22
80336 München
80336 München (DE)


(56)References cited: : 
WO-A1-2009/030117
US-A- 2 439 986
US-A- 4 690 064
US-A1- 2011 022 252
FR-A1- 2 658 469
US-A- 3 890 904
US-A1- 2008 154 451
US-E- R E15 338
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Background of the invention


    Field of the Invention



    [0001] The present invention refers to horizontal passenger transport in city environments, where large numbers of people feel the need to mobilize to study, work, enjoy, etc. on routes used on a daily basis and whose demand is growing due to the increase of urban population which has already saturated other routes.

    Previous art



    [0002] The evolution of cities has been changing mobilization needs by virtue of the distances to travel, the time required therefor, security and comfort, so throughout the years use has been made of equine animals, carts, bicycles, cars, trams, buses, subway, motorcycles, ski lifts, cable cars and helicopters.

    [0003] The customized overhead urban transport (TUEP) as proposed is an alternative system for continuously and massively transporting passengers to be adopted by cities using a not congested space.

    [0004] Although there already are other types of transport in cabins such as ski lifts, which aim to provide a mountain railway generally consisting of two cabins linked by a cable and running on a rail, and which makes a cabin go up while the other moves down; cable cars consisting of cabins or chairs that are supported and pulled by a steel cable stretched between two huge pulleys that are driven by electric motors and speed reducers; there also exist monorails, which are devices widely used in the manufacturing industry, and which carry loads or may be cabins on a rail and are pulled by special chains with bearings driven by motorized sprockets.

    [0005] Both ski lifts and cable cars transport cabins from an origin to a destination, and monorails do so to stations in series. In all three cases the entire load is strictly positioned in series and any stop or movement affects the whole load.

    [0006] As to the relevant prior art, U.S. patent application US 2011/0022252 discloses a mass transportation system which generally includes a support structure, a track positioned above ground level via the support structure and a carrier vehicle operable along the track. U.S. patent No. US 3,890,904 discloses a railway system comprising a beam supported at spaced intervals along its length and having tracks extending longitudinally thereof at opposite sides, with cars adapted to travel on the tracks in paths along opposite sides of the beam. Each track comprises a lower rail and an upper rail extending longitudinally of the beam at the respective side of the beam. Each car has lower wheels traveling on the head of the lower rail and an outrigger extending laterally from the car to the upper rail having a traveling tension-transferring interconnection with the head of the upper rail for holding the car upright. The heads of the two rails of each track lie in a plane inclined to the longitudinal vertical plane of the beam with substantially all of the beam below the said inclined plane.

    Objects of the invention



    [0007] The main object of the present invention is to propose a new system for massive passenger transportation in cities that takes advantage of an uncongested urban space such as streets and avenues, by cars, trucks, trains and trams, cyclists, pedestrians, etc., and meets the objectives of security, speed, capacity, economy, comfort, and sustainability.

    [0008] A further object of the present invention is to provide a passenger transport having adequate capacity to solve or mitigate the growing urban mobility needs of people, so its flow should be sufficient to ensure that it is used as mass public transport.

    [0009] Another object of the present invention is to achieve a transportation means that is safe, though not infallible, so it can be used by unskilled persons of all ages and conditions.

    [0010] A further object is to propose a rapid transport, so that users find competitive advantages over traditional transports.

    [0011] A further objective will be to achieve a transport that does not pollute the atmosphere and does not produce noise pollution or affects the aesthetics of cities.

    [0012] Another object will be to achieve a transport that is economical in its areas of investment, operation and maintenance.

    [0013] A further object will be to achieve a transport that is friendly and comfortable in use, to be widely accepted by users.

    [0014] Finally, a further object will be to achieve a transport system that is sustainable to be accepted by society in the short, medium and long term.

    Summary of the invention



    [0015] The invention is defined by the technical features set forth in claim 1. According to the invention, the innovations that characterize it are indicated as follows:
    There are several structural ways to support the passenger cabins through an overhead tubular track.

    A.- The preferred embodiment is:

    1. a) a triangular section metallic structure comprising two lower and one upper horizontal tubes, connected together by evenly spaced inclined struts and diagonal metal straps providing greater rigidity to the structural system. Said composite structure acts as girder between support gaps and is elevated above the ground or roads in cities, so that the transport system gets installed at a safe height from traffic vehicles, trees and other obstacles of certain height in cities;
    2. b) besides serving as a structural girder, the lower metal tubes serve as bidirectional track for the passenger cabins to travel along the back thereof, thus offering a continuous track, with sufficient rigidity and unobstructed on one side, that connects to the different stations of the transportation system and able to withstand its own weight, plus the weight of the cabins and passengers, the dynamic load, wind load and the load of any earthquakes that may occur. This triangular section of tubes and studs is raised above the natural ground of floor by structural columns and towers, so that the whole system represents the infrastructure of the transport system of the present Customized Overhead Urban Transport.

    B.- One embodiment of the infrastructure mentioned above, which can be used especially in very long path gaps is as follows:

    1. a) a system characterized by being an overhead transport consisting properly grounded tall poles that support two separate static steel cables that support through hanging hooks an horizontal tubular track on which the passenger cabins shall run. Each cable corresponds to a direction sense of the system, i.e., it is bidirectional. The steel cables are supported by a triangular metal structure transverse thereto which is positioned on top of the poles and which through suspension-type terminals hold the steel cables, thus forming catenaries in the spaces between poles. The cables are capable of supporting their own weight, tensile strengths, plus the weight of the tubular track, plus the weight of the cabins and passengers, plus the dynamic loads of movement, wind, earthquake and in some cases snow loads.
    2. b) the vertical hanging hooks are hung from the static steel cables in a spaced relation, which are intended to support the tubular track. The top of the hooks is of the clamp type that securely tightens the steel wires and connects with a vertical straight section which may be adjustable in length to be adapt on the top to the shape of the catenary and on the bottom to a horizontal position to be the tubular track. The hook shape corresponds to the need to support the tubular track on the bottom without hindering the passage of the drive pulley and the cabins engines. Likewise, the hooks serve as support of the bare electric wire that will supply power to the trolley supplying electrical power to each of the cabins.

