(19)
(11)EP 2 984 477 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
22.05.2019 Bulletin 2019/21

(21)Application number: 14774477.5

(22)Date of filing:  28.03.2014
(51)International Patent Classification (IPC): 
G01N 27/407(2006.01)
F23N 5/00(2006.01)
F23N 3/00(2006.01)
G08C 19/00(2006.01)
F23N 1/00(2006.01)
H04L 29/06(2006.01)
(86)International application number:
PCT/US2014/032181
(87)International publication number:
WO 2014/160944 (02.10.2014 Gazette  2014/40)

(54)

IN SITU FLUE GAS ANALYZER WITH IMPROVED PROCESS COMMUNICATION

IN-SITU-RAUCHGASANALYSATOR MIT VERBESSERTER PROZESSKOMMUNIKATION

ANALYSEUR DE GAZ DE CARNEAU IN SITU AYANT UNE COMMUNICATION DE PROCESSUS AMÉLIORÉE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 29.03.2013 US 201361806621 P
27.03.2014 US 201414227476

(43)Date of publication of application:
17.02.2016 Bulletin 2016/07

(73)Proprietor: Rosemount Inc.
Shakopee, MN 55379 (US)

(72)Inventors:
  • NEMER, Joseph, C.
    Mayfield Heights, OH 44124 (US)
  • REZVANI, Behzad
    Irvine, CA 92606 (US)
  • WEY, Anni, S.
    Strongsville, OH 44136 (US)
  • KRAMER, James, D.
    Homerville, OH 44235 (US)

(74)Representative: Parker, Andrew James 
Meissner Bolte Patentanwälte Rechtsanwälte Partnerschaft mbB Postfach 86 06 24
81633 München
81633 München (DE)


(56)References cited: : 
WO-A1-2012/057786
JP-A- 2012 237 636
US-A1- 2003 023 795
US-A1- 2012 279 293
WO-A2-2008/051202
US-A- 5 682 476
US-A1- 2005 061 056
US-A9- 2010 065 442
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] Industrial process industries often rely on energy sources that include one or more combustion processes. Such combustion processes include operation of a furnace or boiler to generate energy from combustion, which is then used for the process. While combustion provides relatively low-cost energy, its use is typically regulated and combustion efficiency is sought to be maximized. Accordingly, one goal of the process management industry is to reduce the production of greenhouse gases by maintaining combustion efficiency of existing furnaces and boilers.

    [0002] In situ or in-process flue gas analyzers are commonly used for monitoring, optimizing and/or controlling combustion processes. Typically, these analyzers employ an oxygen sensor that is similar in both technology and application to oxygen sensors found in automobiles. Such sensors are heated to an elevated temperature and provide a sensor output that is indicative of a parameter of interest (oxygen) relative to the exhaust/flue gas stream. In situ or in-process analyzers are particularly advantageous because they have no moving parts or sampling apparatus resulting in an extremely reliable probe that requires very little maintenance. While in situ flue gas analyzers may be considered to be field devices in the sense that they are often located out in the field and subjected to climatological extremes of temperature, humidity, mechanical vibration, and electrical interference, they are substantially different from most field devices. While many field devices measure a single physical quantity, such as temperature, pressure or flow, of a process fluid, process analyzers actually measure the composition of flue gas process streams. Accordingly, the processing performed within a flue gas analyzer is relatively complex and high-speed. Thus, the flue gas analyzer must often perform significant calculations and analyses in order to effectively control a combustion process. Additionally, it must do so quickly since the flue gas concentration sensor signal can also vary quickly.

    [0003] Traditionally, some in situ flue gas analyzers were provided that communicated in accordance with a hybrid digital-analog process communication protocol. An example of this process communication protocol is the digital Highway Addressable Remote Transducer (HART®) protocol. The HART® communication protocol specifies the manner in which digital information is arranged in digital packets (i.e., HART® packets) and the manner in which the digital packets are physically conveyed through the wired transmission media. Typically, an in situ flue gas oxygen transmitter, such as that sold under the trade designation Model 6888 Oxygen Transmitter from the Rosemount Analytical, Inc. business unit of Emerson Process Management, transmits its flue gas concentration information in accordance with an analog signaling technique, such as the well-known 4-20 milliamp signaling technique. Optionally, the transmitter can be configured or otherwise specified to provide an analog signal representing flue gas oxygen in the form of a raw millivolt signal in order to interoperate with a variety of systems. Additionally, since the HART® protocol superimposes digital information upon the analog process variable signal, it is also known for an in situ flue gas oxygen transmitter to transmit digital information to an optional user interface, such as the known Xi Electronics module available from Rosemount Analytical.

