(19)
(11)EP 2 978 498 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
03.07.2019 Bulletin 2019/27

(21)Application number: 14776207.4

(22)Date of filing:  26.03.2014
(51)International Patent Classification (IPC): 
A61P 37/00(2006.01)
C12P 21/02(2006.01)
A61P 37/06(2006.01)
(86)International application number:
PCT/US2014/031883
(87)International publication number:
WO 2014/160790 (02.10.2014 Gazette  2014/40)

(54)

PROTEIN PRODUCTION METHOD

PROTEINHERSTELLUNGSVERFAHREN

PROCÉDÉ DE PRODUCTION DE PROTÉINE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 26.03.2013 US 201361805215 P
30.01.2014 US 201461933665 P

(43)Date of publication of application:
03.02.2016 Bulletin 2016/05

(60)Divisional application:
18176880.5 / 3391942

(73)Proprietor: Coherus Biosciences, Inc.
Redwood City, CA 94065 (US)

(72)Inventors:
  • PUCHACZ, Ela
    Pleasanton, CA 94588 (US)
  • GROVE, James, Russel
    Mountain View, CA 94040 (US)

(74)Representative: Elkington & Fife LLP 
Prospect House 8 Pembroke Road
Sevenoaks, Kent TN13 1XR
Sevenoaks, Kent TN13 1XR (GB)


(56)References cited: : 
EP-A2- 2 435 577
WO-A1-2005/095578
WO-A2-2013/006479
US-A1- 2011 287 483
WO-A1-2005/095578
WO-A1-2008/152075
US-A1- 2010 137 195
  
  • MAITY, S ET AL.: 'A Non-Innovator Version Of Etanercept For Treatment Of Arthritis.' BIOLOGICALS. vol. 39, no. 6, November 2011, pages 384 - 395, XP028330852
  • BABCOCK, J ET AL.: 'Partial Replacement of Chemically Defined Media With Plant-Derived Protein Hydrolyates.' BIOPHARMINTEMATIONAL.COM. 02 June 2010, XP008181937 Retrieved from the Internet: <URL:http://www.biopharminternational.com/b iopharm/article/articleDetail.jsp ? id=673337&sk=&date=&pageID=4> [retrieved on 2014-07-22]
  • TAN, Q ET AL.: 'Characterization And Comparison Of Commercially Available TNF Recetpr 2-Fc Fusion Protein Products.' MABS. vol. 4, no. 6, November 2012, pages 761 - 774, XP055285200
  • 'IRVINE-1.' BALANCD CHO GROWTH A MEDIUM. 25 July 2014, page 1, XP008182951 Retrieved from the Internet: <URL:http://www.irvinesci.com/products/9112 8-balancd-cho-growth-a-medium-liquid>
  • THERMO.: 'Thermo Scientific Hycell CHO Medium.', [Online] 25 July 2014, Retrieved from the Internet: <URL:http://www.thermoscientific.com/conten t/dam/tfs/ATG/BID/BID%20Documents/Product% 20Manuals%20&%20Specifications/BioProcess%2 0Production/HyCell%20CHO%20Medium% 20Product%20Insert.pdf>
  • SIGMA.: 'Dulbecco's Modified Eagle's Medium/Nutrient Mixture F-12 Ham.' 25 July 2014, page 1, XP009165985 Retrieved from the Internet: <URL:http://www.sigmaaldrich.com/catalog/pr oduct/sigma/d6421 ? lang=en&region= US>
  • IRVINE-2.: 'BalanCD CHO Feed 1.' 25 July 2014, page 1, XP055337151 Retrieved from the Internet: <URL:http://www.noe.jx-group.co.jp/business /lifescience/pdf/pb_94119-balancd-cho_feed1 _rev1.pdf>
  • SAFC.: 'SIGMA. Ex- Cell CHOZN Platform Feed.' 25 July 2014, page 1, XP055285923 Retrieved from the Internet: <URL:http://www.sigmaaldrich.com/content/da m/sigma-aldrich/docs/SAFC/Product_Informati on_She et/1/ex- cell -chozn-platform-feed-.pdf>
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

Field of the Invention



[0001] The present invention relates generally to methods of manufacturing etanercept, and, more particularly, to manufacture of etanercept using perfusion in which cells producing the protein are cultured in the presence of a culture medium that is being continuously or periodically removed from and added to a reaction vessel where the production is taking place. The disclosed method achieves production of correctly folded etanercept in excellent yields having desired glycosylation profiles.

Background of the Invention



[0002] A form of etanercept commercially available from Amgen under the trade-name Enbrel® is known to be a dimeric fusion polypeptide consisting of the extracellular ligand-binding portion of the human 75 kilodalton (p75) tumor necrosis factor receptor (TNFR) linked to the Fc portion of human IgG1. It consists of 934 amino acids and has an apparent molecular weight of approximately 150 kilodaltons (Physicians Desk Reference, 2002, Medical Economics Company Inc.) The Fc component of etanercept contains the constant heavy 2 (CH2) domain, the constant heavy 3 (CH3) domain and hinge region, but not the constant heavy 1 (CH1) domain of human IgG1. An Fc domain can contain one or all of the domains described above. Etanercept is usually produced by recombinant DNA technology in a Chinese hamster ovary (CHO) mammalian cell expression system.

[0003] People suffering from certain types of inflammatory diseases such as rheumatoid arthritis, plaque psoriasis, psoriatic arthritis, juvenile idiopathic arthritis, and ankylosing spondylitis, have an immune system that over produces tumor necrosis factor ("TNF"). Administration of etanercept has been found effective for treatment of some inflammatory diseases because it can reduce the levels of the active form of TNF in a subject by binding to TNF as a decoy receptor.

[0004] Etanercept can be produced in a known manner by recombinant DNA technology in a Chinese hamster ovary ("CHO") mammalian cell expression system. Unfortunately, the product that is produced by the CHO cells contains a large amount of incorrectly or misfolded and/or aggregated etanercept. For pharmaceutical use, it is desirable to provide etanercept that is relatively free of incorrectly folded and aggregated protein because the incorrectly folded/aggregated protein will not have the same therapeutic effect as the correctly folded protein, and may actually be detrimental to the patient. Moreover, the known tendency for manufacture of etanercept to cause aggregates or misfolded protein can significantly reduce yields and increase costs in recombinant processes used to manufacture the protein. Thus, the alleviation of misfolding is not only highly desirable from a therapeutic standpoint, but also from the standpoint of process economics.

[0005] TNFR domain of Etanercept contains several cysteines which form disulfide bridges. This bridging contributes to protein assuming certain secondary and tertiary structures (folding). The combination of potential bridge forming increases with the number of available cysteines. Improperly formed cysteine-cysteine bridges result in improper folding thus lower protein activity. Even when misfolding is thought to be negligible during production of pharmaceutical proteins, e.g., in the case of mammalian secretory expression, aggregation and some misfolding may still occur.

[0006] Need exists for methods capable of producing properly folded etanercept in commercially attractive yields. Moreover, there exists need for production methods which can operate at temperatures other than those previously thought desirable in the art.

