(19)
(11)EP 2 983 590 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
02.09.2020 Bulletin 2020/36

(21)Application number: 14782465.0

(22)Date of filing:  09.04.2014
(51)Int. Cl.: 
A61B 6/03  (2006.01)
H05G 1/04  (2006.01)
A61B 6/00  (2006.01)
G01N 23/046  (2018.01)
(86)International application number:
PCT/US2014/033537
(87)International publication number:
WO 2014/169059 (16.10.2014 Gazette  2014/42)

(54)

COMPUTERIZED TOMOGRAPHY (CT) IMAGING SYSTEM WITH IMPROVED X-RAY TUBE MOUNT

COMPUTERTOMOGRAFIE-BILDGEBUNGSSYSTEM MIT VERBESSERTER RÖNTGENRÖHRENHALTERUNG

SYSTÈME D'IMAGERIE TOMOGRAPHIQUE ASSISTÉE PAR ORDINATEUR COMPORTANT UN SUPPORT AMÉLIORÉ DE TUBE RADIOGÈNE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 09.04.2013 US 201361809917 P

(43)Date of publication of application:
17.02.2016 Bulletin 2016/07

(73)Proprietor: NeuroLogica Corporation
Danvers, MA 01923 (US)

(72)Inventors:
  • BAILEY, Eric
    North Hampton, NH 03862 (US)
  • PARK, Daehyung
    Yongin-si, Gyeonggi-do Korea 448-982 (KR)
  • TYBINKOWSKI, Andrew, P.
    Boxford, MA 01921 (US)
  • OH, Pilyong
    Gwangmyeong-si, Gyeonggi-do Korea 423-050 (KR)

(74)Representative: Engelhardt, Volker 
Engelhardt & Engelhardt Patentanwälte Montafonstrasse 35
88045 Friedrichshafen
88045 Friedrichshafen (DE)


(56)References cited: : 
US-A- 4 115 695
US-A- 4 658 408
US-A1- 2003 035 506
US-A1- 2007 041 507
US-A- 4 366 577
US-A1- 2003 035 506
US-A1- 2004 017 895
US-A1- 2010 128 851
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Reference To Pending Prior Patent Application



    [0001] This patent application claims benefit of pending prior U.S. Provisional Patent Application Serial No. 61/809,917, filed 04/09/2013 by Andrew P. Tybinkowski et al. for COMPUTERIZED TOMOGRAPHY (CT) IMAGING SYSTEM WITH IMPROVED X-RAY TUBE MOUNT (Attorney's Docket No. NEUROLOGICA-65 PROV).

    Field Of The Invention



    [0002] This invention relates to imaging systems in general, and more particularly to computerized tomography (CT) imaging systems.

    Background Of The Invention



    [0003] In many situations, it can be desirable to image the interior of opaque objects. By way of example but not limitation, in the medical field, it can be desirable to image the interior of a patient's body so as to allow internal body structures to be viewed without physically penetrating the skin of the patient. By way of further example but not limitation, in the security field, it can be desirable to image the interior of a container and/or carrying case so as to allow the contents of the container and/or carrying case to be viewed without physically opening the container and/or carrying case.

    [0004] The present invention will hereinafter be discussed in the context of medical imaging, however, it should be appreciated that the present invention is also applicable to other types of imaging, e.g., security screening, equipment analysis, etc.

    [0005] Computerized Tomography (CT) has emerged as a key imaging modality in the medical field. CT imaging systems generally operate by directing X-rays into the body from a variety of positions, detecting the X-rays passing through the body, and then processing the detected X-rays so as to build a computer model of the patient's anatomy. This computer model can then be visualized so as to provide images of the patient's anatomy.

    [0006] By way of example but not limitation, and looking now at Figs. 1 and 2, there is shown a CT imaging system 5. CT imaging system 5 generally comprises a torus 10 which is supported by a base 15. Torus 10 and base 15 together comprise a frame for CT imaging system 5. A center opening 20 (which is sometimes referred to as an axial opening) is formed in torus 10. Center opening 20 receives the patient anatomy which is to be scanned.