    [0004] While existing products provide significant benefits for users thereof in the monitoring and/or controlling of combustion processes, the sheer volume of data generated by the analysis of the flue gas stream and the speed with which the constituents of the flue gas stream may change, can be a challenge for the communications of the flue gas analyzer. Providing an in situ flue analyzer with improved process communication abilities would benefit the art of process combustion monitoring and control.

    [0005] Patent Document WO 2012/057786 A1 relates to an oxygen measuring apparatus includes an inlet pipe having a first end and a second end, an oxygen sensor arranged inside the inlet pipe between the first end of the inlet pipe and the second end of the inlet pipe, the oxygen sensor having a communication medium disposed thereon and extending through the second end of the inlet pipe, a filtering medium arranged inside the inlet pipe between the oxygen sensor and the first end of the inlet pipe, a housing arranged against the second end of the inlet pipe, and a sensor control interface arranged within the housing and in communication with the communication medium of the oxygen sensor.

    SUMMARY



    [0006] According to the invention, the problem is solved by means of a process combustion control system as defined in independent claim 1 and a method according to claim 9. Advantageous further developments of the process combustion control system according to the invention are set forth in the dependent claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0007] 

    FIG. 1 is a diagrammatic view of an in situ flue gas analyzer with which embodiments of the present invention are particularly useful.

    FIG. 2 is a diagrammatic perspective view of an in situ flue gas analyzer in accordance with an embodiment of the present invention.

    FIG. 3 is a block diagram of an in situ flue gas analyzer in accordance with an embodiment of the present invention.

    FIG. 4 is a diagrammatic view of an in situ flue gas analyzer operating within a combustion process in accordance with an embodiment of the present invention.


    DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS



    [0008] FIG. 1 is a diagrammatic view of an in situ flue gas analyzer operating in a combustion process. One example of such an analyzer 10 is that sold under the trade designation Model 6888 In Situ Flue Gas Oxygen Transmitter available from Rosemount Analytical Inc. Analyzer 10 includes a probe assembly 12 that is disposed within a stack or flue 14 and measures at least one parameter related to combustion occurring at burner 16. Typically, analyzer 10 is an oxygen analyzer, but can be any device that measures any suitable parameter related to constituents within the flue gas stream.

    [0009] Burner 16 is operably coupled to a source of air or oxygen 18 and a source 20 of combustible fuel. Each of sources 18 and 20 is preferably coupled to burner 16 through a respective valve to deliver a controlled amount of oxygen and/or fuel to burner 16 in order to control the combustion process. Analyzer 10 measures the amount of oxygen in the combustion exhaust flow and provides an indication of the oxygen level to combustion controller 22. In the past, this signal was an analog signal either in the form of a 4-20 milliamp current loop or a raw millivolt signal. Controller 22 controls one or both of valves 24, 26 to provide closed loop combustion control. Analyzer 10 includes an oxygen sensor that typically employs a zirconia oxide sensor substrate to provide an electrical signal indicative of oxygen concentration, content or percentage in the exhaust. Zirconia oxide sensors operate at a temperature of about 700° Celsius and thus analyzer 10 includes, within probe assembly 12, an electrical heater that is operably coupled to AC power source 29. The oxygen sensor within probe 12 is similar in technology to oxygen sensors found in automobiles. Such sensors are highly effective in permitting control systems to maintain optimum fuel to ratios in order to achieve high efficiency, low NOx production, and also the least amount of greenhouse gas emissions possible.

    [0010] FIG. 2 is a diagrammatic perspective view of an in situ flue gas analyzer in accordance with an embodiment of the present invention. Probe assembly 12 is generally configured to house a sensor core assembly which includes diffuser disposed proximate end 32. The measurement cell within probe 12 is operable at an elevated temperature and the elevated temperature. The measurement cell and heater within probe 12 are electrically coupled to analyzer electronics (shown in FIG. 3) within electronics housing 36. Analyzer electronics 42 is configured to obtain a measurement from the measurement cell and provides suitable signal conditioning in order to provide a signal representing flue gas oxygen. Additionally, analyzer electronics 42 includes a controller or other suitable circuitry to control energization of the heater within probe 12 in order to maintain suitable thermal control of the measurement cell.