    C.- The tubular track can be made of steel or other material either metal or heavy plastic on which the passenger cabins will run. At the top of the track is a stabilizer bar which can be rectangular or triangular or have the shape of a rail, whose function is to maintain the verticality of the cabins when the load to be transported is not properly balanced with regard to the application of weight or when cross wind occurs that can destabilize the cabins and cause discomfort to passengers. This bar keeps the rotation of the drive pulleys on a vertical reference line by an evenly shaped groove in the pulleys.

    D.- Autonomous cabins for two or maximum three passengers, preferably hanging from the tubular track. Said cabins are autonomous as regards their motion and are composed of a closed receptacle, a structural hanging part, one or two drive pulleys and one or two electric motors. The drive pulleys rotate on the upper back of the tubular track and have a shape or profile that precisely conforms to the circumference of the tube. The inside of the pulleys is covered with a rubber or elastomer that provides the necessary friction to prevent the pulley from slipping on the tubular track in its yaw movement. The pulleys are equipped with anti-friction members such as packed bearings or dry or lubricated bushings. All this is contained by structural elements from which the vertical supports of the cabins are connected. Also from these structural elements is supported the engine or autonomous electric motors of each cabin, which firmly connects by its rotating shaft with the drive pulley, causing it to roll over the tubular track.

    E.- The elements that provide movement of the cabins are electric motors connected to the pulleys directly or by speed reducers, according to need. The motors can use direct or alternating current with variable speed, but trying to have a perfect synchronization between the cabins to achieve a movement that maintains a constant distance between them. For those routes where the slope inclination demands, there may be two motors coupled in series. Electrical power for the motors is supplied by bare wires routed as catenary, which makes contact with a trolley-like retractable arm, which is based on the engine or contacts through electrical brushes the drivers that are attached to the stabilizer bar or pendants supporting the cabins. And backup batteries for emergency operations.

    F.- The autonomous hanging cabinets can be made of light materials such as aluminum with regard to their structural part, in combination with the lifting front side or with side hinged doors that may also be made of aluminum, fiberglass or carbon fiber. The passenger seats should also be lightweight and are supported by the structural part of the cabin. The front side, which has doors that open onto the front or can be rotatably lifted, allows entry and exit of passengers as a gate and thus avoids the discomfort represented by the side doors wherein passengers should pass in front of another seated passenger. The lift gates are equipped with systems of springs, hydraulic or gas dampers and locks similar to those used on the rear lift gates of cars. They are also equipped with sensors to ensure that the cabins do not move with the partially or fully open door and thus prevent accidents. The cabins with hinged side doors are an entirely feasible alternative, which simultaneously open with a lateral outer mechanism and do not require the springs and dampers described above.

    G. For passenger access to TUEP, the system has stations, where the cabins are momentarily stopped, front or side doors open and passenger boarding and get off are achieved. The system has three types of stations, depending on the necessity of the case: i) the terminal stations are those where the TUEP travel begins and ends; ii) the longitudinal intermediate stations which are parallel to the tubular track and iii) intermediate stations transverse to the direction of the tubular track. Intermediate stations are those that are installed at predetermined distances and serve as origin and destination of passengers that need not go to a terminal station. The longitudinal type stations parallel to the tubular track and the transversal type stations have the same operational features, but with a different architectural layout. All types of stations are elevated to the TUEP's track level, so that while being accessed by passenger escalators or elevators, the movement of vehicles and pedestrians at street level without interruption is also allowed.

    H.- Only cabins destined to a particular intermediate station shall be diverted from the main tubular track described above, allowing the flow of cabins not heading to said destination to continue their journey without interruption, thus saving transfer time and energy in starts and stops. The diversion of the cabins is achieved through early detection which will be described later and by the actuation of diverters which in this case are horizontally flexible tubular tracks enabling by forming an arc that the continuity of the track is given to stations or to the driving mainline. The diverters are equipped with electric or hydraulic or pneumatic actuators, which ensure accurate and rapid operation upon demand of the automation system commands. Similar diverters will be installed to allow cabins then entering to the main flow of the TUEP system, to continue the journey.

    I.- The tubular track at the stations has a U-shape, more or less extended as the case of each station may be.

    J.- The power supply to the engines at the stations is independent of engine power to the girder track, to allow cabins to travel at other truly low speeds and have their braking and detection area for ascent and descent of the passengers, without having to affect the main flow of cabins in the TUEP tubular track.

    K.- The stations are equipped with cabin stability and braking systems in passenger ascent and descent areas, such that boarding is in optimal conditions, avoiding longitudinal and transverse movements that may be annoying to the user. Likewise, the stations have mechanisms to rotate cabins 90°, so that they have a single front for the ascent and descent of the passengers and the security conditions of not having to cross the line of movement of the cabins is preserved.

    L.- The TUEP complete system is controlled by a central master automation system and a particular automation system for each cabin, of the SCADA (Supervisory Control and Data Acquisition) type, which identifies through wired and wireless sensors the position of each cabin and the destination thereof, so it can be promptly diverted to each of the stations and then reinserting them to the TUEP's main system. There are commercially available WI-FI (wireless communication) systems of open protocols such as PROFIBUS or PROFINET that can be adapted to this particular use, of which I will not make further description as they already available on the market but surely require a specific characterization and programming. Each cabin is equipped with a keypad where the ascending user shall set a destination station, which shall be recorded in a buffer or a WIFI-like destination programming trigger in each boarding area for passengers at stations. Said destination is transmitted via a WiFi antenna to a receiving antenna at the diverters in each station to let the cabin pass without deviation or taking it to the intermediate reference station through the diverter. Once the diverters act they return to the normal upright position of the TUEP track. The control system is responsible for making the continuous monitoring of the cabins, as well as maintain speeds, acceleration, deceleration, braking, distance between cabins, destinations, diversions of cabins to stations and reintegrating them to the central flow and security systems.