Summary of the Invention



[0007] The invention provides a perfusion method for manufacturing correctly folded etanercept comprising the following steps: (a) preparing a mixture comprising cells capable of expressing a protein comprising etanercept and a culture medium suitable for conducting such expression; (b) in a suitable vessel containing the mixture, causing the cells to produce the protein comprising etanercept; and (c) periodically or continuously removing spent culture medium from, and adding fresh culture medium to, the reaction vessel, wherein the protein comprising etanercept produced in the method comprises greater than 40 wt.%, 50 wt.%, or 60 wt.% of correctly folded etanercept, wherein the culture medium comprises a base feed medium selected from SFM4CHO® medium and BalanCD™/Hycell® medium, and wherein the culture medium comprises dexamethasone, N-acetylmannosamine (ManNAc) and galactose. The disclosed method is capable of producing correctly folded etanercept having a glycosylation profile substantially similar to that of commercially available etanercept sold under the tradename Enbrel®. Moreover, the disclosed perfusion method can produce etanercept protein in which correctly folded etanercept comprises greater than 40, 50 or 60 wt.% of the protein.

[0008] The medium in which production is carried out comprises SFM4CHO® medium or a mixture of BalanCD™ CHO Growth A and HyClone™ Hycell CHO mediums (most preferably the BalanCD/Hycell medium mixture) and is preferably supplemented with feeds promoting cell growth and productivity, such as glutamine, CHOZN, Feed 1, Feed 2 and Efficient Feed A (such feeds being identified further below). Further supplements present in the culture medium are galactose, dexamethasone and ManNac which are shown to improve culture efficiency including enhancements from the standpoint of generally achieving desired glycosylation profile, which involves, in particular, attaining higher degrees of sialylation in the secreted proteins.

[0009] Cells producing etanercept are present in the vessel at a density of at least 1,000,000 cells/ml, and preferably at a density of at least 5,000,000, and most preferably at least about 10,000,000 cells/ml. Prior to step (a), during a growth phase conducted to increase the number of cells capable of expressing etanercept (before substantial initiation of production phase), such cells capable of expressing a protein comprising etanercept can be grown at a temperature selected from; (i) 28°C to 37°C; and (ii) preferably 35°C to 36°C. During a subsequent production phase, after the growth phase is substantially completed, the etanercept production is carried out at a temperature selected from (i) greater than 32°C; (ii) greater than 33°C; (iii) greater than 34°C; (iv) greater than 35°C; (v) the range of 33°C to 36°C; (vi) the range of 35°C to 36°C; (vii) 32.5°C; (viii) 33.5°C; (ix) 34.5°C; and (x) 35.5°C. The method of the invention preferably comprises continuously or periodically, but preferably continuously, harvesting the etanercept during the production thereof. Moreover, the removal of spent medium and replacement with fresh culture medium, i.e., perfusion, occurs preferably continuously. Harvesting of etanercept, present in the continuously withdrawn culture medium, is also preferably carried out continuously.

[0010] A particularly preferred perfusion method for producing correctly folded etanercept involves conducting the production phase above 33°C and between 33°C to 36°C, and most preferably at 33.5°C using a culture medium comprising the BalanCD/Hycell mixture (approx. 1:1), CHOZN, cottonseed hydrolysate, dexamethasone, galactose and ManNAc. Other feed supplements may be present, such as glutamine, Feed 1, Feed 2, Efficient Feed A and manganese chloride.

[0011] The volumetric productivity of the described process and the quality of the produced etanercept can be evaluated by using several methods well known to those skilled in the art. These methods include but are not limited to assays that quantify total and active protein (titers), qualify level of protein sialylation such as the isoelectric focusing (IEF) gels, hydrophobic Interaction chromatography and others.

[0012] A method for producing etanercept to reduce protein misfolding comprises culturing a recombinant mammalian host cell which encodes a protein comprising etanercept so as to produce such protein, wherein during a production phase, the host cell is cultured using a perfusion process at a temperature selected from (i) greater than 32°C; (ii) greater than 33°C; (iii) greater than 34°C; (iv) greater than 35°C; (v) the range of 33°C to 36°C; (vi) the range of 35°C to 36°C; (vii) 32.5°C; (viii) 33.5°C; (ix) 34.5°C; and (x) 35.5 °C; to obtain a protein product comprising at least 40 wt.%, preferably at least 50 wt.%, and most preferably at least 60 wt.% of correctly folded etanercept, preferably as determined by HIC chromatography, and such that the total amount of protein product (correctly and incorrectly folded protein) is produced in titers of at least 0.2 to 1 g/L. Titers can be measured in a known manner using conventional methods such as the ForteBio method.

[0013] In a further embodiment the invention provides a perfusion method for manufacturing correctly folded etanercept comprising the following steps: (a) preparing a mixture comprising cells capable of expressing a protein comprising etanercept and a culture medium suitable for conducting such expression; (b) in a suitable vessel containing the mixture, causing the cells to produce the protein comprising etanercept; and (c) periodically or continuously removing spent culture medium from, and adding fresh culture medium to, the reaction vessel; and wherein: (1) the culture medium comprises BalanCD/Hycell® medium, dexamethasone, galactose and ManNAc; (2) prior to step (a), the cells capable of expressing the protein comprising etanercept are grown in a growth phase at a temperature of 28 °C to 37 °C; (3) production of the protein comprising etanercept is carried out at a temperature of 33°C to 36°C; and (4) the protein comprising etanercept comprises at least 40 wt.%, 50 wt.%, or 60 wt.% of correctly folded etanercept, and wherein the total amount of correctly folded and incorrectly folded protein produced during the production phase is produced in titers of 0.2 to 1 g/L.

[0014] A perfusion method for producing correctly folded etanercept having a glycosylation profile substantially similar to that of commercially available etanercept sold under the tradename Enbrel®, comprises the steps of: (a) preparing a mixture comprising cells capable of expressing a protein comprising etanercept and a culture medium suitable for conducting such expression; (b) in a suitable vessel containing the mixture, causing the cells to produce the protein comprising etanercept; and (c) periodically or continuously removing spent culture medium from, and adding fresh culture medium to, the reaction vessel; wherein dexamethasone, galactose and ManNAc are present in the culture medium to achieve said substantially matching glycosylation profile. The additional inclusion of cottonseed hydroysates is found to further enhance the glycoprofile.

[0015] Another perfusion method for producing correctly folded etanercept having a glycosylation profile substantially similar to that of commercially available etanercept sold under the tradename Enbrel®, comprises the steps of: (a) preparing a mixture comprising cells capable of expressing a protein comprising etanercept and a culture medium suitable for conducting such expression; (b) in a suitable vessel containing the mixture, causing the cells to produce the protein comprising etanercept; and (c) periodically or continuously removing spent culture medium from, and adding fresh culture medium to, the reaction vessel; wherein:
  1. (i) dexamethasone, galactose and ManNAc are present in the culture medium in amounts sufficient to achieve said substantially matching glycosylation profile and
  2. (ii) the culture medium comprises feed media comprising the above-mentioned BalanCD/Hycell based medium mixture, CHOZN, glutamine and, optionally, cottonseed hydrolysate in amounts sufficient to achieve a production titer of correctly folded and incorrectly folded protein produced during the production phase of 0.2 to 1 g/L; and
  3. (iii) production of the protein comprising etanercept is carried out at a temperature selected from (i) greater than 32°C; (ii) greater than 33°C; (iii) greater than 34°C; (iv) greater than 35°C; (v) the range of 33°C to 36°C; (vi) the range of 35°C to 36°C; (vii) 32.5°C; (viii) 33.5°C; (ix) 34.5°C; and (x) 35.5°C.