    [0011] In accordance with an embodiment of the present invention, analyzer electronics 42 also includes a plurality of media access units to communicate in accordance with a plurality of distinct process communication protocols, such as the HART® process communication protocol described above and the FOUNDATION™ Fieldbus (FF). In accordance with an embodiment of the present invention, analyzer electronics 42 communicates using a plurality of distinct process communication protocols simultaneously or at substantially the same time. Thus, communication in accordance with a first process communication protocol may be performed for a first purpose, such as combustion burner control, and communication in accordance with the second distinct process communication protocol may be done in order to provide a second purpose, such as interacting with an optional user interface, such as the Model Xi operator interface (shown in FIG. 4) available from Rosemount Analytical Inc.

    [0012] FIG. 3 is a block diagram of an electronics board of an in situ flue gas analyzer in accordance with an embodiment of the present invention. Electronics 42 includes power module 50 that is configured to receive AC electrical power, such as 110 or 220 VAC and condition the power for provision to various components of the analyzer. Additionally, since the heater within probe 12 will typically receive the full AC voltage, power module 50 will also generally include at least one line that passes to switch 53 such that full AC voltage to the heater can be controlled by controller 52. Controller 52 is coupled to first and second media access units (MAU) 54 and 56, respectively. Each media access unit 54, 56 is operably coupleable to communication media appropriate for that respective media access unit. While terminals 58, 60, 62, and 64 are shown, it is noted that if either of media access units 54, 56 is a wireless media access unit, the terminals for that respective media access unit may simply be replaced with a coupling to an antenna. Additionally, while four distinct terminals 58, 60, 62 and 64 are shown, it is also contemplated that the common or ground of the circuit may be shared, such that only three terminals need be actually provided. In one embodiment, media access unit 56 is configured to communicate in accordance with the known HART® process communication protocol. In such embodiment, terminals 58 and 60 may be operably coupled to a user interface, such as the Xi Operator Interface available from Rosemount Analytical Inc., or any other suitable device that can receive and provide a useful function relative to the HART® communication. Media access unit 54 is configured to communicate in accordance with an all-digital process communication protocol. All-digital process communication protocols are generally considered to be somewhat faster than hybrid-based process communication protocols. An example of an all-digital process communication protocol includes the FF process communication protocol as well as the known PROFIBUS-PA process communication protocol. The FF protocol is an all-digital, serial, two-way communication protocol that provides a standardized physical interface to a 2 or 4-wire loop or bus interconnecting field devices, such as sensors, actuators, controllers, valves, et cetera, that may, for example, be located in an instrumentation or process control environment of factory or plant. The FF protocol provides a local area network for field devices within a process to enable these devices to interoperate and perform control functions at locations distributed throughout the process and to communicate with one another before and after performance of these control functions to implement an overall control strategy. The FF protocol generally provides relatively high speed digital communication, which speed is particularly advantageous for the communication of flue gas stream constituent information in accordance with embodiments of the present invention. This is because such analyzers must generally measure the composition of the flue gas process streams and provide information indicative of such composition to a controller of the combustion process or Distributed Control System (DCS). Additionally, since the combustion process occurs quite rapidly, the flue gas stream constituents can vary quickly. Thus, it is quite advantageous for media access unit 54, which communicates in accordance with an all-digital process communication protocol, to be coupled to a distributed control system and/or to combustion controller 22 illustrated with respect to FIG. 1.

    [0013] FIG. 3 also illustrates measurement circuitry 66 being operably coupled to controller 52 as well as terminals 68 and 70. Terminals 68 and 70 couple to the measurement cell within probe 12 and thus measurement circuitry 66 is able to provide a digital indication of the analog measurement cell output. Measurement circuitry 66 may include one or more suitable analog-to-digital converters as well as linearization circuitry and/or suitable filters, as appropriate.