    M.- In order to maintain a safe, operable and communicated passenger transportation system, the system has a fiber optic subsystem with a centralized controller that keeps autopilot, signaling, ticketing system, voice and data communication system, video system and a power supply and control switchable system.

    N.- A system of power distribution along the TUEP and its stations, consisting of distribution substations distributed properly to avoid voltage drop in the driving line, as well as supplying power to control stations and their enlightenment. Also, the whole TUEP is protected by a network of conventional grounds and arresters which is mounted on the poles supporting the static cables.


    Brief description of the figures



    [0016] 

    Figure 1 shows a plan view of a TUEP in its preferred embodiment, the Terminal Stations and two Intermediate Stations. The straight lengths of the route section are not shown due to the drawing size.

    Figure 2 shows the elevation view of a TUEP in the preferred embodiment, with the Terminal Stations and two Intermediate Stations. The straight lengths of the route section are not shown due to the drawing size.

    Figure 3 shows the isometric view of a TUEP in the preferred embodiment, with the Terminal Stations and two Intermediate Stations. The straight lengths of the route section are not shown due to the drawing size.

    Figure 4 shows the isometric arrangement of a terminal station.

    Figure 5 shows the isometric arrangement of a longitudinal Intermediate Station.

    Figure 6 shows the isometric arrangement of a transverse Intermediate Station.

    Figure 7 shows a close-up of the cabin integration.

    Figure 8 shows a plan view of a TUEP in its alternative embodiment, with terminal stations and two intermediate stations. The straight lengths of the route section are not shown due to the drawing size.

    Figure 9 shows an elevation view of a TUEP in its alternative embodiment, with terminal stations and two intermediate stations. The straight lengths of the route section are not shown due to the drawing size.

    Figure 10 shows an isometric view of a TUEP in its alternative embodiment, with terminal stations and two intermediate stations. The straight lengths of the route section are not shown due to the drawing size.

    Figure 11 shows the isometric arrangement of a terminal station of the alternative embodiment.

    Figure 12 shows the isometric arrangement of a longitudinal Intermediate Station of the alternative embodiment.

    Figure 12 shows the isometric arrangement of a transverse Intermediate Station of the alternative embodiment.

    Figure 14 shows the cabin diverter in upright position with lower bearings.

    Figure 15 shows the cabin diverter in a curved position towards the stations.

    Figure 16 shows the passenger cabin with its driving system.

    Figure 17 shows the inside of cabin driving system.

    Figure 18 shows the hanging hook of the drive system towards the cabins with 90° turn swivel for the stations.

    Figure 19 shows the block diagram of the architecture of the system for automation and control of the entire transport system.


    Detailed description of the invention



    [0017] With reference to the accompanying figures and in particular to Figures 1, 2 and 3, the TUEP of the present invention comprises an overhead urban transport system formed by a double traffic longitudinal track (1), which is high above the streets of cities. The tubular track is suspended by a series of poles (2), which are firmly planted on urban ground through their reinforced concrete foundations (not shown). We have considered two different ways of supporting the elevated tubular track, according to the needs of the case due to gaps to be bridged, the height of the track and other seismic, wind or snow considerations.

    [0018] The preferred embodiment is composed of a composite structural frame, made up by the support columns, the tubular track itself in both directions, a third longitudinal tube (3) parallel to the tubular track, square tube studs (4) forming an isosceles or equilateral triangle with the abovementioned tubes and diagonal braces (5) to provide greater rigidity to the system. Similarly, the structure at the passenger stations is made up of tubular elements which form a triangular composite section.

    [0019] The other way of supporting the tubular tracks is as follows: referring to Figures 8, 9, 10, 11, 12, and 13, on top of the pole (6) is positioned a metal structure (7) which serves to support the static cables (8), one in each direction of the TUEP through suspension clamps as those used in power transmission lines (not shown). The static cables (8) by their own weight form a catenary of a variable height according to the tension with which they are installed, for which retention anchors are installed in the initial and final terminal and some intermediate stations, according to the needs of the TUEP line length. The material of the static cables is twisted steel wire which has high capacity, having to select the type of steel according to weather conditions. Spaced at each determined distance are firmly hung metal hooks (9) of variable length and which hang vertically to hold the tubular track (1) in their lower part, so that it is completely horizontally leveled or having the inclination planned by the topographic slope of the TUEP. The metal hooks (9) support and fit their lower end portion on the bottom wall of the tubular track (1), so that it does not move or detach. Between the vertical hooks on both sides of the TUEP there are X-shaped crossed bracings, which serve to provide stability to the system in the event of winds which tend to move the cabins in a pendulum.

    [0020] Figure 10 shows the tubular track (1) which is characterized in the alternative embodiment by being of tubular type, and with a diameter, thickness and material to ensure that it will not form a catenary by its own weight and that of the loaded cabins. At the top of the tubular track a stabilizer bar (11) is attached, which may be triangular, rectangular or shaped as a rail, so that upon a lateral thrust of the cabin by wind or lack of balance of the live load, the position of the cabins and its traction pulleys is not tilted. The latter should have at the bottom thereof a similar slot that necessarily engages the stabilizer bar (11).