    [0007] Looking next at Fig. 3, torus 10 generally comprises an X-ray tube assembly 25, an X-ray detector assembly 30, and a rotating disk assembly 35. X-ray tube assembly 25 and X-ray detector assembly 30 are mounted to rotating disk assembly 35 in diametrically-opposing relation, such that the X-ray beam 40 (generated by X-ray tube assembly 25 and detected by X-ray detector assembly 30) is passed through the patient anatomy disposed in center opening 20. Inasmuch as X-ray tube assembly 25 and X-ray detector assembly 30 are mounted on rotating disk assembly 35 so that they are rotated as a unit concentrically about center opening 20, X-ray beam 40 will be passed through the patient's anatomy and detected along a full range of radial positions, so as to enable CT imaging system 5 to create a "slice" image of the anatomy penetrated by the X-ray beam. Furthermore, by moving the patient relative to CT imaging system 5 during scanning (or, alternatively, by moving CT imaging system 5 relative to the patient during scanning), a series of slice images can be acquired, and thereafter appropriately processed, so as to create a three-dimensional (3D) computer model of the scanned anatomy.

    [0008] As noted above, X-ray tube assembly 25 and X-ray detector assembly 30 are mounted on rotating disk assembly 35 so that they are rotated as a unit concentrically about center opening 20.

    [0009] In general, and looking now at Figs. 4-9, X-ray tube assembly 25 is mounted to rotating disk assembly 35 using an X-ray tube mount 45. More particularly, X-ray tube mount 45 comprises a housing which is typically formed in two sections, an outer section 50 and an inner section 55, with X-ray tube assembly 25 being captured between outer section 50 and inner section 55. As used herein, the terms "outer" and "inner" are characterized in the context of the center of rotation of rotating disk assembly 35, i.e., inner section 55 is disposed closer to the center of rotation of rotating disk assembly 35 than outer section 50.

    [0010] Outer section 50 of X-ray tube mount 45 is secured to rotating disk assembly 35, whereby to secure X-ray tube mount 45 (and hence X-ray tube assembly 25) to rotating disk assembly 35. More particularly, outer section 50 of X-ray tube mount 45 comprises two feet 60 which are secured to rotating disk assembly 35 via bolts 63 which extend through holes 65 in feet 60 and engage drum mounts 66 (e.g., brackets). Thus, holes 65 in feet 60 provide mounting constructs for mounting X-ray tube mount 45 to rotating disk assembly 35. Note that holes 65 and bolts 63 are disposed at the outer end of X-ray tube mount 45, i.e., near the outer circumference of rotating disk assembly 35. Note also that the outermost portion of outer section 50 of X-ray tube mount 45 comprises first and second lateralmost edges 67A, 67B, and that holes 65 (i.e., the mounting constructs) are disposed laterally inboard of first and second lateralmost edges 67A, 67B.

    [0011] Inner section 55 of X-ray tube mount 45 includes a window 70 which emits the X-rays from X-ray tube assembly 25.

    [0012] In addition to the foregoing, it should also be appreciated that X-ray tube assembly 25 generally comprises a so-called "moving anode" X-ray tube. In a moving anode X-ray tube, which is commonly used in medical scanners due to the higher energy requirements associated with medical imaging, the anode 71 (Fig. 6) of the X-ray tube assembly 25 is mounted on a shaft 72 which is rotated at a high rate of speed (e.g., up to 10,000 revolutions per minute) within the X-ray tube assembly. The cathode 73 emits electrons which are drawn to anode 71, with X-rays 40 being emitted off the anode and passing out window 70. It should be appreciated that in a moving anode X-ray tube, cathode 73 is radially displaced from the axis of rotation 74 of anode 71 (which axis of rotation 74 is sometimes referred to as "the longitudinal axis of the X-ray tube"). It should also be appreciated that in a moving anode X-ray tube, delicate bearings must be provided for shaft 72, etc., in order to sustain the high rate of rotation required for the moving anode.

    [0013] It will be appreciated that any instability in the mounting of X-ray tube assembly 25 to rotating disk assembly 35 can produce variations in the X-ray beam characteristics, and hence can negatively affect the quality of the images generated by CT imaging system 5. In addition, since X-ray tube assembly 25 typically contains rapidly moving parts (e.g., an anode rotating at up to 10,000 revolutions per minute), any instability in the mounting of X-ray tube assembly 25 to rotating disk assembly 35 can cause excessive wear of the parts (e.g., bearings) within X-ray tube assembly 25, which can shorten the life of the X-ray tube assembly. It will be appreciated that, inasmuch as the X-ray tube assembly is a relatively expensive component of a CT imaging system, excessive wear of the parts (e.g., bearings) within X-ray tube assembly 25 is undesirable.