    [0014] FIG. 4 is a diagrammatic view of a process combustion monitoring and control system in accordance with an embodiment of the present invention. Many components of the system shown in FIG. 4 are similar to that shown in FIG. 1 and like components are numbered similarly. FIG. 4 shows in situ flue gas analyzer 110 communicating with combustion controller 22 via link 100. This communication link 100 between in situ flue gas analyzer 110 and combustion controller 22 is all-digital process communication, such as that in accordance with the FF protocol. Additionally, in situ flue gas analyzer 110 is operably coupled to user interface 28 via a second communication link 102. Link 102 may be in accordance with a known hybrid process communication protocol, such as the HART® process communication protocol. This allows embodiments of the present invention to function with legacy Xi User Interfaces available from Rosemount Analytical Inc., which are configured to receive HART® data and provide useful user interface functions relative to the gas analyzer. However, the communication link 100 between in situ flue gas analyzer 110 and process combustion controller 22 is a high speed, all-digital link. Thus, embodiments of the present invention generally include a first link or channel from in situ flue gas analyzer 110 to a combustion control system having a first data communication rate, and a second link or channel from the in situ flue gas analyzer 110 to a second device, such as a user interface thereof, having process communication in accordance with a second protocol having a second communication rate, where the first communication rate is higher than the second communication rate. Communication on the first and second links occurs simultaneously, or substantially simultaneously. As used herein, "substantially simultaneously" is intended to mean that although physical layer signaling on both links may not be occurring during the same instant, such signaling occurs within a short period, such as one minute. Additionally, the communication on each link occurs with such frequency that analyzer 110 is considered to be online with respect to each link. Accordingly, even when analyzer 110 is not actively transmitting data on the first and second links, analyzer 110 is monitoring such links for communication. Thus, it can be said that both links and the corresponding media access units within analyzer 110 are enabled simultaneously. Accordingly, changes in the flue gas constituent concentrations occurring rapidly within flue 14 can be analyzed and communicated very rapidly to combustion analyzer 22 for more effective control, while information relative to a user interface can be exchanged with optional user interface 28 at a slower rate. Additionally, the utilization of multiple process communication protocols insures that user interface communication does not consume bandwidth on the distributed control system link 100 or otherwise interfere with DCS communication. This further increases the effectiveness of the all-digital communication link between process combustion flue gas analyzer 110 and combustion controller 22.


    Claims

    1. A process combustion control system comprising:

    a combustion source, a source of fuel (20) and a source of air (18), said combustion source is operably coupled to said source of fuel (20) and said source of air (18), the combustion source being configured to provide combustion gasses through a flue;

    a combustion controller (22) coupled to at least one of the source of fuel (20) and source of air (18);

    an in situ flue gas analyzer (110) comprising:

    a probe (12) extendable into a flue, the probe (12) having a measurement cell providing a signal responsive to a concentration of a gas within the flue;

    a controller (52) coupled to the probe (12) and configured to provide an output based on the signal from the measurement cell;

    a first media access unit (54) coupled to the controller (52) and operably coupleable to a first process communication link (100), the first media access unit (54) being configured to communicate in accordance with an all-digital process communication protocol over the first process communication link (100);

    a second media access unit (56) coupled to the controller (52) and operably coupleable to a second process communication link (102), the second media access unit (56) being configured to communicate in accordance with a second process communication protocol that is a hybrid process communication protocol which is different than the all-digital process communication protocol, over the second process communication link (102); and

    wherein the first and second media access units (54, 56) are enabled simultaneously;

    wherein the in situ flue gas analyzer (110) is coupled to the combustion controller (22) and disposed to sense a concentration of a gas of interest within the flue and convey process information related to the concentration to the combustion controller in accordance with the all-digital process communication protocol; and

    wherein the in situ flue gas analyzer is communicatively coupled to a second device and communicates with the second device, in accordance with the second process communication protocol different than the all-digital process communication protocol, wherein communication with the combustion controller and the second device occurs substantially simultaneously.


     
    2. The process combustion control system of claim 1, wherein the measurement cell includes an oxygen sensor.
     
    3. The process combustion control system of claim 1, wherein the all-digital process communication protocol is in accordance with the FOUNDATION Fieldbus protocol.
     
    4. The process combustion control system of claim 1, wherein the hybrid process communication protocol superimposes a digital signal on an analog signal.
     
    5. The process combustion control system of claim 1, wherein the gas of interest is oxygen.
     
    6. The process combustion control system of claim 1, wherein the in situ flue gas analyzer (110) communicates with the combustion controller (22) at a first communication rate, and communicates with the second device (28) at a second rate that is less than the first rate.
     