    [0021] The passenger cabins (12) as a whole, shown in Figures 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 are basically comprised of three sections: the drive section consisting of pulleys and metal frame (18) and (19), motors and reducers (20) and (21), and hanging support section (16) and (28) for the passenger receptacle section (23). The drive section comprises one or two metal pulleys (18) which roll on the back of the tubular track and have the same inner diameter as the track tube diameter, but which is also coated inside with rubber or a replaceable elastomer, to provide sufficient friction between the pulley and the tubular track so that it does not roll and slide thereon. The drive pulleys (18) are supported at their ends by antifriction bearings and a metal frame (19) holding the same. One or two traction pulleys can be used in each cabin, with their respective motors (20) and gears (21), in order to provide greater stability to the cabins, as well as increased traction while giving greater security to the entire system should any electric motor failed, whereby the other in case of emergency can take the cabin to the next station, where it should be removed from the system and the passengers rescued therefrom. From this metal frame is firmly screwed the hanging support of the cabin (16) which descends vertically to the structure thereof. The mounting flange of the electric motors (20) is also supported from the metal frame (19). The rotor shaft of the motors is directly coupled to the drive pulley (18) or through a speed reducer, as needed. The motor provides movement to the pulley and the same in turn provides displacement of the cabins in the TUEP. Electric motors (20) may be DC preferably brushless or AC variable speed. The power supply to the motors is accomplished by trolleys (22) that make sliding contact with the catenary of the electrical cables connected to the electrical substations or battery of the system. The hanging support (16) of the cabin ends in its lower part with the metallic structure of the receptacle (23) supporting the rear wall, the floor platform and the passenger seats. Said hanging support has a hinge (28) at its bottom which allows rotation of the cabin 90° when they reach the stations, by being channeled by a rail. The front portion of the cabin (23) is hinged to the front and is intended to serve as doors (24) giving access into the same by a system assisted by hinges and locks like those used in automotive vehicles for side doors. Said doors are opened automatically by a ratchet lever mechanism that upon reaching the appropriate area of the stations causes the doors open to the front. Other similar mechanism but in the opposite direction causes the doors to close on exit areas of passenger stations. The cabins are also equipped with locks similar to those used in motor vehicles and have proximity sensors or micro switches to disallow engine actuation if the cabin is not fully closed. The cabins can not be opened from the inside as a safety factor. Inside the cabins are appropriately placed the buttons in which a descent destination is set, which is transmitted to an outer emitting antenna for the positioning system. An alternative is that the destinations of the cabins are scheduled by a dispatcher at each station, which through an RFID (radio frequency) system achieves the same object as the command buttons.

    [0022] A specific feature of the TUEP are intermediate passenger stations (30) and (40) shown in Figures 1, 3, 4, 5, 6, 7, 8,9, 10, 12 and 13 which are made up of escapes or sidings of the elevated tubular track and aim to not disrupt traffic of cabins that are not headed to that destination as station, only those cabins that need to leave or take passengers on that specific station being diverted. Therefore a tubular parallel way or perpendicular escape make up the stations in which the tubular track allows the downturn, stopping, accumulation, acceleration and incorporation of the cabins to the TUEP main track. This is achieved by tubular diverters (25) shown in Figures 14 and 15 at the entrance and exit of the stations, which by electric or hydraulic or pneumatic actuators (26), change the course of the tubular track for continuing or not with the tubular track of the stations. The diverters (25) themselves are flexible tubes that may be bent through a lateral force changing the path of the tubular track. The preferred embodiment for these diverters, without this be the only one, is the use of springs the outer diameter of which is exactly that of the tubular track and which turns allow elasticity and at the same time stiffness to serve as tubular track. The material can be steel or any metal or reinforced plastic that provides these characteristics. To avoid vertical deflection of the diverters, inner hinge mechanisms (not shown) or bearings on plate are installed as shown in Figures 14 and 15. The operation of the diverters is by actuators (26) as mentioned above which after receiving or sensing the source emission from the antennas on the circulating cabins, pull in accurately and quickly the diverters before the particular cabin circulates through them. Once passed the cabin, the diverter returns to its upright position through its actuator, in order to give continuity to the main tubular track. A similar but reverse operation occurs with the diverters incorporating the station cabins to the main tubular track; only that the actuators operate when detect a empty space between two cabins left by a cabin that left to some station and is there where a cabin can be inserted to the main flow of the TUEP. To achieve this, information in real-time from the system's positioning system is essential.

    [0023] In the unlikely event that an actuator (26) does not position the diverter (25), and avoid a safety conflict for the cabins, a system has devised to stop them by a hydraulic damper (27) equipped with a lever mechanism which would be depressed by an impact plate placed in the pulley box (19) of the drive part of the cabin. The actuation of this damper shall electrically stop all the cabins to avoid impact between them.

    [0024] On the platform of the stations there are cabin floor leveling guides, as well as a braking system so that when passengers get off or board the cabin, it remains in a stable position for a few seconds to avoid accidents and inconvenience to users. These guides in turn provide the power supply to the cabins in the station area, which is different from that of the main line.

    [0025] By being overhead, the stations need passenger escalators and elevators to achieve user access to them, so they are an integral part thereof. We have designed two types of intermediate stations shown in Figures 5 and 6 and two terminal stations (50), shown in Figure 4, without being limiting in conception, as it will depend on the specifics of each case TUEP. Longitudinal intermediate stations (30) shown in Figure 5, have arrangements of sidings in parallel to the main tubular track, using the same road divider where the TUEP is installed. Transverse intermediate stations, shown in Figure 6, have a siding perpendicular to the main tubular track of the TUEP and serve to allow the vehicular traffic to pass beneath them, having user access thereto on the sidewalks of urban streets or avenues where the TUEP is installed.

    [0026] All passenger stations shall have an empty cabin accumulation zone, which aims to remove from circulation those that due to the low passenger demand are unnecessary in the line and thus to avoid unnecessary power consumption and excessive wear and tear, as well as providing maintenance.

    [0027] The electrical system is characterized by being equipped with substations, emergency plants, direct current distribution system, trolley system along the line, variable speed electric motors and speed and torque controllers of the "Drives" kind.

    [0028] Regarding the automation system, we have included a sophisticated system in order to give greater security and functionality to the entire complex. Figure 19 shows the architecture of the control system. To meet the needs of the TUEP, the Automatic Steering System is designed to operate in two modes: 1) Remote-Auto mode and 2) Local Mode;
    1. 1. the remote-automatic mode is dedicated to run automated routines for monitoring origin-destination routes of all gondolas along the line; this is done remotely from the Command Center of the TUEP, thus using fiber optic and wireless networks for communication with Remote Terminal Units (RTUs) where the arrivals and departures of gondolas and stations are controlled.
    2. 2. The local operation mode is designed to operate under a failure of the network, application server or remote automated programs of the Command Center. This mode of operation is based on the Remote Terminal Units (RTU) installed in each gondola and at each station. The RTUs of the gondolas have a processor with the ability to control the speed, distance, starting and get off request commands of users. The RTUs of the stations also have at least one processor, are capable of controlling the line diverters and movement of the cabins at each station. In local mode, monitoring and remote control would not be featured.
      1. 1. The following equipment is present in the Command Center:

        i. Application and Data Server.

        ii. Operation Station and Peripherals.

        iii. Network Equipment.