    [0014] Historically, the aforementioned X-ray tube mount 45 (comprising outer section 50 and inner section 55, with outer section 50 comprising feet 60 which are secured to rotating disk assembly 35 via bolts 63 which extend through holes 65 in feet 60 and engage drum mounts 66) has performed acceptably. However, interest has now arisen in rotating the rotating disk assembly 35 with significantly increased speeds, e.g., at 270 revolutions per minute. At these increased speeds, the forces imposed on X-ray tube assembly 25 and X-ray tube mount 45 are quite large, and the conventional X-ray tube mount 45 has proven incapable of providing the requisite stability for X-ray tube assembly 25 as rotating disk assembly 35 is rotated. Among other things, instability in the mounting of X-ray tube assembly 25 to rotating disk assembly 35 has negatively affected the quality of the images generated by CT imaging system 5 and has caused excessive wear of the parts (e.g., bearings) within X-ray tube assembly 25, which shortens the life of the X-ray tube assembly.

    [0015] US2003/035506 discloses a system and a method for mounting an X-ray tube within a CT scanner.

    [0016] Therefore, a new and improved X-ray tube mount is needed for mounting the X-ray tube assembly to the rotating disk assembly in a CT imaging system.

    Summary Of The Invention



    [0017] The invention is defined by claims 1, 8 and 9. The present invention provides a new and improved X-ray tube mount for mounting the X-ray tube assembly to the rotating disk assembly in a CT imaging system. Among other things, this new and improved X-ray tube mount provides significantly increased stability for an X-ray tube assembly, such that the rotating disk assembly can be rotated with significantly increased speeds, e.g., 270 revolutions per minute, while still providing the requisite stability for the X-ray tube assembly.

    [0018] In one preferred form, there is provided an X-ray tube mount for mounting an X-ray tube assembly to the rotating disk assembly of a CT imaging system, said X-ray tube mount comprising:

    a housing having an inner end and an outer end, wherein said inner end of said housing is located closer to the center of rotation of the rotating disk assembly than said outer end of said housing; and

    at least one mounting construct for mounting said housing to the rotating disk assembly, wherein said at least one mounting construct is disposed intermediate said inner end of said housing and said outer end of said housing.



    [0019] In another preferred form, there is provided apparatus comprising:

    an X-ray tube mount for mounting an X-ray tube assembly to the rotating disk assembly of a CT imaging system, said X-ray tube mount comprising:

    a housing having an inner end and an outer end, wherein said inner end of said housing is located closer to the center of rotation of the rotating disk assembly than said outer end of said housing; and

    at least one mounting construct for mounting said housing to the rotating disk assembly, wherein said at least one mounting construct is disposed intermediate said inner end of said housing and said outer end of said housing; and

    an X-ray tube assembly disposed within said housing.



    [0020] In another preferred form, there is provided a method for scanning an object, said method comprising:

    providing a computer tomography (CT) imaging system comprising a rotating disk assembly having an axial opening formed therein, an X-ray tube assembly mounted to said rotating disk assembly on one side of said axial opening, and an X-ray detector assembly mounted to said rotating disk assembly on the opposing side of said axial opening, wherein said X-ray tube assembly is mounted to said rotating disk assembly using an X-ray tube mount, wherein said X-ray tube mount comprises:

    a housing having an inner end and an outer end, wherein said inner end of said housing is located closer to the center of rotation of said rotating disk assembly than said outer end of said housing; and

    at least one mounting construct for mounting said housing to said rotating disk assembly, wherein said at least one mounting construct is disposed intermediate said inner end of said housing and said outer end of said housing;

    positioning the object to be scanned within said axial opening of said rotating disk assembly; and

    while rotating said rotating disk assembly, passing X-rays from said X-ray tube assembly through the object and detecting X-rays passing through the object with said X-ray detector.


    Brief Description Of The Drawings



    [0021] These and other objects and features of the present invention will be more fully disclosed or rendered obvious by the following detailed description of the preferred embodiments of the invention, which is to be considered together with the accompanying drawings wherein like numbers refer to like parts, and further wherein:

    Figs. 1-3 are schematic views showing the general construction of a CT imaging system;

    Figs. 4-9 are schematic views showing a conventional X-ray tube mount for mounting an X-ray tube assembly to the rotating disk assembly of a CT imaging system;

    Figs. 10-15 are schematic views showing a new and improved X-ray tube mount formed in accordance with the present invention for mounting an X-ray tube assembly to the rotating disk assembly of a CT imaging system;

    Figs. 16 and 17 are schematic views showing the stiffness of the conventional X-ray tube mount shown in Figs. 4-9; and

    Figs. 18 and 19 are schematic views showing the stiffness of the new and improved X-ray tube mount shown in Figs. 10-15.


