(19)
(11)EP 2 986 822 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
13.01.2021 Bulletin 2021/02

(21)Application number: 14808183.9

(22)Date of filing:  09.04.2014
(51)International Patent Classification (IPC): 
F01D 5/30(2006.01)
F01D 5/16(2006.01)
F01D 5/10(2006.01)
F01D 5/34(2006.01)
(86)International application number:
PCT/US2014/033407
(87)International publication number:
WO 2014/197119 (11.12.2014 Gazette  2014/50)

(54)

ROTORS WITH ELASTIC MODULUS MISTUNED AIRFOILS

ROTOREN MIT SCHAUFELN MIT DEJUSTIERTEM ELASTIZITÄTSMODUL

ROTORS À AUBES DÉSACCORDÉES PAR MODIFICATION DU MODULE DE YOUNG


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 16.04.2013 US 201361812392 P

(43)Date of publication of application:
24.02.2016 Bulletin 2016/08

(73)Proprietor: United Technologies Corporation
Farmington, CT 06032 (US)

(72)Inventors:
  • GRELOTTI, Robert A.
    Colchester, Connecticut 06415 (US)
  • MORRIS, Robert J.
    Portland, Connecticut 06480 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
EP-A1- 2 161 410
GB-A- 2 490 127
US-A1- 2009 104 030
US-A1- 2010 124 502
US-B2- 7 824 158
EP-A2- 1 752 610
US-A- 5 474 421
US-A1- 2009 104 030
US-A1- 2012 237 355
US-B2- 8 382 436
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] A gas turbine engine typically includes a fan section, a compressor section, a combustor section and a turbine section. Air entering the compressor section is compressed and delivered into the combustion section where it is mixed with fuel and ignited to generate a high-energy exhaust gas flow. The high-energy exhaust gas flow expands through the turbine section to drive the compressor and the fan section.

    [0002] The fan, compressor and turbine sections include blades supported on a rotor. An integrally bladed rotor (IBR), also commonly referred to as a blisk, includes blades formed in an outer periphery of the rotor. The blades define an airfoil that interacts with airflow through the engine. Vibrational frequencies at or near natural frequencies of adjacent blades in an IBR can result in a reduction in aerodynamic damping and an increase in the likelihood of airfoil flutter. One method of reducing flutter is to mistune the IBR by providing different airfoil shapes to prevent formation of such natural frequencies. However, different airfoil shapes on a common rotor can reduce overall performance, increase rotor weight and may not be desirable for improving engine efficiency and performance.

    [0003] Turbine engine manufacturers continue to seek further improvements to engine performance including improvements to thermal, transfer and propulsive efficiencies.

    [0004] US 2009/104030, GB 249012 In particular US 5,474,421 relates to a rotor of a gas turbine engine, wherein the rotor carries alternating higher mass and lower mass blades achieved by making the different blades of materials having respective different densities and substantially the same size and the same shape.

    [0005] EP 2161410, US 5,474,421 and EP 1752610 all relate to rotor assemblies In particular US 5,474,421 relates to a rotor of a gas turbine engine, wherein the rotor blade carries alternating higher mass and lower mass blades achieved by making the different blades of materials having respective different densities and substantially the same size and the same shape.

    SUMMARY



    [0006] According to the invention a rotor assembly for a gas turbine engine as set out in claim 1 is provided.

    [0007] In an embodiment not forming part of the invention, the rotor includes a plurality of slots receiving root portions of each of the plurality of blades.

    [0008] Each of the plurality of blades includes a common geometric shape.

    [0009] The material property includes a material modulus of at least one of the plurality of blades.

    [0010] In a further embodiment of any of the foregoing rotor assemblies, the material property includes a grain structure. At least one of the plurality of blades includes a grain structure different than at least one of the other of the plurality of blades.

    [0011] In a further embodiment of any of the foregoing rotor assemblies, the plurality of blades includes alternating blades with differing material properties.