[0016] In yet a further embodiment, the disclosed method is a perfusion method for manufacturing etanercept comprising the following steps: (a) preparing a mixture comprising cells capable of expressing a protein comprising etanercept and a culture medium suitable for conducting such expression; (b) in a suitable vessel containing the mixture, causing the cells to produce the protein comprising etanercept; and (c) periodically or continuously removing spent culture medium from, and adding fresh culture medium to, the reaction vessel; wherein (i) step (b) is carried out at or above 33°C; (ii) the culture medium comprises dexamethasone, galactose and ManNAc; (iii) the protein comprising etanercept comprises at least 60 wt% correctly folded etanercept; (iv) the protein comprising etanercept is produced in titers of 0.2 to 1 g/L; and (v) the etanercept has a glycosylation profile substantially similar to that of commercially available etanercept sold under the tradename Enbrel®. A particularly preferred production temperature is in the range of 33°C to 34°C.

[0017] The present invention can produce correctly folded etanercept in excellent yields, having desired glycosylation profile necessary for therapeutic effect, and preferably at production temperatures higher than those previously thought necessary or desirable in the art.

Brief Description of the Drawings



[0018] 

Figure 1 shows a process of the present invention.

Figure 2 shows IEF gels with charge profiles for etanercept samples produced using the process of the invention.

Figure 3 shows N-glycan analysis of etanercept samples produced using the process of the invention.

Figure 4 shows a process of the present invention.

Figure 5 shows IEF gels with charge profiles for etanercept samples produced using the process of the invention.

Figure 6 shows IEF gels with charge profiles for etanercept samples produced using the process of the invention.

Figure 7 shows N-Glycan analysis of etanercept samples produced using the process of the invention.

Figure 8 is a bar graph representing the percent of correctly folded etanercept produced in the working examples, as determined by HIC chromatography (including Enbrel control).

Figure 9 contains HIC chromatograms in which trace A is Enbrel control and trace B is SF1, medium exchange 3 from Figure 8.

Figure 10 contains HIC chromatograms in which trace C is SF2, medium exchange 3 from Figure 8; and trace D is SF3, medium exchange 1 from Figure 8.

Figure 11 contains HIC chromatograms in which trace E is SF3, medium exchange 3 from Figure 8; and trace F is SF3, harvest from Figure 8.

Figure 12 contains HIC chromatograms in which trace G is SF4, media exchange 3 from Figure 8; and trace H is SF5, media exchange 3 from Figure 8.

Figure 13 contains HIC chromatograms in which trace I is SF6, media exchange 3 from Figure 8; and trace J is control shake flask, sampled at the media exchange 3 time point as represented in Figure 8.

Figure 14 contains the viable cell density, perfusion rate, and specific perfusion rate from the perfusion bioreactor of Example 3.

Figure 15 contains the titer and specific productivity of the perfusion culture of Example 3.

Figure 16 contains HIC chromatograms in which trace A is Enbrel control, trace B is a sample from the harvest of a fed-batch bioreactor, trace C is from day 9 of the perfusion bioreactor in Figure 14, and trace D is from day 12 of the perfusion bioreactor in Figure 14.

Figure 17 contains the N-glycan chromatograms of Enbrel reference (A), a sample of CHS-0214 from day 9 of the perfusion bioreactor (B), and a sample of CHS-0214 from day 12 of the perfusion sample (C) shown in Figure 14.


Detailed Description of the Invention


Definitions



[0019] The terms used in this specification generally have their ordinary meanings in the art, within the context of the invention, and in the specific context where each term is used. Certain terms that are used to describe the invention are discussed below, or elsewhere in the specification, to provide additional guidance to the practitioner regarding the description of the invention. Synonyms for certain terms are provided. A recital of one or more synonyms does not exclude the use of other synonyms. The use of examples anywhere in this specification including examples of any terms discussed herein is illustrative only, and in no way limits the scope and meaning of the invention or of any exemplified term. The invention is not limited to the various embodiments given in this specification.

[0020] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. In the case of conflict, the present document, including definitions will control.

[0021] The term "etanercept" as used herein refers to a polypeptide which is a dimeric fusion polypeptide consisting of the extracellular ligand-binding portion of the human 75 kilodalton (p75) tumor necrosis factor receptor (TNFR) linked to the Fc portion of human IgG1. It consists of 934 amino acids and has an apparent molecular weight of approximately 150 kilodaltons. For the purposes of the present application, the term "etanercept" also encompasses etanercept with minor modifications in the amino acid structure (including deletions, additions, and/or substitutions of amino acids) which do not significantly affect the function, potency, or avidity of etanercept. The term "etanercept" encompasses all forms and formulations of Enbrel®, including but not limited to concentrated formulations, injectable ready-to-use formulations; formulations reconstituted with water, alcohol, and/or other ingredients, and others. The term etanercept is also intended to include biosimilar or biobetter variants of the etanercept used in commercial Enbrel®. For example, a biosimilar or biobetter of etanercept may have a slightly different glycosylation profile than commercial Enbrel®. In addition a biosimilar or biobetter variant of the etanercept preparation found in commercial Enbrel® may exhibit a reduction in the amount of aggregates/misfolds present along with the active, properly folded etanercept ingredient.

[0022] The term "correctly folded etanercept" as used herein is intended to denote a folding conformation of the etanercept homodimer (as defined above) having biological activity for inhibition of TNF and conformation that are the same or substantially the same as the conformation and biological activity of the active ingredient in Enbrel®.

[0023] The term "incorrectly folded etanercept" as used herein is intended to encompass: (i) a homodimeric protein having the same amino acid sequence as etanercept (as defined above), but having a conformation different from that of correctly folded etanercept, wherein said different conformation renders the protein lacking or substantially lacking in biological activity as a TNF inhibitor; and/or (ii) an aggregate in which two or more correctly and/or incorrectly folded etanercept homodimers have become associated (i.e., aggregated or clumped) in such a manner as to form species having higher molecular weight than correctly folded etanercept; and/or (iii) a mixture of (i) and (ii); and/or (iv) aggregated i.e., clumped protein compositions comprising the same or essentially the same sequence, or portions thereof, as correctly folded etanercept but which exhibit decreased elution position (due to greater hydrophobicity) on an HIC column as compared to correctly folded etanercept.

[0024] The term "growth phase" denotes a phase in which cells capable of expressing etanercept are generally first cultured at a temperature which promotes exponential logarithmic growth of the cells prior to entering into the production phase. A suitable temperature for the growth phase is generally in the range of 34°C to 38°C as described in US Patent 7,294,481.

[0025] The term "production phase is understood to have the same meaning as that ascribed in US Patent 7,294,481. In particular, the term refers to the period during which cell growth has plateaued, i.e., logarithmic cell grown has ended, and protein production is primary. According to the present invention, the production phase is carried out under perfusion conditions, preferably at a temperature in the range of 32.5°C to 37°C, and preferably in the range of 33.5°C to 35.5°C.

[0026] Perfusion has the meaning generally explained below and can also be briefly understood as a method of culture in which waste medium (spent medium) is removed from the culture and the displaced medium is replenished with fresh medium. This may preferably be done in a continuous manner, but may also be performed in a stepwise discontinuous manner in which spent medium is replaced with fresh medium at desired intervals prior to completion of the production phase. The addition of fresh medium and elimination of waste products provides the cells with an environment that is better suited to achieving and maintaining high cell concentrations with higher productivity.