    Detailed Description Of The Preferred Embodiments



    [0022] The present invention provides a new and improved X-ray tube mount for mounting the X-ray tube assembly to the rotating disk assembly in a CT imaging system. Among other things, this new and improved X-ray tube mount provides significantly increased stability for an X-ray tube assembly, such that the rotating disk assembly can be rotated with significantly increased speeds, e.g., 270 revolutions per minute, while still providing the requisite stability for the X-ray tube assembly.

    [0023] More particularly, and looking now at Figs. 10-15, there is shown a new and improved X-ray tube mount 145 for mounting X-ray tube assembly 25 to rotating disk assembly 35. The new and improved X-ray tube mount 145 comprises a housing which is formed in two sections, an outer section 150 and an inner section 155, with X-ray tube assembly 25 being captured to X-ray tube mount 145 between outer section 150 and inner section 155. Again, as used herein, the terms "outer" and "inner" are characterized in the context of the center of rotation of rotating disk assembly 35, i.e., inner section 155 lies closer to the center of rotation of rotating disk assembly 35 than outer section 150.

    [0024] Inner section 155 is secured to rotating disk assembly 35, whereby to secure X-ray tube mount 145 (and hence X-ray tube assembly 25) to rotating disk assembly 35. More particularly, with the present invention, inner section 155 of X-ray tube mount 145 comprises a pair of flanges 160 which extend parallel to the longitudinal axis of X-ray tube assembly 25 (i.e., parallel to the axis of rotation 74 of anode 71) and are secured to rotating disk assembly 35 via bolts 163 which extend through holes 165 in flanges 160 and engage drum mounts 166 (e.g., brackets). Thus, holes 165 in flanges 160 provide mounting constructs for mounting X-ray tube mount 145 to rotating disk assembly 35. Note that the outermost portion of outer section 150 of X-ray tube mount 145 comprises first and second lateralmost edges 167A, 167B, and that holes 165 in flanges 160 of inner section 155 (i.e., the mounting constructs) are disposed laterally outboard of first and second lateralmost edges 167A, 167B.

    [0025] Significantly, holes 165 in flanges 160 of the new and improved X-ray tube mount 145 are disposed outboard of holes 65 in feet 60 of conventional X-ray tube mount 45 (note the distance X in Figs. 4 and 5 versus the distance X+α in Figs. 10 and 11), and holes 165 in flanges 160 of improved X-ray tube mount 145 are disposed closer to the center of rotation of rotating disk assembly 35 than holes 65 in feet 60 of conventional X-ray tube mount 45 (note the distance Y in Figs. 4 and 5 versus the distance Y+β in Figs. 10 and 11), whereby to provide significantly increased stability for X-ray tube assembly 25.

    [0026] Furthermore, holes 165 in flanges 160 of improved X-ray tube mount 145 are set on a line which extends parallel to the longitudinal axis of X-ray tube assembly 25 (i.e., parallel to the axis of rotation 74 of anode 71 of X-ray tube assembly 25), which results in significantly increased stability for X-ray tube assembly 145 as rotating disk assembly 35 is rotated.

    [0027] Thus it will be seen that with the present invention, (i) the mounting constructs of the new and improved X-ray tube mount 145 are moved laterally outward and radially inward relative to the mounting constructs of conventional X-ray tube mount 45 (see the distance X+α in Figs. 10 and 11 versus the distance X in Figs. 4 and 5, and see the distance Y+β in Figs. 10 and 11 versus the distance Y in Figs. 4 and 5), and (ii) the mounting constructs of the new and improved X-ray tube mount 145 are set on a line which extends parallel to the longitudinal axis of X-ray tube assembly 25 (i.e., parallel to the axis of rotation 74 of anode 71 of X-ray tube assembly 25), whereby to provide significantly more stability for X-ray tube assembly 25 as rotating disk assembly 35 of CT imaging system 5 is rotated.

    [0028] Inner section 155 of X-ray tube mount 145 also includes a window 170 which emits the X-rays from X-ray tube assembly 25.