    [0012] In a further embodiment not forming part of the invention. The plurality of blades includes a plurality of alternating blades fabricated from a different material.

    [0013] In a further embodiment of any of the foregoing rotor assemblies, the plurality of blades includes an airfoil.

    [0014] According to the invention a gas turbine engine as set out in claim 4 is provided.

    [0015] The rotor includes an integrally bladed rotor and each of the plurality of blades is attached to the rotor at a weld joint.

    [0016] In a further embodiment not forming part of the invention, the rotor includes a plurality of slots receiving root portions of each of the plurality of blades.

    [0017] Each of the plurality of blades includes a common geometric shape.

    [0018] The material property includes a material modulus of at least one of the plurality of blades.

    [0019] In a further embodiment of any of the foregoing rotor assemblies, the material property includes a grain structure. At least one of the plurality of blades includes a grain structure different than at least one of the other of the plurality of blades.

    [0020] In a further embodiment of any of the foregoing rotor assemblies, the plurality of blades includes alternating blades with differing material properties.

    [0021] In a further embodiment not forming part of the invention, the plurality of blades includes a plurality of alternating blades fabricated from a different material.

    [0022] In a further embodiment of any of the foregoing rotor assemblies, includes a fan section and the rotor includes a fan rotor supporting a plurality of fan blades.

    [0023] A method of fabricating a bladed rotor for a gas turbine engine as set out in claim 5 is provided.

    [0024] In a further embodiment of the foregoing method, includes inertia bonding the first blade and the second blade to the rotor.

    [0025] In a further embodiment of any of the foregoing methods, includes forming a plurality of first blades and a second plurality of second blades and bonding the first plurality of blades and the second plurality of blades to the rotor to provide a desired mistuning of the rotor.

    [0026] Any of the foregoing methods according to the invention includes forming the first blade and the second blade to include an identical geometric shape.

    [0027] In any of the foregoing methods according to the invention the first blade includes a first material composition and the second blade includes a second material composition different than the first material composition.

    [0028] Although the different examples have the specific components shown in the illustrations, embodiments of this disclosure are not limited to those particular combinations. It is possible to use some of the components or features from one of the examples in combination with features or components from another one of the examples.

    [0029] These and other features disclosed herein can be best understood from the following specification and drawings, the following of which is a brief description.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0030] 

    Figure 1 is a schematic view of an example gas turbine engine.

    Figure 2 is a perspective view of an example rotor assembly.

    Figure 3 is an example view of two example blade assemblies.

    Figure 4 is a schematic representation of a method of constructing an integrally bladed mistuned rotor assembly

    Figure 5 is a perspective view of another example rotor assembly not forming part of the invention.

    Figure 6A is a perspective view of an example blade assembly not forming part of the invention.

    Figure 6B is a perspective view of another example blade assembly not forming part of the invention.


    DETAILED DESCRIPTION



    [0031] Figure 1 schematically illustrates an example gas turbine engine 20 that includes a fan section 22, a compressor section 24, a combustor section 26 and a turbine section 28. Alternative engines might include an augmenter section (not shown) among other systems or features. The fan section 22 drives air along a bypass flow path B while the compressor section 24 draws air in along a core flow path C where air is compressed and communicated to a combustor section 26. In the combustor section 26, air is mixed with fuel and ignited to generate a high pressure exhaust gas stream that expands through the turbine section 28 where energy is extracted and utilized to drive the fan section 22 and the compressor section 24.

    [0032] Although the disclosed non-limiting embodiment depicts a turbofan gas turbine engine, it should be understood that the concepts described herein are not limited to use with turbofans as the teachings may be applied to other types of turbine engines; for example a turbine engine including a three-spool architecture in which three spools concentrically rotate about a common axis and where a low spool enables a low pressure turbine to drive a fan via a gearbox, an intermediate spool that enables an intermediate pressure turbine to drive a first compressor of the compressor section, and a high spool that enables a high pressure turbine to drive a high pressure compressor of the compressor section.

    [0033] The example engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided.