[0027] The term "treatment" refers to any administration or application of remedies for disease in a mammal and includes inhibiting the disease, arresting its development, relieving the disease (for example, by causing regression, or restoring or repairing a lost, missing, or defective function) or stimulating an inefficient process. The term includes obtaining a desired pharmacologic and/or physiologic effect and covering any treatment of a pathological condition or disorder in a mammal. The effect may be prophylactic in terms of completely or partially preventing a disorder or symptom thereof and/or may be therapeutic in terms of a partial or complete cure for a disorder and/or adverse effect attributable to the disorder. It includes (1) preventing the disorder from occurring or recurring in a subject who may be predisposed to the disorder but is not yet symptomatic, (2) inhibiting the disorder, such as arresting its development, (3) stopping or terminating the disorder or at least its associated symptoms, so that the host no longer suffers from the disorder or its symptoms, such as causing regression of the disorder or its symptoms, for example, by restoring or repairing a lost, missing or defective function, or stimulating an inefficient process, or (4) relieving, alleviating or ameliorating the disorder, or symptoms associated therewith, where ameliorating is used in a broad sense to refer to at least a reduction in the magnitude of a parameter, such as inflammation, pain and/or tumor size.

[0028] The term "pharmaceutically acceptable carrier" refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material, formulation auxiliary, or excipient of any conventional type. A pharmaceutically acceptable carrier is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation.

[0029] The term "composition" or "formulation" refers to a mixture that usually contains a carrier, such as a pharmaceutically acceptable carrier or excipient that is conventional in the art and which is suitable for administration into a subject for therapeutic, diagnostic, or prophylactic purposes. It may include a cell culture in which the polypeptide or polynucleotide is present in the cells or in the culture medium. For example, compositions for oral administration can form solutions, suspensions, tablets, pills, capsules, sustained release formulations, oral rinses or powders.

[0030] The terms "BalanCD/Hycell" denotes a mixture (approx. 1:1) of the commercially obtainable feeds sold as BalanCD™ CHO Growth A and HyClone™ Hycell CHO as referenced in the Table, below.

[0031] The following Table is a listing of the commercially available feeds and feed supplements useful in the present invention.
Raw Material DescriptionSourceVendor Catalog NumberCategoryStock Conc (g/L)Useful RangeUse Notes
             
BalanCD™ CHO Growth A Irvine Scientific 94120-10L Base medium 23.725 n.a. base medium
             
HyClone™ HyCell CHO Thermo Scientific SH30933 Base medium 25.400 n.a. base medium
             
HyClone™ SFM4CHO Thermo Scientific SH30518.04 Base medium 19.830 n.a. used in seed train;
             
D-(+)-Galactose SAFC G5388 Glycan feed   ≤ 10 mM used at 10 mM final; to optimize product quality
Dexamethasone SAFC D4902 Glycan feed   ≤ 1 uM used at 0.8 - 1.0 uM; to optimize product quality
             
ManNAc (N-acetylmannosamin e) SAFC A8176 Glycan feed   ≤ 20 mM used at 10-20 mM final; to optimize product quality
             
BalanCD™ CHO Feed 1 Irvine Scientific 94119-10L Titer feed 55.776 10% (v/v) Boosts titer when added alone or with CHOZN
             
BalanCD(tm) CHO Feed 2 Irvine Scientific 94121 Titer feed      
             
HyClone™ Cell Boost 5 Thermo Scientific SH30865.04 Titer feed 50 % 10-20% (v/v) Used in control experiments
             
CHO CD EfficientFeed A Life Technologi es A1023401 Titer feeds     Boosts titer when added alone or with with CHOZN
Cottonseed Hydrolysate ("CSH") FrieslandC ampina Domo CNE50M-UF Titer feed 100 15% (v/v) increases cell growth and specific productivity
             
EX-Cell CHOZN Platform Feed SAFC 24331C-10L Titer feed 50 10-20% (v/v) complex feed; boosts titer when added alone or in combination with other complex feeds

Perfusion-Based Manufacture of Etanercept



[0032] The present invention provides methods of manufacturing etanercept which involve the use of perfusion. The term "perfusion" as used herein is intended to generally denote a process in which a suspension cell culture is continuously or periodically, and most preferably continuously, supplied with fresh medium to a bioreactor while spent culture media is continuously removed, i.e., harvested (preferably with the product) in order that product contained therein can be continuously harvested, and the waste and toxic materials present in the spent medium can be removed from the bioreactor. Using appropriate filtration means well known in the art, the cells are then continuously filtered from the harvest stream and returned to the bioreactor to maintain a constant culture volume. Such a process, typically carried out continuously, allows the cells to reach high densities. Accordingly, densities as high as 15-20 million cells/mL can routinely be reached and maintained for extended periods of time, e.g. at least two weeks. This can result in very highly productive cell culture process that can produce for a longer period of time as opposed to batch or fed-batch cultures. Alternatively, rather than continuously harvesting product from the removed spent medium, the product can be maintained and concentrated in the culture, and then harvested periodically, or at the end of the culture. Utilization of appropriate size filters can allow for removal of only waste, with retention of the recombinant product in the bioreactor culture. In such a process, sometimes referred to as "extreme density" or XD process, the product can be harvested periodically or at the end of the culture.

[0033] We have now found that a predetermined glycoprofile of etanercept produced in a perfusion process can be achieved when the culture medium comprises at least one of dexamethasone, galactose and ManNAc, and most preferably when all three are present in the culture medium. Suitable amounts are referenced in the Examples below. We have also discovered that the additional presence of cottonseed hydroysates in such perfusion process can further enhance the glycoprofile. The term "glycoprofile" or "glycosylation profile" are well understood in the art, and should be understood to include the level or degree of sialylation occurring on the glycan groups attached to the etanercept protein.

EXAMPLE 1



[0034] A shake flask format is used to investigate processing conditions similar and comparable to a perfusion process. High density shake flask cultures (5 million cells per milliliter to 20 million cells per milliliter) are established from cultures expanded at temperatures in the range of about 35 °C to 37 °C in SFM4CHO medium supplemented with Cell Boost 5 feed and about 0.5 uM - 1 uM dexamethasone.

EXAMPLE 1 MEDIA FORMULATION



[0035] 
Feed ComponentConcentration
SFM4CHO 1x
Cell Boost 5 20%
Dexamethasone 0.5uM


[0036] Each culture, maintained in temperatures ranging from 32 °C to 35.5 °C, was allowed to produce Etanercept protein for two days before medium was fully exchanged for a subsequent round of production. These 2-day harvest intervals are comparable to a perfusion rate of 0.5 bioreactor volume per day. The medium exchange is repeated 4 times (4 cycles). Harvested media is frozen at -80 °C. Titers are analyzed by ForteBio and TNF-binding ELISA. Additionally each sample is assessed for N-linked glycoprofile, protein charge distribution by IEF gel and for protein folding by hydrophobic interaction chromatography (HIC).