      2. 2. In the Application and Data Server reside programs and routines for origin-destination route control, real-time cabin databases and data for each trip, per station and cabin. Graphic monitoring software is installed in the Operation Station, where alarms, trends and reports are displayed, and which is the equipment where operators interact with the operations of the line.
      3. 3. The following equipment is installed in the cabins:
        • Remote Terminal Units (RTU) with power supply, processor and input and output modules.
        • Sensors for commands and motor control.
        • Distance sensors.
        • Start buttons.
        • Panic buttons.
      4. 4. At the stations there are installed:
        • Remote Terminal Units (RTU) with power supply, processor and input and output modules.
        • Sensors for commands and motor control.
        • Distance sensors.
        • Station selection buttons.
        • Panic buttons.

    Mode of operation



    [0029] Once passengers access an overhead station using the escalators and elevators, accumulation of passengers is not necessary as in the traditional transport stations, since the flow of cabins is continuous and only requires a few seconds for a cabin to reach that destination or an empty cabin not having a previously requested particular destination is called. Therefore, the space of the platforms at the stations may be limited. Once the cabin arrives to the station, the hinged doors open the same allowing access for a few seconds to passengers to be accommodated and seated. Once this happens, either manually or automatically the cabin will start a small advancing movement causing the actuator mechanisms to close the hinged doors thus being positively locked in order for proximity sensors or contact points to indicate the cabin engine control that it can continue the journey and so enter the flow of the main tubular track.

    [0030] Once the hinged doors are closed, passengers must press the button of the destination they want to travel or the manual boarding assistant will schedule a particular destination for that cabin. Only a maximum of two destinations may be selected per cabin depending on the number of passengers. That is, in each trip only one interruption may exist as a maximum of the time required for transfer. Once a destination is met the control system erases the memory of the cabin thereof, a next one thus being available. When having traveled the cabin arrives at a destination by operating the diverters, the cabin suffers an adequate deceleration, turns 90° on its hanging support and automatic opening of the hinged doors is made, up to the reaching the braking zone where the cabin stops for a few seconds to allow the descent. Subsequently the open cabin slowly moves forward until the passenger boarding area where it stops again for a few seconds and the previously described sequence begins. The passengers that left the cabin must go down the escalator or elevator to street level.

    [0031] The positioning control system of each station has the local capacity of the next cabins and therein the total master control of the TUEP contains all the controls for all stations.

    [0032] During the hours where passenger traffic is reduced, it is not necessary that the empty cabins are in circulation, so seme of these must be removed from the main flow during the time when demand is reduced, so some or all stations shall have a storage system for cabins leaving temporary circulation, either manually or automatically, and then to return to the main flow when the demand requires that they are integrated to the TUEP system.


    Claims

    1. An overhead urban transport system for passengers of the type consisting of a plurality of autonomous passenger cabins (12) transported on tubes comprising:

    an infrastructure comprising two horizontal or inclined parallel tubes as tubular tracks (1) forming part of a composite tubular structure with a triangular cross section, with a likewise parallel third upper tube (3), the tubes being connected together by tube studs (4) and diagonal braces (5) to give greater rigidity; said composite structure is supported high on the floor by poles (2) at predetermined distances according to the particular conditions of the installation terrain and to the height requirements needed to rid obstacles in cities;

    OR alternatively an infrastructure comprising two parallel inclined or horizontal tubes tubular tracks (1) which are supported by poles (2) set at predetermined distances; the poles are topped by a triangular structure (7) which serves to support static steel cables (8) for both directions of travel of the transport system; from each of the cables, hooks (9) of variable length hang vertically to hold both tubular tracks (1) on which a plurality of autonomous passenger cabins (12) move; the tubular tracks (1) are supported by the hanging hooks (9) at the bottom so that the opposite side of the tracks are free for the movement of the cabins;

    diverters (25) that are part of the tubular tracks (1), are horizontally flexible and are intended to deflect the track to the stations and from the stations to the main track; which are operated by electric or hydraulic or pneumatic actuators (26) upon request of the control system;

    the system further comprises:

    i. passenger stations, both terminal (50) and intermediate (30, 40), which aim to provide the means by which users can access the overhead transport system, said stations are equipped with escalators and elevators;

    ii. passenger cabins (12) of two or maximum three places, which are autonomous in terms of their traction and control means; the cabins are equipped with seats and swivel front doors or a front liftgate; a structural pendant connecting them from a metal frame of the cabins reinforcement with the case of traction pulley(s)(18) which run on top of the tubular tracks of the infrastructure; inside said case are placed the traction sheaves that are coupled to electric motors (20) directly or by way of speed reducers (21) which receive power supply by means of trolleys (22) contacting through electrical brushes bare wires running hanged from electrical insulators at the bottom of the track tubes, or batteries

    iii. a system of power supply by electric substations, properly distributed over the transport line to feed through power cables the bare wires for the trolleys (22) of the autonomous electric motors (20) of the cabins;

    iv. a cabin control and automation system containing the drivers of the servo controllers, programmable logic controller (PLC), a remote terminal unit (RTU), sensors and control buttons, which through wired and wireless signals and radio frequencies establish communication with the PLC of the passenger stations and these in turn with the PLC of the master control system, according to the programming;

    v. a sensor system on the tubular track and in each cabin, which allows to detect the temporary destination set thereof, so that from the PLC of each station the operation signal is sent to the actuators of the track diverters, in order to bring said particular cabin to a station and vice versa via a second diverter, from the station back to the main tubular track;

    vi. a master control system powered by a SCADA type data acquisition system, which allows to know at all times and in real time the relative position of each cabin in relation to the entire system, to allow correction of distances between cabins, starts and stops, accelerations and decelerations of the engines, both on the main track and in the tubular stations.