    7. The process combustion control system of claim 1, wherein the second device (28) is a user interface.
     
    8. The process combustion control system of claim 1, wherein the second process communication protocol is in accordance with the Highway Addressable Remote Transducer (HART) protocol.
     
    9. A method of operating a process combustion control system according to claim 1, the method comprising:

    disposing the probe (12) of the in situ flue gas analyzer (110) within a flue;

    measuring a concentration of a gas on interest using the probe (12);

    communicating information regarding the measured concentration to a combustion controller (22), over a first process communication link (100) in accordance with an all-digital process communication protocol; and

    communicating with the second device (28) in accordance with a second process communication protocol different than the all-digital process communication protocol, over a second process communication link (102), wherein the second process communication protocol is a hybrid process communication protocol.


     
    10. The method of claim 9, wherein the all-digital process communication protocol is the FOUNDATION Fieldbus protocol.
     
    11. The method of claim 10, wherein the second process communication protocol is the Highway Addressable Remote Transducer (HART) protocol.
     
    12. The method of claim 9, wherein communication with the combustion controller (22) and the second device (28) occurs substantially simultaneously.
     
    13. The method of claim 12, wherein communication with the combustion controller (22) occurs at a first communication rate, and communication with the second device (28) occurs at a second rate that is less than the first rate.
     


    Ansprüche

    1. Ein Verbrennungsprozess-Steuersystem, umfassend:

    eine Verbrennungsquelle, eine Kraftstoffquelle (20) und eine Luftquelle (18), wobei die Verbrennungsquelle operativ mit der Kraftstoffquelle (20) und der Luftquelle (18) gekoppelt ist, wobei die Kraftstoffquelle konfiguriert ist, um Verbrennungsgase durch einen Rauchabzug bereitzustellen;

    eine Verbrennungssteuerung (22), die mit mindestens einer der Kraftstoffquellen (20) und der Luftquellen (18) gekoppelt ist;

    einen In- Situ-Rauchgasanalysator (110), umfassend:

    eine Sonde (12), die in einen Rauchabzug ausfahrbar ist, wobei die Sonde (12) eine Messzelle aufweist, die ein Signal liefert, das auf eine Konzentration eines Gases innerhalb des Rauchabzugs reagiert;

    eine Steuerung (52), die mit der Sonde (12) gekoppelt und konfiguriert ist, um basierend auf dem Signal der Messzelle ein Ausgangssignal bereitzustellen;

    eine erste Medienzugriffseinheit (54), die mit der Steuerung (52) gekoppelt ist und funktionell mit einer ersten Prozesskommunikationsverbindung (100) koppelbar ist, wobei die erste Medienzugriffseinheit (54) konfiguriert ist, um gemäß einem voll digitalen Prozesskommunikationsprotokoll über die erste Prozesskommunikationsverbindung (100) zu kommunizieren;

    eine zweite Medienzugriffseinheit (56), die mit der Steuerung (52) gekoppelt und funktionsfähig mit einer zweiten Prozesskommunikationsverbindung (102) koppelbar ist, wobei die zweite Medienzugriffseinheit (56) konfiguriert ist, um gemäß einem zweiten Prozesskommunikationsprotokoll, welches ein hybrides Prozesskommunikationsprotokoll ist, das sich von dem voll digitalen Prozesskommunikationsprotokoll unterscheidet, über die zweite Prozesskommunikationsverbindung (102) zu kommunizieren; und

    wobei die erste und zweite Medienzugriffseinheit (54, 56) gleichzeitig aktiviert werden;

    wobei der In- Situ-Rauchgasanalysator (110) mit der Verbrennungssteuerung (22) gekoppelt ist und angeordnet ist, um eine Konzentration eines Gases von Interesse innerhalb des Abzuges zu erfassen und Prozessinformationen in Bezug auf die Konzentration an die Verbrennungssteuerung gemäß einem voll digitalen Prozesskommunikationsprotokoll zu übermitteln; und

    wobei der In-Situ-Rauchgasanalysator kommunikativ mit einer zweiten Vorrichtung gekoppelt ist und mit der zweiten Vorrichtung gemäß einem zweiten Prozesskommunikationsprotokoll, das sich vom voll digitalen Prozesskommunikationsprotokoll unterscheidet, kommuniziert, wobei die Kommunikation mit der Verbrennungssteuerung und der zweiten Vorrichtung im Wesentlichen gleichzeitig erfolgt.