[0037] In order to support the high cell numbers necessary for inoculation of high density production cultures typically achieved in a perfusion process, the seed train is conducted in large volume shake flasks maintained at 35 °C or 37 °C, 5% CO2 level and the speed of the orbital shaker is adjusted to 125 rpm. Production phase shake flasks containing SFM4CHO medium supplemented with Cell Boost 5 feed and 0.5 uM dexamethasone are inoculated at cell densities either 10 million cells per milliliter or 20 million cells per milliliter. The production phase is conducted at a temperature in the range of about 32 °C to about 36 °C, otherwise all other culture conditions are the same. Cultures are monitored daily for viable cells densities and viabilities. To investigate reactor volume exchange conditions comparable to a perfusion rate of 0.5 bioreactor volume per day, the medium in each culture was fully exchanged every 48 hours. The harvested and clarified media are frozen at -80 °C. Following each spent medium harvest, cells are resuspended in fresh medium and allowed to accumulate recombinant product for another 48 hours, the aforementioned process being repeated for a total of 4 cycles. At the conclusion of the experiment all samples are thawed and analyzed with respect to charge profile (by isoelectrofocusing gels, IEF), N-glycan profile and titers. A control experiment was conducted using a fed-batch culture inoculated at 0.4 million cells per milliliter in SFM4CHO medium supplemented with Cell Boost 5 feed and 0.5 uM dexamethasone. The conditions for the control experiment involved an expansion phase at 35 °C and the production phase at 32 °C initiated on day 5. The Etanercept protein produced in the control experiment is allowed to accumulate without medium exchange for the length of the experiment. Samples from the control culture are withdrawn every 48 hours during the production phase, frozen at -80 °C, and analyzed along with the remaining experimental samples. The experimental design of the experiments conducted according to this Example 1 is depicted in Figure 1. The charge profile of etanercept produced in this Example is shown in Figure 2. Figure 3 shows the N-Glycan analysis of Gel #7 and Gel #10 of Figure 2. Etanercept protein produced in this example using a medium exchange technique designed to simulate perfusion processing elicits a similar profile to that of the innovator based on charge profile assessed by IEF gel and titers (Figure 2). The N-glycan distribution shown by chromatograms in Figure 3 has also similar profile to the reference standard. Based on the productivities determined to be approximately 0.3 g/L from culture at cell density of 10 million cells per milliliter, we expect the disclosed method to achieve production of approximately 0.75 to 1g/L per day based on culture at expected minimum density of 50 million cells per milliliter.

EXAMPLE 2



[0038] In order to support the high cell numbers necessary for inoculation of high density production cultures characteristic of perfusion processes, the seed train is conducted in large volume shake flasks maintained at 35 °C or 37 °C, 5% CO2 level and the speed of the orbital shaker is adjusted to 125 rpm. Production phase shake flasks containing SFM4CHO medium supplemented with Cell Boost 5 feed and 0.5 uM dexamethasone are inoculated at cell densities either 5 million cells per milliliter or 8 million cells per milliliter. The following media formulation was used.

EXAMPLE 2 MEDIA FORMULATION



[0039] 
Feed ComponentConcentration
SFM4CHO 1x
Cell Boost 5 20%
Dexamethasone 0.5uM


[0040] The production phase is conducted at temperatures 33.5 °C or 35.5 °C, otherwise all other culture conditions are the same. Cultures are monitored daily for viable cells densities and viabilities. To achieve the equivalent of a perfusion rate of 0.5 bioreactor volume per day the medium in each culture is fully exchanged every 48 hours. The harvested, clarified spent media is frozen at -80 °C. Following each spent medium harvest, cells were resuspended in fresh medium and allowed to accumulate recombinant product for another 48 hours; with the aforementioned process being repeated for a total of 5 cycles. At the conclusion of the experiment, all samples were thawed and analyzed with respect to titers, charge profile (by isoelectrofocusing gels, IEF), N-glycan profile and folding. Control conditions involved fed-batch culture inoculated at 0.4 million cells per milliliter in SFM4CHO medium supplemented with Cell Boost 5 feed and 0.5 uM dexamethasone. The control conditions involved the expansion phase conducted at 35 °C and the production phase at 35.5 °C initiated on day 5. The Etanercept protein was allowed to accumulate without medium exchange for the length of the experiment. Samples from the control culture were withdrawn every 48 hours during the production phase, frozen at -80 °C, and analyzed along with the remaining experimental samples. The experimental design of the experiments conducted according to this Example 2 is depicted in Figure 4. Figure 5 shows the IEF gels for etanercept harvested after medium exchange #1 (i.e., 2 days after initiation of production phase). IEF gels in Figure 5 show charge profile of Etanercept proteins produced after first medium exchange (equivalent of day 2 of a continuous perfusion) similar to that of Enbrel®. The control sample which is at this point still at low cell density shows similar profile. Figure 6 shows the IEF gels for etanercept harvested after medium exchange #3 (6 days after initiation of production phase). The charge profile of Etanercept proteins produced after third medium exchange (equivalent to day 6 of a continuous perfusion) is similar to that of Enbrel®. The desired isoforms are enclosed by a red box. Control sample shows some deterioration of product quality as shown by higher content of undersialylated, higher pi protein species. The data in this Example lends support to a conclusion that a perfusion system can provide a better protein quality than the fed-batch culture. Samples from each medium exchange are subjected to N-glycan analysis (Melmer et al., Anal Bioanal Chem (2010) 398:905-914, HILIC analysis of fluorescence-labeled N-glycans from recombinant biopharmaceuticals). Briefly, glycans are released from the test material, labeled with a fluorescent moiety to permit detection, and fractionated by normal-phase HPLC. Chromatograms of innovator protein (panel A), the third medium exchange of Shake Flask 3 (panel B), and appropriate harvest from the fed-batch Control Flask (panel C) are shown in Figure 7.

EXAMPLE 3



[0041] The seed train is expanded in large-volume shake flasks at 35 °C in SFM4CHO. The production bioreactor is inoculated at seeding densities of from 1 to 5 x 106 cells/mL in SFM4CHO containing Cell Boost 5 0.5uM dexamethasone Table 1), and maintained at temperatures from 33.5 °C to 35 °C. The media formulation was as follows:

EXAMPLE 3 MEDIA FORMULATION



[0042] 
Feed ComponentConcentration
SFM4CHO 1x
Cell Boost 5 20%
Dexamethasone 0.5uM


[0043] An ATF™ cell retention device (Refine Technology) is used to recirculate medium (containing waste products and desired product) past a hollow fiber filter, with recirculation rates from 0.1 to 2.0 working culture volumes per minute. The culture is expanded for 0 to 2 days, and then perfusion is initiated at rates from 0.2 to 2 culture volumes per day. New medium is added as spent medium, containing the product, is harvested through a 0.2 um pore size hollow fiber filter. Harvested fluid is chilled to 2-8 °C, purified by capture on protein A resin. Aliquots are analyzed for titer and N-glycan distribution, as described for Examples 1 and 2. HIC analysis may be used to evaluate the relative amounts of properly folded etanercept, versus improperly folded/aggregated (inactive) material.

[0044] Fig 14 shows the VCD, which reached around 12 x 106 cells/mL during the perfusion production phase. The perfusion rate, which began at 0.5 volumes of medium added per bioreactor volume per day (WD) and increased to 1.0 VVD when the VCD reached its plateau. The specific perfusion rate (mL of media per million cells per day) ranged from 0.06 to 0.08 during the production phase. The titer in samples taken daily was 250 to 350 mg/L, while the specific productivity was 15 to 30 pg per cell per day (Figure 15).