    [0034] The low speed spool 30 generally includes an inner shaft 40 that connects a fan section 22 and a low pressure (or first) compressor section 44 to a low pressure (or first) turbine section 46. The inner shaft 40 drives the fan section 22 through a speed change device, such as a geared architecture 48, to drive the fan section 22 at a lower speed than the low speed spool 30. The high-speed spool 32 includes an outer shaft 50 that interconnects a high pressure (or second) compressor section 52 and a high pressure (or second) turbine section 54. The inner shaft 40 and the outer shaft 50 are concentric and rotate via the bearing systems 38 about the engine central longitudinal axis A.

    [0035] A combustor 56 is arranged between the high pressure compressor 52 and the high pressure turbine 54. In one example, the high pressure turbine 54 includes at least two stages to provide a double stage high pressure turbine 54. In another example, the high pressure turbine 54 includes only a single stage. As used herein, a "high pressure" compressor or turbine experiences a higher pressure than a corresponding "low pressure" compressor or turbine.

    [0036] The example low pressure turbine 46 has a pressure ratio that is greater than about 5. The pressure ratio of the example low pressure turbine 46 is measured prior to an inlet of the low pressure turbine 46 as related to the pressure measured at the outlet of the low pressure turbine 46 prior to an exhaust nozzle.

    [0037] A mid-turbine frame 58 of the engine static structure 36 is arranged generally between the high pressure turbine 54 and the low pressure turbine 46. The mid-turbine frame 58 further supports bearing systems 38 in the turbine section 28 as well as setting airflow entering the low pressure turbine 46.

    [0038] Airflow through the core airflow path C is compressed by the low pressure compressor 44 then by the high pressure compressor 52 mixed with fuel and ignited in the combustor 56 to produce high speed exhaust gases that are then expanded through the high pressure turbine 54 and low pressure turbine 46. The mid-turbine frame 58 includes vanes 60, which are in the core airflow path and function as an inlet guide vane for the low pressure turbine 46. Utilizing the vane 60 of the mid-turbine frame 58 as the inlet guide vane for low pressure turbine 46 decreases the length of the low pressure turbine 46 without increasing the axial length of the mid-turbine frame 58. Reducing or eliminating the number of vanes in the low pressure turbine 46 shortens the axial length of the turbine section 28. Thus, the compactness of the gas turbine engine 20 is increased and a higher power density may be achieved.

    [0039] The disclosed gas turbine engine 20 in one example is a high-bypass geared aircraft engine. In a further example, the gas turbine engine 20 includes a bypass ratio greater than about six (6), with an example embodiment being greater than about ten (10). The example geared architecture 48 is an epicyclical gear train, such as a planetary gear system, star gear system or other known gear system, with a gear reduction ratio of greater than about 2.3.

    [0040] In one disclosed embodiment, the gas turbine engine 20 includes a bypass ratio greater than about ten (10:1) and the fan diameter is significantly larger than an outer diameter of the low pressure compressor 44. It should be understood, however, that the above parameters are only exemplary of one embodiment of a gas turbine engine including a geared architecture and that the present disclosure is applicable to other gas turbine engines.

    [0041] A significant amount of thrust is provided by airflow through the bypass flow path B due to the high bypass ratio. The fan section 22 of the engine 20 is designed for a particular flight condition -- typically cruise at about 0.8 Mach and about 10668 meters (35,000 feet). The flight condition of 0.8 Mach and 10668 meters (35,000 ft.), with the engine at its best fuel consumption - also known as "bucket cruise Thrust Specific Fuel Consumption ('TSFC')" - is the industry standard parameter of pound-mass (Ibm) of fuel per hour being burned divided by pound-force (lbf) of thrust the engine produces at that minimum point.

    [0042] "Low fan pressure ratio" is the pressure ratio across the fan blade alone, without a Fan Exit Guide Vane ("FEGV") system. The low fan pressure ratio as disclosed herein according to one non-limiting embodiment is less than about 1.50. In another non-limiting embodiment the low fan pressure ratio is less than about 1.45.