    [0029] The new and improved X-ray tube mount 145 provides significantly more stability for X-ray tube assembly 25 than does conventional X-ray tube mount 45. See, for example, Figs. 16 and 17, which show the extent of deformation of conventional X-ray tube mount 45, and Figs. 18 and 19, which show the extent of deformation with the improved X-ray tube mount 145. As can be seen from Figs. 16 and 17, and 18 and 19, the new and improved X-ray tube mount 145 provides significantly more stability for X-ray tube assembly 25 than does conventional X-ray tube mount 45.

    [0030] It should also be appreciated that, if desired, flanges 160 may be formed on outer section 150 of X-ray tube mount 145, rather than being formed on inner section 155 of X-ray tube mount 145 as disclosed above. Of course, in this alternative construction, flanges 160 would be formed on the inner end of outer section 150 of X-ray tube mount 145, rather than being formed on the outer end of inner section 155 of X-ray tube mount 145 as previously disclosed.

    [0031] It should also be appreciated that, if desired, improved X-ray tube mount 145 can also provide additional mounting means at the outermost surfaces of its outer section 150.

    Modifications Of The Preferred Embodiments



    [0032] It should be understood that many additional changes in the details, materials, steps and arrangements of parts, which have been herein described and illustrated in order to explain the nature of the present invention, may be made by those skilled in the art while still remaining within the principles and scope of the invention.


    Claims

    1. An X-ray tube mount (145) for mounting an X-ray tube assembly (25) to a rotating disk assembly (35) of a CT imaging system (5), wherein the X-ray tube assembly (25) comprises an anode (71) rotating on a shaft (72), the shaft (72) having a longitudinal axis (74) extending therethrough, said X-ray tube mount (145) comprising:

    a housing for receiving the x-ray tube assembly (25), the housing having an inner end and an outer end, wherein said inner end of said housing is located closer to the center of rotation of the rotating disk assembly (35) than said outer end of said housing; and

    at least two mounting constructs (165) for mounting said housing to the rotating disk assembly (35), the at least two mounting constructs (165) being connected to said housing at two points, wherein the two points are co-planar with the longitudinal axis (74) of the shaft (72) when said X-ray tube assembly (25) is disposed in said housing.


     
    2. An X-ray tube mount (145) according to claim 1
    wherein said at least two mounting constructs (165) comprise a hole.
     
    3. An X-ray tube mount (145) according to claim 1
    wherein the outer end of said housing terminates in first and second lateralmost edges (167A, 167B), and further wherein said at least two mounting constructs (165) are disposed more lateral than said first and second lateralmost edges (167A, 167B) of said outer end of said housing.
     
    4. An X-ray tube mount (145) according to claim 1
    wherein said housing comprises an outer section (150) terminating in said outer end and an inner section (155) terminating in said inner end.
     
    5. An X-ray tube mount (145) according to claim 4
    wherein said housing comprises at least one axially-extending flange (160), wherein said at least one axially-extending flange (160) is formed on one of an inner portion of said outer section (150) and an outer portion of said inner section (155), and further wherein one of said at least two mounting constructs (165) is disposed on said at least one axially-extending flange (160).
     
    6. An X-ray tube mount (145) according to claim 5
    wherein said at least one axially-extending flange (160) is formed on said outer portion of said inner section (155).
     
    7. An X-ray tube mount (145) according to claim 5
    wherein said housing comprises at least two axially-extending flanges (160), and further wherein at least one mounting construct (165) is mounted to each axially-extending flange (160).
     
    8. Apparatus comprising:
    an X-ray tube mount (145) for mounting an X-ray tube assembly (25) to a rotating disk assembly (35) of a CT imaging system (5), wherein the X-ray tube assembly (25) comprises an anode (71) rotating on a shaft (72), the shaft (72) having a longitudinal axis (74) extending therethrough, said X-ray tube mount (145) comprising:

    a housing for receiving the x-ray tube assembly (25), the housing having an inner end and an outer end, wherein said inner end of said housing is located closer to the center of rotation of the rotating disk assembly (35) than said outer end of said housing; and

    at least two mounting constructs (165) for mounting said housing to the rotating disk assembly (35), the at least two mounting constructs (165) being connected to said housing at two points, wherein the two points are coplanar with the longitudinal axis (74) of the shaft (72); wherein the apparatus comprises said X-ray tube assembly (25) disposed within said housing.