     
    2. Verbrennungsprozess-Steuersystem nach Anspruch 1, wobei die Messzelle einen Sauerstoffsensor umfasst.
     
    3. Verbrennungsprozess-Steuersystem nach Anspruch 1, wobei das voll digitale Prozesskommunikationsprotokoll dem FOUNDATION Fieldbus-Protokoll entspricht.
     
    4. Verbrennungsprozess-Steuersystem nach Anspruch 1, wobei das Hybridprozess-Kommunikationsprotokoll ein digitales Signal einem analogen Signal überlagert.
     
    5. Verbrennungsprozess-Steuersystem nach Anspruch 1, wobei das interessierende Gas Sauerstoff ist.
     
    6. Verbrennungsprozess-Steuersystem nach Anspruch 1, wobei der In-Situ-Rauchgasanalysator (110) mit der Verbrennungssteuerung (22) mit einer ersten Kommunikationsrate kommuniziert, und mit der zweiten Vorrichtung (28) mit einer zweiten Kommunikationsrate, die kleiner als die erste Rate ist.
     
    7. Verbrennungsprozess-Steuersystem nach Anspruch 1, wobei die zweite Vorrichtung (28) eine Benutzerschnittstelle ist.
     
    8. Verbrennungsprozess-Steuersystem nach Anspruch 1, wobei das zweite Prozesskommunikationsprotokoll dem Highway Addressable Remote Transducer (HART)-Protokoll entspricht.
     
    9. Verfahren zum Betreiben eines Verbrennungsprozess-Steuersystems nach Anspruch 1, wobei das Verfahren umfasst:

    Anordnen der Sonde (12) des In-Situ-Rauchgasanalysators (110) innerhalb eines Abzugs;

    Messen einer Konzentration eines Gases von Interesse unter Verwendung der Sonde (12);

    Übertragen von Informationen bezüglich der gemessenen Konzentration an eine Verbrennungssteuerung (22), über eine erste Prozesskommunikationsverbindung (100) gemäß einem voll digitalen Prozesskommunikationsprotokoll; und

    Kommunizieren mit der zweiten Vorrichtung (28) gemäß einem zweiten Prozesskommunikationsprotokoll, das sich vom voll digitalen Prozesskommunikationsprotokoll unterscheidet, über eine zweite Prozesskommunikationsverbindung (102), wobei das zweite Prozesskommunikationsprotokoll ein Hybridprozesskommunikationsprotokoll ist.


     
    10. Verfahren nach Anspruch 9, wobei das voll digitale Prozesskommunikationsprotokoll das FOUNDATION Fieldbus-Protokoll ist.
     
    11. Verfahren nach Anspruch 10, wobei das zweite Prozesskommunikationsprotokoll das Highway Addressable Remote Transducer (HART)-Protokoll ist.
     
    12. Verfahren nach Anspruch 9, wobei die Kommunikation mit der Verbrennungssteuerung (22) und der zweiten Vorrichtung (28) im Wesentlichen gleichzeitig erfolgt.
     
    13. Verfahren nach Anspruch 12, wobei die Kommunikation mit der Verbrennungssteuerung (22) mit einer ersten Kommunikationsrate erfolgt und die Kommunikation mit der zweiten Vorrichtung (28) mit einer zweiten Rate erfolgt, die kleiner als die erste Rate ist.
     


    Revendications

    1. Système de commande de combustion de processus, comprenant :

    une source de combustion, une source de combustible (20) et une source d'air (18), ladite source de combustion étant couplée fonctionnellement à ladite source de combustible (20) et à ladite source d'air (18), la source de combustion étant configurée pour fournir des gaz de combustion à travers un carneau ;

    un dispositif de commande de combustion (22) couplé à au moins une source parmi la source de combustible (20) et la source d'air (18) ;

    un analyseur de gaz de carneau in situ (110) comprenant :

    une sonde (12) pouvant s'étendre dans un carneau, la sonde (12) ayant une cellule de mesure fournissant un signal en réponse à une concentration d'un gaz dans le carneau ;

    un dispositif de commande (52) couplé à la sonde (12) et configuré pour fournir une sortie sur la base du signal de la cellule de mesure ;