[0045] Analysis of correct folding, using HIC, shows that etanercept-contining material from the perfusion bioreactor has a higher percentage of correctly folded etanercept than that produced in a fed-batch culture (compare Figure 16 panel B, fed-batch, to panels C and D, perfusion).

[0046] N-glycan analysis shows the close agreement between etanercept produced in a perfusion bioreactor and Enbrel® reference, as shown in the chromatograms in Figure 17.

EXAMPLE 4



[0047] Cells were inoculated at 25 million cells per milliliter of media into two different base media, SFM4CHO or BalanCD/Hycell, each supplemented with Cell Boost (in the case of SFM4CHO) or CHOZN feeds (in the case of BalanCD/Hycell) at final concentration of 10% or 20%. The feeds also included other supplements that can promote sialylation, i.e., dexamethasone, galactose and ManNAc. Cottonseed hydrolysates and galactose were also added to the BalanCD/Hycell-containing medium (see formulation summaries below)

EXAMPLE 4 (SF1)



[0048] 
Feed ComponentConcentration
SFM4CHO 1x
Cell Boost 5 10%
Dexamethasone 0.8uM

EXAMPLE 4 (SF2)



[0049] 
Feed ComponentConcentration
SFM4CHO 1x
Cell Boost 5 20%
Dexamethasone 0.8uM

EXAMPLE 4 (SF3)



[0050] 
Feed ComponentConcentration
BalanCD/Hycell 1:1
CHOZN 10%
Cotton Seed Hydrolysate 7.5%
Galactose 10mM
ManNAc 10mM

EXAMPLE 4 (SF4)



[0051] 
Feed ComponentConcentration
BalanCD/Hycell 1:1
CHOZN 20%
Cotton Seed Hydrolysate 7.5%
Galactose 10mM
ManNAc 10mM


[0052] Cultures were maintained at a temperature of 33.5°C while perfusion was carried out by exchanging media every 48 hours. Samples from each medium exchange were analyzed with respect to titers, isoform profile by IEF gels and for amino acid depletion profile (spent medium analysis). Culture viable cell density (VCD) and viability is shown in VCD/Viability Profile #1 (see below) while isoform profile correlating with the level of a sialic acid content is shown in IEF Gel for Example 4. The titers were evaluated by ForteBio analysis and are displayed in Titer Graph for Example 4 (see below).



[0053] The VCD/Viability Profile for this Example 4 (above) shows viable cell density (VCD) and viability profile of cultures maintained in the four above referenced media formulations (SF1 to SF4). BalanCD/Hycell medium supplemented with CHOZN (10% or 20%) and cottonseed hydrolysate, galactose and ManNAc supports better nutrition resulting in superior viability, VCD, product quality (see IEF Gel for Example 4) and titers (see Titer Graphfor Example 4).



[0054] The IEF Gel for Example 4 (above) shows isoform profile of proteins isolated from cultures cultivated in SFM4CHO medium (lanes 2, 3, 7, 8) or in BalanCD/Hycell medium (lanes 4, 5, 9, 10). Proteins isolated from SFM4CHO cultures show reduced sialylation compared to reference standard (lane 6) while proteins isolated from BalanCD/Hycell cultures display isoform profile based on sialic acid content closely matching that of the reference standard.



[0055] The Titer Graph for Example 4 (above) shows that cultures from SFM4CHO medium (P1-1, P1-2, P2-1, P2-2) displayed lower productivity than those cultivated in BalanCD/Hycell 1:1 mixture of media (P1-3, P1-4, P2-3, P2-4).

EXAMPLE 5



[0056] Given our desire to develop feeds that will support higher density perfusion processes, this example contains experimental results from evaluating various feeds and feed combinations to identify those which would provide nutritional support for cultures exceeding 30 million cells per milliliter, preferably supporting perfusion runs at 50 million cells per milliliters of culture. Cultures were inoculated at 40 million cells per milliliter into the BalanCD/Hycell base medium reported in Example 4 above, supplemented with CHOZN (10%) and Feed1 (10%). One of the cultures was additionally supplemented with 7.5% cottonseed hydrolyzate. Media composition is provided below.

EXAMPLE 5 Medium 1



[0057] 
Feed ComponentConcentration
BalanCD/Hycell 1:1
CHOZN 10%
FEED 1 10%
L-Glutamine 8mM
Galactose 10mM

EXAMPLE 5 Medium 2



[0058] 
Feed ComponentConcentration
BalanCD/Hycell 1:1
CHOZN 10%
FEED 1 10%
L-Glutamine 8mM
Galactose 10mM
Cotton seed hydrolysate 7.5%


[0059] The Example 5 Formulations were tested in batch mode using culture longevity as the end point. Cultures were maintained at 33.5°C without additional feeding until the viability declined to -80%. Viable cell density and viability of culture is shown in VCD/Viability graph below.



[0060] The VCD/Viability Profile for this Example 5 (above) depicts viable cell density (VCD) and viability profile of cultures maintained in two different media formulations of the BalanCD/Hycell 1:1 mixture base medium. Both feed formulations resulted in batch culture longevity of 4 days (Any reduction of cell density was due to intensive sampling from small volume cultures and attachment of cells cultivated in high density culture to the pipette)

[0061] This Example 5 demonstrates that the BalanCD/Hycell media formulations described here are rich enough to support high density perfusion runs, and further, that the perfusion rate may perhaps be reduced due to decreased risk of nutrient depletion.

EXAMPLE 6



[0062] Exploring further performance of media formulations described in Example 5 on product quality in simulated perfusion mode cultures were set up at 40-50 million cells per milliliter in BalanCD/Hycell base medium supplemented with 10% CHOZN, 10% Feed1, 10mM Galactose and 7.5% cotton seed hydrolysate. Additionally two of the three cultures were supplemented with 0.8uM dexamethasone and 20mM ManNac. One of these two cultures received 0.01 uM magnesium chloride. Media composition is provided in Example 6 Medium 1-3 (see tables below).

EXAMPLE 6 Medium 1



[0063] 
Feed ComponentConcentration
BalanCD/Hycell 1:1
CHOZN 10%
FEED 1 10%
L-Glutamine 8mM
Galactose 10mM
Cotton seed hydrolysate 7.5%

EXAMPLE 6 Medium 2



[0064] 
Feed ComponentConcentration
BalanCD/Hycell 1:1
CHOZN 10%
FEED 1 10%
L-Glutamine 8mM
Galactose 10mM
Cotton seed hydrolysate 7.5%
Dexamethasone 0.8uM
ManNac 20mM

EXAMPLE 6 Medium 3



[0065] 
Feed ComponentConcentration
BalanCD/Hycell 1:1
CHOZN 10%
FEED 1 10%
L-Glutamine 8mM
Galactose 10mM
Cotton seed hydrolysate 7.5%
Dexamethasone 0.8uM
ManNAc 20mM
Magnesium chloride 0.01 uM


[0066] Cultures were cultivated at 33.5°C. Perfusion was carried out by performing medium exchange every 24 hours.

[0067] Samples were analyzed with respect to growth (viable cell density and viability), titers and isoform profile using IEF gels. Culture viable cell density (VCD) and viability is shown in VCD/Viability Profile for this Example 6 (below) while isoform profile correlating with the level of sialic acid content is shown in the IEF Gel for this Example.