     
    9. A method for scanning an object, said method comprising:

    providing a computer tomography (CT) imaging system (5) comprising a rotating disk assembly (35) having an axial opening (20) formed therein, an X-ray tube assembly (25) mounted to said rotating disk assembly (35) on one side of said axial opening (20), and an X-ray detector assembly (30) mounted to said rotating disk assembly (35) on the opposing side of said axial opening (20), wherein said X-ray tube assembly (25) comprises an anode (71) rotating on a shaft (72), the shaft (72) having a longitudinal axis (74) extending therethrough, wherein said X-ray tube assembly (25) is mounted to said rotating disk assembly (35) using an X-ray tube mount (145), wherein said X-ray tube mount (145) comprises:

    a housing for receiving the x-ray tube assembly (25) such that said X-ray tube assembly (25) is disposed within said housing, the housing having an inner end and an outer end, wherein said inner end of said housing is located closer to the center of rotation of said rotating disk assembly (35) than said outer end of said housing; and

    at least two mounting constructs (165) for mounting said housing to said rotating disk assembly (35), the at least two mounting constructs (165) being connected to said housing at two points, wherein the two points are coplanar with the longitudinal axis (74) of the shaft (72);

    positioning the object to be scanned within said axial opening (20) of said rotating disk assembly (35); and

    while rotating said rotating disk assembly (35), passing X-rays from said X-ray tube assembly (25) through the object and detecting X-rays passing through the object with said X-ray detector assembly (30).


     


    Ansprüche

    1. Eine Röntgenröhrenhalterung (145) zur Befestigung einer Röntgenröhreneinheit (25) an einer drehbaren Scheibe (35) eines CT-Abbildungssystems (5)
    dadurch gekennzeichnet, dass
    die Röntgenröhreneinheit (25) eine auf einer Welle (72) drehbar gelagerte Anode (71) aufweist, wobei die Welle (72) eine durch diese führende Längsachse (74) aufweist und wobei sich die Röntgenröhrenhalterung (145) zusammensetzt aus:

    - einem Gehäuse zur Aufnahme der Röntgenröhreneinheit (25), wobei das Gehäuse ein inneres und ein äußeres Ende aufweist und wobei das innere Ende des Gehäuses der Drehachse der Scheibe (35) näher ist als das äußere Ende des Gehäuses und

    - mindestens zwei Befestigungsvorsprünge (165) zur Befestigung des Gehäuses an der Scheibe (35), wobei die mindestens zwei Befestigungsvorsprünge (165) an zwei Punkten mit dem Gehäuse verbunden sind und wobei die zwei Punkte in der gleichen Ebene liegen wie die Längsachse (74) der Welle (72), wenn die Röntgenröhreneinheit (25) im Gehäuse angeordnet ist.


     
    2. Eine Röntgenröhrenhalterung (145) nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die mindestens zwei Befestigungsvorsprünge (165) eine Bohrung aufweisen.
     
    3. Eine Röntgenröhrenhalterung (145) nach Anspruch 1,
    dadurch gekennzeichnet, dass
    das äußere Ende des Gehäuses an der ersten und der zweiten seitlichen Kante (167A, 167B) endet, und wobei die mindestens zwei Befestigungsvorsprünge (165) weiter seitlich liegen als die erste und die zweite seitliche Kante (167A, 167B) des äußeren Endes des Gehäuses.
     
    4. Eine Röntgenröhrenhalterung (145) nach Anspruch 1,
    dadurch gekennzeichnet, dass
    das Gehäuse einen äußeren Teil (150) besitzt, der im genannten äußeren Ende ausläuft, sowie einen inneren Teil (155), der im genannten inneren Ende ausläuft.
     
    5. Eine Röntgenröhrenhalterung (145) nach Anspruch 4,
    dadurch gekennzeichnet, dass
    das Gehäuse mindestens einen axial verlaufenden Flansch (160) aufweist, wobei der mindestens eine axial verlaufende Flansch (160) an einem der Innenseiten des äußeren Teils (150) und einer der Außenseiten des inneren Teils (155) angeformt ist und wobei einer der mindestens zwei Befestigungsvorsprünge (165) an dem mindestens einen axial verlaufenden Flansch (160) angeordnet ist.
     
    6. Eine Röntgenröhrenhalterung (145) nach Anspruch 5,
    dadurch gekennzeichnet, dass
    das der mindestens eine axial verlaufende Flansch (160) an der Außenseite des inneren Teil (155) angeformt ist.
     
    7. Eine Röntgenröhrenhalterung (145) nach Anspruch 5,
    dadurch gekennzeichnet, dass
    das Gehäuse mindestens zwei axial verlaufende Flansche (160) aufweist und wobei mindestens einer der Befestigungsvorsprünge (165) an jedem axial verlaufenden Flansch (160) befestigt ist.
     