    [0043] "Low corrected fan tip speed" is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of [((Tram °C)+273.15)x9/5)/(518.7)] 0.5 ([(Tram °R)/ (518.7°R)]0.5). The "Low corrected fan tip speed", as disclosed herein according to one non-limiting embodiment, is less than about 350.5 m/second (1150 ft/second).

    [0044] The example gas turbine engine includes the fan section 22 that comprises in one non-limiting embodiment less than about twenty-six fan blades 42. In another non-limiting embodiment, the fan section 22 includes less than about twenty fan blades 42. Moreover, in one disclosed embodiment the low pressure turbine 46 includes no more than about six turbine rotors schematically indicated at 34. In another non-limiting example embodiment the low pressure turbine 46 includes about three turbine rotors. A ratio between the number of fan blades 42 and the number of low pressure turbine rotors is between about 3.3 and about 8.6. The example low pressure turbine 46 provides the driving power to rotate the fan section 22 and therefore the relationship between the number of turbine rotors 34 in the low pressure turbine 46 and the number of blades 42 in the fan section 22 disclose an example gas turbine engine 20 with increased power transfer efficiency.

    [0045] The compressor section 24 includes a rotor assembly 62 including a hub 68 and a plurality of blades 64, 66. The example rotor assembly 62 is an integrally bladed rotor (IBR) that includes the blades 64, 66 as an integral part of the hub 68. The blades 64, 66 are airfoils with a common geometric shape and different material properties to provide a desired mistuning of the fan rotor assembly 62 that reduces high cycle fatigue excitation.

    [0046] Referring to Figure 2 with continued reference to Figure 1, the example rotor assembly 62 includes a first plurality of blades 64 and a second plurality of blades 66. Each of the blades 64, 66 include an identical geometric shape. In this example, the blades 64 and 66 define an airfoil including a leading edge 80, trailing edge 82, pressure side 84 and suction side 86. The example blades 64, 66 are formed separately and then bonded to a periphery 78 of the hub 68.

    [0047] It should be understood that although a rotor assembly 62 within the compressor section 24 is described by way of example other rotor hubs for different portions of the turbine engine 20 are also within the contemplation of this disclosure. For example, a rotor assembly according to this disclosure may be utilized within the fan section 22 and the turbine section 28.

    [0048] Each of the plurality of first blades 64 and the plurality of second blades 66 are formed to include different material characteristics. Each of the first fan blades 64 include a first material characteristic schematically indicated at 88 and each of the second blades 66 include a second material characteristic schematically indicated at 90 that is different than the first material characteristic 88.

    [0049] The blades 64, 66 are attached to the hub 68 in alternating positions about the periphery 78 of the hub 68. Accordingly, each of the first blades 64 is disposed between second blades 66, and each of the second fan blades 66 is disposed between first blades 64.

    [0050] According to the invention, the first and second material characteristics 88, 90 are an elastic modulus if the material forming the blades 64, 66. The elastic modulus, also referred to as Young's modulus is a measure of the stiffness of a material and is generally defined as a ratio of stress along an axis divided by a strain along the same axis within a range of stress in which Hooks Law holds. The first plurality of blades 64 each include a first Young's modulus that is different than a second Young's modulus for the each of the second plurality of blades 66. The difference between the first Young's modulus and the second Young's modulus is sufficient to produce different excitation frequencies.

    [0051] Because each of the blades 64, 66 include a different Young's modulus and thereby different excitation frequencies, each the blades 64, 66 react to different natural frequency. The different natural frequencies in turn prevent the blades 64, 66 of the rotor assembly 62 from achieving a common natural vibration frequency within a common phase. By preventing a natural vibration frequency within the rotor assembly 62, flutter and other life reducing high frequency excitations are prevented.

    [0052] The different material characteristics 88, 90 of each of the first blades 64 and the second blades 66 can be achieved by utilizing different material compositions while maintaining a common geometric shape. Each material composition may be chosen to provide a different Young's modulus and therefore different natural vibration frequencies that will prevent flutter from occurring in the example rotor assembly 62.