[0068] The VCD/Viability Profile (above) shows viable cell density (VCD) and viability profile of cultures maintained in three different media formulations of the BalanCD/Hycell base medium. All feed formulations were tested for 5 days with four medium exchanges performed every 24 hours. Decrease in cell density at later stage of the cultures was the result of heavy sample testing and cells attaching to the pipette.



[0069] The IEF Gel for Example 6 (above) shows the isoform profile of samples from harvest culture (day 4, fourth medium exchange) composed of Medium 1 (lane 6), Medium 2 (lane 7) and Medium 3 (lane 8). Lanes 5 and 9 correspond to reference standard.

[0070] Data generated from experiments described in Example 6 indicates that despite similar culture performance with respect to viability and viable cell density, the product quality is further improved by formulation of Medium 2 and Medium 3.

EXAMPLE 7



[0071] In yet a further example of high density cultures tested in a perfusion process involving repetitive medium exchanges at predetermined time intervals, we inoculated cells at 40-50 million cells per milliliter into four different BalanCD/Hycell 1:1 mixtures. Mixture 1 was supplemented with Ex-Cell CHOZN Platform Feed and BalanCD Feed1, Mixture 2 was supplemented with Ex-Cell CHOZN Platform Feed, BalanCD Feed1 and BalanCD Feed2; Mixture 3 was supplemented with Ex-Cell CHOZN Platform Feed and Efficient Feed A; and Mixture 4 was supplemented with Ex-Cell CHOZN Platform Feed, BalanCD Feed1, BalanCD Feed2 and Efficient Feed A. All four of the BalanCD/Hycell 1:1 mixtures contained additional supplementation of 8mM L-glutamine, 10mM galactose, 7.5% cotton seed hydrolysate, 0.8uM dexamethasone, and 20mM ManNAc.

EXAMPLE 7 - Medium 1



[0072] 
Feed ComponentConcentration
BalanCD/Hycell 1:1
CHOZN 10%
FEED 1 10%
L-Glutamine 8mM
Galactose 10mM
Cotton seed hydrolysate 7.5%
Dexamethasone 0.8uM
ManNAc 20mM

EXAMPLE 7 - Medium 2



[0073] 
Feed ComponentConcentration
BalanCD/Hycell 1:1
CHOZN 10%
FEED 1 5%
FEED 2 5%
L-Glutamine 8mM
Galactose 10mM
Cotton seed hydrolysate 7.5%
Dexamethasone 0.8uM
ManNAc 20mM

EXAMPLE 7 - Medium 3



[0074] 
Feed ComponentConcentration
BalanCD/Hycell 1:1
CHOZN 10%
FEED 2 10%
L-Glutamine 8mM
Galactose 10mM
Cotton seed hydrolysate 7.5%
Dexamethasone 0.8uM
ManNAc 20mM

EXAMPLE 7 - Medium 4



[0075] 
Feed ComponentConcentration
BalanCD/Hycell 1:1
CHOZN 10%
FEED 1 3%
FEED 2 3%
Efficient FEED A 3%
L-Glutamine 8mM
Galactose 10mM
Cotton seed hydrolysate 7.5%
Dexamethasone 0.8uM
ManNAc 20mM


[0076] Cultures were maintained at 33.5°C. Perfusion conditions were achieved by replacing medium every 24 hours (for a total of five exchanges). Product quality was measured by IEF gel analysis during four consecutive medium exchanges (See IEF Gel-Example 7, below).



[0077] The IEF Gel (above) shows samples form the last of the five medium exchanges (day 5): standard is lane 4; samples from Medium 1, Medium 2, Medium 3, Medium 4 (lanes 5-8, respectively). This data indicate that all four media formulations support high cell density perfusion with simulated perfusion rate of 1 bioreactor volume per day, and that these conditions allow for production of etanercept protein with sialic acid content resulting in the isoform distribution substantially similar to the reference standard (commercially available Enbrel®). In a perfusion mode where the steady medium flow delivers nutrients and removes wastes in a continuous fashion the product quality can be expected to improve even further.


Claims

1. A perfusion method for manufacturing correctly folded etanercept comprising the following steps: (a) preparing a mixture comprising cells capable of expressing a protein comprising etanercept and a culture medium suitable for conducting such expression; (b) in a suitable vessel containing the mixture, causing the cells to produce the protein comprising etanercept; and (c) periodically or continuously removing spent culture medium from, and adding fresh culture medium to, the reaction vessel, wherein the protein comprising etanercept produced in the method comprises greater than 40 wt.%, 50 wt.%, or 60 wt.% of correctly folded etanercept, wherein the culture medium comprises a base feed medium selected from SFM4CHO® medium and BalanCD™/Hycell® medium, and wherein the culture medium comprises dexamethasone, N-acetylmannosamine (ManNAc) and galactose.
 
2. The perfusion method of claim 1 wherein:

(1) prior to step (a), the cells capable of expressing the protein comprising etanercept are grown in a growth phase at a temperature selected from; (i) 28 °C to 37 °C; and (ii) 35 °C to 36 °C; and

(2) production of the protein comprising etanercept is carried out at a temperature selected from (i) greater than about 32°C; (ii) greater than 33°C; (iii) greater than 34°C; (iv) greater than 35°C; (v) the range of 33°C to 36°C; (vi) the range of 35°C to 36°C; (vii) 32.5°C; (viii) 33.5°C; (ix) 34.5°C; and (x) 35.5°C, preferably the range of 33°C to 36°C.


 
3. The perfusion method of claim 2 wherein the total amount of correctly folded and incorrectly folded protein produced during the production phase is produced in titers of 0.2 to 1 g/L, and optionally wherein the culture medium comprises cottonseed hydrolysate.
 
4. The perfusion method of claim 3 wherein the production temperature is 33.5°C.
 
5. The perfusion method of claim 3 wherein the culture medium further comprises at least one feed supplement selected from the group consisting of glutamine and cottonseed hydrolysate.
 
6. The perfusion method of claim 1 in which an alternating tangential flow cell retention device is used to recirculate medium containing waste products and the protein comprising etanercept past a hollow fiber filter whereby the waste products and the protein comprising etanercept are removed from the reaction vessel.
 
7. A perfusion method according to claim 1 wherein (i) step (b) is carried out at or above 33°C; (ii) the protein comprising etanercept comprises at least 60 wt% correctly folded etanercept; (iii) the protein comprising etanercept is produced in titers of 0.2 to 1 g/L; and (iv) the etanercept has a glycosylation profile substantially similar to that of commercially available etanercept sold under the tradename Enbrel®.
 
8. The perfusion method of claim 7 where the glycosylation profile is characterized by a degree of sialylation substantially similar to that of etanercept commercially available under the tradename Enbrel®.
 