    8. Vorrichtung mit:

    - einer Röntgenröhrenhalterung (145) zur Befestigung einer Röntgenröhreneinheit (25) an einer drehbaren Scheibe (35) eines CT-Abbildungssystems (5), wobei die Röntgenröhreneinheit (25) eine auf einer Welle (72) drehbar gelagerte Anode (71) aufweist, wobei die Welle (72) eine durch diese führende Längsachse (74) aufweist und wobei sich die Röntgenröhrenhalterung (145) zusammensetzt aus:

    - einem Gehäuse zur Aufnahme der Röntgenröhreneinheit (25), wobei das Gehäuse ein inneres und ein äußeres Ende aufweist und wobei das innere Ende des Gehäuses der Drehachse der Scheibe (35) näher ist als das äußere Ende des Gehäuses und

    - mindestens zwei Befestigungsvorsprünge (165) zur Befestigung des Gehäuses an der Scheibe (35), wobei die mindestens zwei Befestigungsvorsprünge (165) an zwei Punkten mit dem Gehäuse verbunden sind, wobei die zwei Punkte in der gleichen Ebene liegen wie die Längsachse (74) der Welle (72) wenn die Röntgenröhreneinheit (25) im Gehäuse der Vorrichtung angeordnet ist.


     
    9. Verfahren zur Abbildung eines Objekts, mit:

    - einem CT-Abbildungssystem (5), einer drehbaren Scheibe (35) mit einer in dieser vorgesehenen, axialen Öffnung (20), einer Röntgenröhreneinheit (25), die auf einer Seite der axialen Öffnung (20) an der drehbaren Scheibe (35) befestigt ist, sowie einem Röntgenstrahlen-Detektor (30), der auf der gegenüberliegenden Seite der axialen Öffnung (20) an der drehbaren Scheibe (35) befestigt ist, wobei die Röntgenröhreneinheit (25) eine auf einer Welle (72) drehbar gelagerte Anode (71) aufweist, wobei die Welle (72) eine durch diese führende Längsachse (74) aufweist, wobei die Röntgenröhreneinheit (25) mit Hilfe einer Röntgenröhrenhalterung (145) an der drehbaren Scheibe (35) befestigt ist und wobei sich die Röntgenröhrenhalterung (145) wie folgt zusammensetzt:
    einem Gehäuse zur Aufnahme der Röntgenröhreneinheit (25) dergestalt, dass die Röntgenröhreneinheit (25) im Gehäuse angeordnet ist, wobei das Gehäuse einen inneres und ein äußeres Ende aufweist und wobei das innere Ende des Gehäuses der Drehachse der Scheibe (35) näher ist als das äußere Ende des Gehäuses und

    - mindestens zwei Befestigungsvorsprünge (165) zur Befestigung des Gehäuses an der Scheibe (35), wobei die mindestens zwei Befestigungsvorsprünge (165) an zwei Punkten mit dem Gehäuse verbunden sind, wobei die zwei Punkte in der gleichen Ebene liegen wie die Längsachse (74) der Welle (72),

    - Halterung des zu scannenden Objekts in der axialen Öffnung (20) der drehbaren Scheibe (35) und

    - während der Drehung der drehbaren Scheibe (35), mit Hilfe der Röntgenröhreneinheit (25) Bestrahlen des Objekts mit Röntgenstrahlen und Erfassen von durch das Objekt hindurchtretenden Röntgenstrahlen mit Hilfe des Röntgenstrahlen-Detektors (30).


     


    Revendications

    1. Un support de tube à rayon X (145) pour le montage d'un tube à rayon X (25) sur un disque rotatif (35) d'un système scannographique CT (5), caractérisé en ce que
    le tube à rayon X (25) comprend une anode (71) tournant sur un arbre (72), l'arbre (72) possédant un axe longitudinal (74) s'étendant à travers celui-ci, le support du tube à rayon X comprenant :

    - un boîtier recevant le tube à rayon X (25), le boîtier possédant une extrémité intérieure et une extrémité extérieure, l'extrémité intérieure du boîtier se trouvant plus proche de l'axe de rotation du disque rotatif (35) que l'extrémité extérieure du boîtier et

    - au moins deux saillies de montage (165) servant au montage du boîtier au disque rotatif (35), les au moins deux saillies de montage (165) étant raccordées sur deux points au boîtier, et les deux points se trouvant dans le même plan que l'axe longitudinal (74) de l'arbre (72) quand le tube à rayon X (25) se trouve dans le boîtier.