     
    2. The overhead urban transport system for passengers according to claim 1, characterized in that each cabin (12) further comprises one or two drive pulleys (18) and one or two electric motors (20).
     
    3. The overhead urban transport system for passengers according to claim 1, characterized in that the stations include mechanisms (28) for rotating the cabins 90°, for routing the cabins to the stations by means of a rail, so that the cabins have a single front for passenger ascent and descent.
     
    4. The overhead urban transport system for passengers according to claim 3, characterized in that the mechanism for rotating the cabins 90° consists of a ball placed at the bottom of the cabin hanging support.
     
    5. The overhead urban transport system for passengers according to claim 1, characterized in that each tubular track (1) has a stabilizer bar (11) at its top shoulder, which avoids imbalances in the cabin that may be caused by load and wind; the stabilizer bar (11) keeps the passenger cabins (12) always in a vertical position during their movement.
     
    6. The overhead urban transport system for passengers according to claim 1, characterized in that the cabins (12) have an opening and closing system for either hinged or lifting doors and also contain a command panel with buttons that allow to temporarily set the destination and a positioning-like control system which by means of a Wi-Fi-like or fiber optics wireless system establishes communication with the control system of the stations for diverting the cabins at the destination stations, acceleration and deceleration, engine stop and start.
     
    7. The overhead urban transport system for passengers according to claim 1, characterized in that the power supply system also supplies power to the stations and control systems through distribution and protection boards.
     
    8. The overhead urban transport system for passengers according to claim 1, characterized in that the wireless signals are Wi-Fi-like and wired through fiber optic cable.
     
    9. The overhead urban transport system for passengers according to claim 1, characterized in that the master control and automation system acts to remove from circulation empty cabins that are not in demand during non-rush hours, thereby avoiding unnecessary energy consumption and shortening the useful time of the components that make up the driving part of the cabins, or for maintenance.
     
    10. The overhead urban transport system for passengers according to claim 9, characterized in that the master control system acts to reintegrate the cabins to the system when approaching rush hour and transport demand increases.
     


    Ansprüche

    1. Flurfreies städtisches Passagierbeförderungssystem der Art bestehend aus mehreren autonomen Passagierkabinen (12), die auf Rohren befördert werden, umfassend:

    eine Infrastruktur umfassend zwei horizontale oder geneigte parallele Rohre als Rohrschienen (1), die einen Teil einer zusammengesetzten Rohrstruktur mit einem dreieckigen Querschnitt mit einem ähnlichen parallelen dritten oberen Rohr (3) bilden, wobei die Rohre durch Rohrstifte (4) und diagonale Streben (5) miteinander verbunden sind, um eine größere Steifigkeit zu erhalten; wobei die zusammengesetzte Struktur hoch über dem Boden durch Ständer (2) in vorbestimmten Abständen gemäß den speziellen Bedingungen des Geländes am Montageort und den Höhenanforderungen, die erforderlich sind, um Hindernisse in Städten zu umgehen, getragen ist;

    ODER alternativ eine Infrastruktur umfassend zwei parallele geneigte oder horizontale Rohre als Rohrschienen (1), die durch Ständer (2) getragen sind, die in vorbestimmten Abständen aufgestellt sind; wobei sich über den Ständern eine dreieckige Struktur (7) befindet, die zum Tragen feststehender Stahlseile (8) für beide Fahrtrichtungen des Beförderungssystems dient; wobei von jedem der Seile Haken (9) variierbarer Länge vertikal herabhängen, um beide Rohrschienen (1) zu halten, auf denen sich mehrere autonome Passagierkabinen (12) bewegen; wobei die Rohrschienen (1) durch die herabhängenden Haken (9) an der Unterseite derart getragen sind, dass die entgegengesetzte Seite der Schienen für die Bewegung der Kabinen frei ist;

    Umlenkvorrichtungen (25), die Teil der Rohrschienen (1) sind, die horizontal flexibel und dazu vorgesehen sind, die Schiene zu den Stationen und von den Stationen zu der Hauptschiene umzuleiten; die durch elektrische oder hydraulische oder pneumatische Aktoren (26) auf Anforderung des Steuersystems betätigt werden;

    wobei das System ferner umfasst:

    i. Passagierstationen, sowohl End- (50) als auch Zwischenstationen (30, 40), die bezwecken, die Mittel bereitzustellen, durch die Benutzer Zugang zu dem flurfreien Beförderungssystem erhalten können, wobei die Stationen mit Treppen und Aufzügen ausgestattet sind;

    ii. Passagierkabinen (12) mit zwei oder maximal drei Sitzplätzen, die in Bezug auf ihre Traktion und ihre Steuermittel autonom sind; wobei die Kabinen mit Sitzen und vorderen Schwenkschiebetüren oder einem vorderen Hubtor ausgestattet sind; wobei ein tragender Pendelarm sie von einem Metallrahmen der Kabinenverstärkung mit dem Gehäuse von Traktionsrolle(n) (18) verbindet, die auf den Rohrschienen der Infrastruktur laufen; wobei in dem Gehäuse die Treibscheiben angeordnet sind, die mit Elektromotoren (20) direkt oder über Übersetzungsgetriebe (21) gekoppelt sind, die eine Stromversorgung über Stromabnehmer (22), die über elektrische Bürsten mit blanken Drähten in Kontakt sind, die aufgehängt von elektrischen Isolatoren an der Unterseite der Schienenrohre verlaufen, oder Batterien erhalten

    iii. ein System einer Stromversorgung durch elektrische Unterstationen, die in geeigneter Weise über die Beförderungslinie verteilt sind, um über Stromkabel die blanken Drähte für die Stromabnehmer (22) der autonomen Elektromotoren (20) der Kabinen zu versorgen;