    une première unité d'accès au support (54) couplée au dispositif de commande (52) et pouvant être couplée fonctionnellement à une première liaison de communication de processus (100), la première unité d'accès au support (54) étant configurée pour communiquer conformément à un protocole de communication de processus entièrement numérique par la première liaison de communication de processus (100) ;

    une deuxième unité d'accès au support (56) couplée au dispositif de commande (52) et pouvant être couplée fonctionnellement à une deuxième liaison de communication de processus (102), la deuxième unité d'accès au support (56) étant configurée pour communiquer conformément à un deuxième protocole de communication de processus qui est un protocole de communication de processus hybride qui est différent du protocole de communication de processus entièrement numérique, par la deuxième liaison de communication de processus (102) ; et

    dans lequel les première et deuxième unités d'accès au support (54, 56) sont activées simultanément ;

    dans lequel l'analyseur de gaz de carneau in situ (110) est couplé au dispositif de commande de combustion (22) et disposé pour détecter une concentration d'un gaz d'intérêt dans le carneau et transmettre des informations de processus relatives à la concentration au dispositif de commande de combustion conformément au protocole de communication de processus entièrement numérique ; et

    dans lequel l'analyseur de gaz de carneau in situ est couplé en communication à un deuxième dispositif et communique avec le deuxième dispositif conformément au deuxième protocole de communication de processus différent du protocole de communication de processus entièrement numérique, la communication avec le dispositif de commande de combustion et le deuxième dispositif ayant lieu sensiblement simultanément.


     
    2. Système de commande de combustion de processus selon la revendication 1, dans lequel la cellule de mesure inclut un capteur d'oxygène.
     
    3. Système de commande de combustion de processus selon la revendication 1, dans lequel le protocole de communication de processus entièrement numérique est conforme au protocole FOUNDATION Fieldbus.
     
    4. Système de commande de combustion de processus selon la revendication 1, dans lequel le protocole de communication de processus hybride superpose un signal numérique à un signal analogique.
     
    5. Système de commande de combustion de processus selon la revendication 1, dans lequel le gaz d'intérêt est l'oxygène.
     
    6. Système de commande de combustion de processus selon la revendication 1, dans lequel l'analyseur de gaz de carneau in situ (110) communique avec le dispositif de commande de combustion (22) à une première vitesse de communication et communique avec le deuxième dispositif (28) à une deuxième vitesse qui est inférieure à la première vitesse.
     
    7. Système de commande de combustion de processus selon la revendication 1, dans lequel le deuxième dispositif (28) est une interface utilisateur.
     
    8. Système de commande de combustion de processus selon la revendication 1, dans lequel le deuxième protocole de communication de processus est conforme au protocole HART (Highway Addressable Remote Transducer).
     
    9. Procédé de fonctionnement d'un système de commande de combustion de processus selon la revendication 1, le procédé consistant à :

    disposer la sonde (12) de l'analyseur de gaz de carneau in situ (110) dans un carneau ;

    mesurer une concentration d'un gaz d'intérêt en utilisant la sonde (12) ; communiquer des informations concernant la concentration mesurée à un dispositif de commande de combustion (22), par une première liaison de communication de processus (100) conformément à un protocole de communication de processus entièrement numérique ; et

    communiquer avec le deuxième dispositif (28) conformément à un deuxième protocole de communication de processus différent du protocole de communication de processus entièrement numérique, par une deuxième liaison de communication de processus (102), le deuxième protocole de communication de processus étant un protocole de communication de processus hybride.


     
    10. Procédé selon la revendication 9, dans lequel le protocole de communication de processus entièrement numérique est le protocole FOUNDATION Fieldbus.
     
    11. Procédé selon la revendication 10, dans lequel le deuxième protocole de communication de processus est le protocole HART (Highway Addressable Remote Transducer).
     
    12. Procédé selon la revendication 9, dans lequel la communication avec le dispositif de commande de combustion (22) et le deuxième dispositif (28) a lieu sensiblement simultanément.
     
    13. Procédé selon la revendication 12, dans lequel la communication avec le dispositif de commande de combustion (22) a lieu à une première vitesse de communication et la communication avec le deuxième dispositif (28) a lieu à une deuxième vitesse qui est inférieure à la première vitesse.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description