     
    2. Un support de tube à rayon X (145) d'après la revendication 1,
    caractérisé en ce que
    les au moins deux saillies de montage (165) possèdent un perçage.
     
    3. Un support de tube à rayon X (145) d'après la revendication 1,
    caractérisé en ce que
    l'extrémité extérieure du boîtier se termine par le premier et le deuxième bord latéral (167A, 167B), et où les au moins deux saillies de montage (165) se trouvent plus latéralement que le premier et le deuxième bord latéral (167A, 167B) de l'extrémité extérieure du boîtier.
     
    4. Un support de tube à rayon X (145) d'après la revendication 1,
    caractérisé en ce que
    le boîtier possède une section extérieure (150) se terminant dans l'extrémité extérieure, ainsi qu'une section intérieure (155) se terminant dans l'extrémité intérieure.
     
    5. Un support de tube à rayon X (145) d'après la revendication 4,
    caractérisé en ce que
    le boîtier comprend au moins une bride (160) s'étendant axialement, cette bride (160) s'étendant axialement étant formée sur une des parties intérieures de la section extérieure (150) et sur une partie extérieure de la section intérieure (155), et où les au moins deux saillies de montage (165) sont disposées sur la bride (160) s'étendant axialement.
     
    6. Un support de tube à rayon X (145) d'après la revendication 5,
    caractérisé en ce que
    la bride (160) s'étendant axialement est formée sur la partie extérieure de la section intérieure (155).
     
    7. Un support de tube à rayon X (145) d'après la revendication 5,
    caractérisé en ce que
    le boîtier comprend au moins deux brides (160) s'étendant axialement, et où au moins une saillie de montage (165) est montée sur chacune des brides (160) s'étendant axialement.
     
    8. Dispositif comprenant :

    - un support de tube à rayon X (145) pour le montage d'un tube à rayon X (25) sur un disque rotatif (35) d'un système scannographique (5), le tube à rayon X (25) comprenant une anode (71) tournant sur l'arbre (72), l'arbre (72) possédant un axe longitudinal (74) s'étendant à travers celui-ci, et le support de tube à rayon X (145) comprenant :

    - un boîtier recevant le tube à rayon X (25), le boîtier possédant une extrémité intérieure et une extrémité extérieure, l'extrémité intérieure du boîtier se trouvant plus proche de l'axe de rotation du disque (35) que l'extrémité extérieure du boîtier et

    - au moins deux saillies de montage (165) servant au montage du boîtier au disque rotatif (35), les au moins deux saillies de montage (165) étant raccordées sur deux points au boîtier, les deux points se trouvant dans le même plan que l'axe longitudinal (74) de l'arbre (72) quand le tube à rayon X (25) se trouve dans le boîtier du dispositif.


     
    9. Procédé de scannage d'un objet, comprenant :

    - un système scannographique CT (5) avec un disque rotatif (35) possédant une ouverture axiale (20), un tube à rayon X (25) monté sur un côté de l'ouverture axiale (20) sur le disque rotatif (35), et un détecteur à rayon X (30) monté, sur le côté opposé de l'ouverture axiale (20), au disque rotatif (35), le tube à rayon X (25) possédant une anode (71) tournant sur un arbre (72), l'arbre (72) possédant un axe longitudinal (74) s'étendant à travers celui-ci, le tube à rayon X (25) étant monté sur le disque rotatif (35) à l'aide d'un support de tube à rayon X (145), et où le support de tube à rayon X (145) comprend :

    - un boîtier recevant le tube à rayon X (25) de sorte que le tube à rayon X (25) soit disposé dans le boîtier, le boîtier possédant une extrémité intérieure et une extrémité extérieure, l'extrémité intérieure se trouvant plus proche de l'axe de rotation du disque rotatif (35) que l'extrémité extérieure du boîtier et

    - au moins deux saillies de montage (165) servant au montage du boîtier au disque rotatif (35), les au moins deux saillies de montage (165) étant raccordées sur deux points au boîtier, les deux points se trouvant dans le même plan que l'axe longitudinal (74) de l'arbre (72),

    - positionnement de l'objet à scanner dans l'ouverture axiale (20) du disque rotatif (35), et

    - à la rotation du disque rotatif (35), passage de rayons X émis du tube à rayon X (25) à travers l'objet et détection des rayons X passant à travers l'objet à l'aide du détecteur à rayon X (30).


     




    Drawing
















































    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description