    iv. ein Kabinensteuer- undautomatisierungssystem, das die Treiber der Servosteuerungen, programmierbare Logiksteuerungen (PLC), eine Fernwirkeinrichtung (RTU), Sensoren und Steuertasten enthält, das über drahtgebundene und drahtlose Signale und Funkfrequenzen eine Kommunikation mit der PLC der Passagierstationen und diese wiederum mit der PLC des Hauptsteuersystems gemäß der Programmierung herstellt;

    v. ein Sensorsystem an der Rohrschiene und in jeder Kabine, das ermöglicht, die temporäre Zieleinstellung davon zu detektieren, sodass von der PLC jeder Station das Betriebssignal zu den Aktoren der Schienenumlenkvorrichtungen gesendet wird, um die spezielle Kabine zu einer Station und umgekehrt über eine zweite Umlenkvorrichtung von der Station zurück zu der Hauptrohrschiene zu bringen;

    vi. ein Hauptsteuersystem, das durch ein SCADAartiges Datenerfassungssystem gestützt ist, das ermöglicht, zu jeder Zeit und in Echtzeit die relative Position jeder Kabine in Relation zu dem Gesamtsystem zu kennen, und eine Korrektur von Abständen zwischen Kabinen, Anfangs- und Endpunkten, Beschleunigungen und Verlangsamungen der Motoren, sowohl an der Hauptschiene als auch in den rohrartigen Stationen zu ermöglichen.


     
    2. Flurfreies städtisches Passagierbeförderungssystem nach Anspruch 1, dadurch gekennzeichnet, dass jede Kabine (12) ferner eine oder mehrere Antriebsrollen (18) und einen oder zwei Elektromotoren (20) umfasst.
     
    3. Flurfreies städtisches Passagierbeförderungssystem nach Anspruch 1, dadurch gekennzeichnet, dass die Stationen Mechanismen (28) zum Drehen der Kabinen um 90° zum Lenken der Kabinen zu den Stationen über eine Schiene umfassen, sodass die Kabinen eine einzige Vorderseite für ein Ein- und Aussteigen von Passagieren aufweisen.
     
    4. Flurfreies städtisches Passagierbeförderungssystem nach Anspruch 3, dadurch gekennzeichnet, dass der Mechanismus zum Drehen der Kabinen um 90° aus einer an der Unterseite des Kabinenaufhängungsträgers angeordneten Kugel besteht.
     
    5. Flurfreies städtisches Passagierbeförderungssystem nach Anspruch 1, dadurch gekennzeichnet, dass jede Rohrschiene (1) eine Stabilisationsstange (11) an ihrem oberen Absatz aufweist, die Schieflagen in der Kabine verhindert, die durch Belastung und Wind verursacht sein können; wobei die Stabilisationsstange (11) die Passagierkabine (12) während ihrer Bewegung stets in einer vertikalen Position hält.
     
    6. Flurfreies städtisches Passagierbeförderungssystem nach Anspruch 1, dadurch gekennzeichnet, dass die Kabinen (12) ein Öffnungs- und Schließsystem für entweder scharnierte oder Hebetüren aufweisen und zudem ein Bedienfeld mit Tasten, die ein temporäres Einstellen des Ziels ermöglichen, und ein positionsbestimmungsartiges Steuersystem enthalten, das mittels eines WiFi-artigen oder faseroptischen drahtlosen Systems eine Kommunikation mit dem Steuersystem der Stationen zum Umlenken der Kabinen an den Zielstationen, Beschleunigung und Verlangsamung, Motorstopp und -start herzustellen.
     
    7. Flurfreies städtisches Passagierbeförderungssystem nach Anspruch 1, dadurch gekennzeichnet, dass das Stromversorgungssystem zudem die Stationen und Steuersysteme über Verteilung und Schutzplatinen mit Strom versorgt.
     
    8. Flurfreies städtisches Passagierbeförderungssystem nach Anspruch 1, dadurch gekennzeichnet, dass die drahtlosen Signale WiFi-artig und über faseroptische Kabel drahtgebunden sind.
     
    9. Flurfreies städtisches Passagierbeförderungssystem nach Anspruch 1, dadurch gekennzeichnet, dass die Hauptsteuerung und das Automationssystem dazu dienen, leere Kabinen, die außerhalb von Stoßzeiten nicht angefordert werden, aus dem Kreislauf zu nehmen, wodurch ein unnötiger Energieverbrauch vermieden und die Nutzungszeit der Komponenten, aus denen der Antriebsteil der Kabinen besteht, verkürzt wird, oder zur Wartung.
     
    10. Flurfreies städtisches Passagierbeförderungssystem nach Anspruch 9, dadurch gekennzeichnet, dass das Hauptsteuersystem dazu dient, die Kabinen wieder in den Kreislauf zu integrieren, wenn eine Stoßzeit herannaht und die Beförderungsnachfrage steigt.
     


    Revendications

    1. Système de transport urbain élevé pour passagers du type constitué d'une pluralité de cabines de passagers (12) autonomes transportées sur des tubes comprenant :

    une infrastructure comprenant deux tubes parallèles horizontaux ou inclinés sous forme de pistes tubulaires (1) faisant partie d'une structure tubulaire composite avec une section transversale triangulaire, avec un troisième tube supérieur (3) également parallèle, les tubes étant reliés entre eux par des goujons tubulaires (4) et des entretoises diagonales (5) pour donner une plus grande rigidité ; ladite structure composite étant supportée en hauteur sur le sol par des montants (2) à des distances prédéfinies en fonction des conditions particulières du terrain d'installation et des exigences de hauteur nécessaires pour franchir les obstacles dans les villes ;

    ou en variante une infrastructure comprenant deux tubes parallèles inclinés ou horizontaux sous forme de pistes tubulaires (1) qui sont supportés par des montants (2) placés à des distances prédéfinies ; les montants étant coiffés d'une structure triangulaire (7) qui sert à supporter des câbles d'acier statiques (8) pour les deux sens de déplacement du système de transport ; de chacun des câbles, des crochets (9) de longueur variable étant suspendus verticalement pour tenir les deux pistes tubulaires (1) sur lesquelles se déplacent une pluralité de cabines de passagers (12) autonomes ; les pistes tubulaires (1) étant supportées par les crochets de suspension (9) au niveau de la partie inférieure de sorte que le côté opposé des pistes soit libre pour le déplacement des cabines ;