Ansprüche

1. Perfusionsverfahren zur Herstellung von korrekt gefaltetem Etanercept, die folgenden Schritte umfassend: (a) Herstellen eines Gemischs, das Zellen umfasst, die ein Protein exprimieren können, das Etanercept umfasst, und ein Kulturmedium, das sich zur Durchführung der Expression eignet; (b) in einem geeigneten Gefäß, welches das Gemisch enthält, Bewirken, dass die Zellen das Protein erzeugen, das Etanercept umfasst; und (c) periodisches oder kontinuierliches Entfernen von erschöpftem Kulturmedium aus dem Reaktionsgefäß und Zugabe von frischem Kulturmedium in das Gefäß, wobei das in dem Verfahren erzeugte Protein, das Etanercept umfasst, mehr als 40 Gew.-%, 50 Gew.-% oder 60 Gew.-% korrekt gefaltetes Etanercept umfasst, wobei das Kulturmedium ein Grundnährmedium umfasst, das ausgewählt ist aus SFM4CHO®-Medium und BalanCD™/Hycell®-Medium, und wobei das Kulturmedium Dexamethason, N-Acetylmannosamin (ManNAc) und Galactose umfasst.
 
2. Perfusionsverfahren nach Anspruch 1, wobei:

(1) vor Schritt (a), die Zellen, die das Protein exprimieren können, das Etanercept umfasst, in einer Kultivierungsphase auf einer Temperatur gezüchtet werden, die ausgewählt ist aus: (i) 28 °C bis 37 °C und (ii) 35 °C bis 36 °C; und

(2) die Produktion des Proteins, das Etanercept umfasst, auf einer Temperatur ausgeführt wird, die ausgewählt ist aus: (i) über 32 °C; (ii) über 33 °C; (iii) über 34 °C; (iv) über 35 °C; (v) zwischen 33 °C und 36 °C; (vi) zwischen 35 °C und 36 °C; (vii) 32,5 °C; (viii) 33,5 °C; (ix) 34,5 °C und (x) 35,5 °C, vorzugsweise zwischen 33 °C und 36 °C.


 
3. Perfusionsverfahren nach Anspruch 2, wobei die Gesamtmenge des während der Produktionsphase produzierten korrekt gefalteten und nicht korrekt gefalteten Proteins in Titern von 0,2 bis 1 g/L produziert wird, und wobei das Kulturmedium optional Baumwollsaat-Hydrolysat umfasst.
 
4. Perfusionsverfahren nach Anspruch 3, wobei die Produktionstemperatur 33,5 °C beträgt.
 
5. Perfusionsverfahren nach Anspruch 3, wobei das Kulturmedium ferner mindestens einen Nährstoffzusatz umfasst, der ausgewählt ist aus der Gruppe bestehend aus Glutamin und Baumwollsaat-Hydrolysat.
 
6. Perfusionsverfahren nach Anspruch 1, wobei eine alternierende Tangentialströmungs-Zellrückhaltevorrichtung verwendet wird, um das Medium, das Abfallprodukte enthält, und das Protein, welches Etanercept umfasst, an einem Hohlfaserfilter vorbei zu rezirkulieren, wodurch die Abfallprodukte und das Protein, das Etanercept umfasst, aus dem Reaktionsgefäß entfernt werden.
 
7. Perfusionsverfahren nach Anspruch 1, wobei (i) Schritt (b) bei oder oberhalb von 33 °C ausgeführt wird; (ii) das Protein, das Etanercept umfasst, mindestens 60 Gew.-% korrekt gefaltetes Etanercept umfasst; (iii) das Protein, das Etanercept umfasst, in Titern von 0,2 bis 1 g/L produziert wird; und (iv) das Etanercept ein Glykosylierungsprofil aufweist, das dem von im Handel erhältlichen Etanercept, das unter der Handelsbezeichnung Enbrel® angeboten wird, im Wesentlichen ähnlich ist.
 
8. Perfusionsverfahren nach Anspruch 7, wobei das Glykosylierungsprofil durch ein Maß der Sialylierung gekennzeichnet ist, der dem von im Handel erhältlichen Etanercept, das unter der Handelsbezeichnung Enbrel® angeboten wird, im Wesentlichen ähnlich ist.
 


Revendications

1. Procédé de perfusion pour la fabrication d'étanercept replié de façon appropriée, comprenant les étapes consistant à : (a) préparer un mélange comprenant des cellules pouvant exprimer une protéine comprenant l'étanercept et un milieu de culture approprié pour effectuer cette expression ; (b) dans un récipient approprié contenant le mélange, amener les cellules à produire la protéine comprenant l'étanercept ; et (c) retirer périodiquement ou en continu le milieu de culture utilisé du récipient à réaction, et ajouter un milieu de culture frais au récipient à réaction, la protéine comprenant l'étanercept produit selon le procédé comprenant plus de 40 % en poids, 50 % en poids ou 60 % en poids d'étanercept replié de façon appropriée, le milieu de culture comprenant un milieu d'alimentation de base choisi parmi le milieu SFM4CHO® et le milieu BalanCD™/Hycell®, et le milieu de culture comprenant de la dexaméthasone, de la N-acétylmannosamine (ManNAc) et du galactose.
 
2. Procédé de perfusion selon la revendication 1 :

(1) avant l'étape (a), les cellules pouvant exprimer la protéine comprenant l'étanercept étant cultivées dans une phase de croissance à une température choisie parmi : (i) une plage comprise entre 28 °C et 37 °C ; et (ii) une plage comprise entre 35 °C et 36 °C ; et

(2) la production de la protéine comprenant l'étanercept étant effectuée à une température choisie parmi (i) une température supérieure à environ 32 °C ; (ii) une température supérieure à 33 °C ; (iii) une température supérieure à 34°C ; (iv) une température supérieure à 35 °C ; (v) la plage comprise entre 33 °C et 36 °C ; (vi) la plage comprise entre 35 °C et 36 °C ; (vii) la température de 32,5 °C ; (viii) la température de 33,5 °C ; (ix) la température de 34,5 °C ; et (x) la température de 35,5 °C, de préférence la plage comprise entre 33 °C et 36 °C.


 
3. Procédé de perfusion selon la revendication 2, la quantité totale de protéine repliée de façon appropriée et repliée de façon inappropriée produite pendant la phase de production étant produite en titres de 0,2 à 1 g/L, et éventuellement le milieu de culture comprenant de l'hydrolysat de graines de coton.
 
4. Procédé selon la revendication 3, la température de production étant 33,5 °C.
 
5. Procédé de perfusion selon la revendication 3, le milieu de culture comprenant en outre au moins un complément alimentaire choisi dans le groupe constitué par la glutamine et l'hydrolysat de graines de coton.
 
6. Procédé de perfusion selon la revendication 1, un dispositif de rétention de cellules à écoulement tangentiel alternatif étant utilisé pour recirculer un milieu contenant des produits de déchet et la protéine comprenant l'étanercept au-delà d'un filtre à fibres creuses, de sorte que les produits de déchet et la protéine comprenant l'étanercept soient retirés du récipient à réaction.
 
7. Procédé de perfusion selon la revendication 1, (i) l'étape (b) étant effectuée à ou au-dessus de 33 °C ; (ii) la protéine comprenant l'étanercept comprenant au moins 60 % en poids d'étanercept replié de façon appropriée ; (iii) la protéine comprenant l'étanercept étant produite en titres de 0,2 à 1 g/L ; et (iv) l'étanercept ayant un profil de glycosylation sensiblement similaire à celui de l'étanercept commercialement disponible vendu sous le nom commercial Enbrel®.
 
8. Procédé de perfusion selon la revendication 7, le profil de glycosylation étant caractérisé par un degré de sialylation sensiblement similaire à celui de l'étanercept commercialement disponible sous la marque Enbrel®.
 




Drawing



























































Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description