    des dispositifs de déviation (25) qui font partie des pistes tubulaires principales (1) étant flexibles horizontalement et étant destinés à dévier la piste vers les gares et des gares vers la piste principale ; qui sont actionnés par des actionneurs électriques ou hydrauliques ou pneumatiques (26) à la demande du système de commande ;

    le système comprenant en outre ;

    i. des stations de passagers, aussi bien terminales (50) qu'intermédiaires (30, 40), qui visent à fournir un moyen par lequel les utilisateurs peuvent accéder au système de transport élevé, lesdites stations étant équipées d'escaliers roulants et d'ascenseurs ;

    ii. des cabines de passagers (12) de deux ou trois places au maximum, qui sont autonomes en ce qui concerne leurs moyens de traction et de commande ; les cabines étant équipées de sièges et de portes avant pivotantes ou d'une porte avant se levant ; un câble de suspension structurel les reliant d'un cadre métallique du renforcement de cabine au carter d'une ou plusieurs poulies de traction (18) qui passent sur les pistes tubulaires de l'infrastructure ; à l'intérieur dudit carter étant placées les poulies motrices qui sont accouplées à des moteurs électriques (20) directement ou par l'intermédiaire de réducteurs de vitesse (21) qui reçoivent l'alimentation électrique au moyen de chariots (22) en contact par l'intermédiaire de fils nus de balais électriques qui passent suspendus à des isolateurs électriques au niveau de la partie inférieure des tubes de piste, ou de batteries

    iii. un système d'alimentation électrique par des sous-stations électriques, correctement réparties sur la ligne de transport pour alimenter par des câbles électriques les fils nus pour les chariots (22) des moteurs électriques (20) autonomes des cabines ;

    iv. un système de commande et d'automatisation de cabine contenant les pilotes des servo-contrôleurs, un contrôleur logique programmable (PLC), une unité terminale distante (RTU), des capteurs et des boutons de commande, qui, par le biais de signaux câblés et sans fil et de fréquences radio, établissent la communication avec le PLC des stations de passagers et ces dernières à leur tour avec le PLC du système de commande principal, selon la programmation ;

    v. un système de capteurs sur la piste tubulaire et dans chaque cabine, qui permet de détecter la destination temporaire établie de celle-ci, de sorte que, à partir du PLC de chaque station, le signal de fonctionnement est envoyé aux actionneurs des dispositifs de déviation de piste, afin d'amener ladite cabine particulière à une station et vice versa par l'intermédiaire d'un second dispositif de déviation, de la station à la piste tubulaire principale ;

    vi. un système de commande principal alimenté par un système d'acquisition de données du type SCADA, qui permet de connaître à tout moment et en temps réel la position relative de chaque cabine par rapport à l'ensemble du système, pour permettre la correction des distances entre les cabines, les démarrages et les arrêts, les accélérations et les décélérations des moteurs, aussi bien sur la piste principale que dans les stations tubulaires.


     
    2. Système de transport urbain élevé pour passagers selon la revendication 1, caractérisé en ce que chaque cabine (12) comprend en outre une ou deux poulies motrices (18) et un ou deux moteurs électriques (20).
     
    3. Système de transport urbain élevé pour passagers selon la revendication 1, caractérisé en ce que les stations comprennent des mécanismes (28) de rotation des cabines à 90°, pour acheminer les cabines vers les stations au moyen d'un rail, de sorte que les cabines aient une seule face pour la montée et la descente des passagers.
     
    4. Système de transport urbain élevé pour passagers selon la revendication 3, caractérisé en ce que le mécanisme de rotation des cabines à 90° est constitué d'une boule placée au niveau de la partie inférieure du support de suspension de cabine.
     
    5. Système de transport urbain élevé pour passagers selon la revendication 1, caractérisé en ce que chaque piste tubulaire principale (1) a une barre stabilisatrice (11) au niveau de son épaulement supérieur, qui évite les déséquilibres dans la cabine pouvant être causés par la charge et le vent ; la barre stabilisatrice (11) maintenant les cabines de passagers (12) toujours en position verticale pendant leur déplacement.
     
    6. Système de transport urbain élevé pour passagers selon la revendication 1, caractérisé en ce que les cabines (12) ont un système d'ouverture et de fermeture pour des portes à charnières ou des portes se levant et contiennent également un panneau de commande avec des boutons qui permettent de régler temporairement la destination et un système de commande du type positionnement qui, au moyen d'un système sans fil du type Wi-Fi ou à fibres optiques, établit une communication avec le système de commande des stations pour dévier les cabines au niveau des stations de destination, accélérer et décélérer, arrêter et démarrer le moteur.
     
    7. Système de transport urbain élevé pour passagers selon la revendication 1, caractérisé en ce que le système d'alimentation électrique alimente également les stations et les systèmes de commande par le biais de tableaux de distribution et de protection.
     
    8. Système de transport urbain élevé pour passagers selon la revendication 1, caractérisé en ce que les signaux sans fil sont du type Wi-Fi et filaires par le biais d'un câble à fibres optiques.
     
    9. Système de transport urbain élevé pour passagers selon la revendication 1, caractérisé en ce que le système de commande et d'automatisation principal agit pour retirer de la circulation les cabines vides qui ne sont pas sollicitées hors heures de pointe, évitant ainsi une consommation d'énergie inutile et réduisant le temps utile des composants qui constituent la partie motrice des cabines, ou pour la maintenance.
     
    10. Système de transport urbain élevé pour passagers selon la revendication 9, caractérisé en ce que le système de commande principal agit pour réintégrer les cabines au système lorsque l'heure de pointe approche et que la demande de transport augmente.
     




    Drawing






























































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description