    [0053] Moreover, the disclosed example first blade 64 and second blade 66 are fabricated utilizing different processes that generate different grain or material structures.

    [0054] Referring to Figure 4 with continued reference to Figures 2 and 3, the example rotor assembly 62 is fabricated utilizing different identically shaped blades 64, 66 that are formed utilizing different processes to provide the different material characteristics 88, 90. In this example, the first blade 64 is formed utilizing a first process 70 and the second blade 66 is fabricated utilizing a second process 72.

    [0055] The example first process 70 is a cross-rolled forging process and the second process 72 is a closed die forging process. Both of the first blade 64 and the second blade 66 include a common material and common geometric shape within acceptable production tolerances. However, because each of the blades 64, 66 are formed utilizing different processes that generate the desired different material characteristics 88, 90. According to the invention, the different material characteristics are different Young's modulus. The different Young's modulus can be produced by providing differing grain structure orientation or size, along with other process specific parameters that affect the blade final material properties.

    [0056] Once a sufficient number of first and second blades 64, 66 are fabricated they are attached to the periphery 78 the hub 68 in a joining step generally indicated at 74. In this example, the blade 64, 66 are attached to the hub 68 utilizing an inertia bonding process. The example bonding process may also include other bonding processes such as linear friction welding or other processes that are compatible with the hub and blade materials.

    [0057] The blades 64 and 66 are attached to the hub 68 at weld joints 76. In this example, the blades 64 and 66 are attached to the hub 68 in an alternating fashion where each of the first blades 66 are disposed between two second blades 64 and the second blades 64 are disposed between first blades 66. As appreciated, although in this example the first and second blades 64, 66 are alternately disposed about the periphery 78 of the hub 68, the blades 64, 66 may also be orientated differently to provide the desired mistuning of the rotor assembly 62. Moreover, although equal numbers of first blades 64 and second blades 66 are disclosed, more of the first and second blades 64, 66 could be utilized to tailor rotor assembly 62 mistuning for application specific performance requirements.

    [0058] According to the invention, the first blade 64 and the second blade 66 are formed utilizing the forging processes 70, 72. Forging processes utilizes localized compressive forces that provide a desired shape of the blades 64, 66. As appreciated, different forging processes can be utilized to provide localized compressive forces in a way that defines a material characteristic that defines different natural vibrational frequencies to prevent and /or reduce the generation of a harmonic frequency within the rotor assembly 62 to prevent fluttering and other potential instabilities of the rotor assembly 62.

    [0059] Referring to Figures 5, 6A and 6B, another example rotor assembly 88, not forming part of the invention, includes a hub 90 with an outer periphery 92 having a plurality of slots 104. The slots 104 receive a root portion 102 of first and second blades 94, 96. Accordingly, the example hub assembly 88 receives the first and second blades 95, 96 within the slots rather than bonding the blades to the outer periphery with a weld joint.

    [0060] Each of the first and second blades 94, 96 include an airfoil 98 that extends radially outward from a platform 100. The root portion 102 extends radially inward from the platform 100. Each of the first and second blades 94, 96 include a common geometric shape.

    [0061] The first blades 94 include a first material characteristic and the second blades 96 include a second material characteristic. The different material characteristics 88, 90 of each of the first blades 94 and the second blades 96 can be achieved by utilizing different material compositions while maintaining a common geometric shape. Each material composition may be chosen to provide a different Young's modulus and therefore different natural vibration frequencies that will prevent flutter from occurring in the example rotor assembly 88.

    [0062] Accordingly, the disclosed rotor assemblies are mistuned utilizing different material characteristics rather than including different shaped blades.

    [0063] Although an example embodiment has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this disclosure. For that reason, the following claims should be studied to determine the scope and content of this invention.


    Claims

    1. A rotor assembly (62) for a gas turbine engine comprising:

    a rotor defining an outer periphery (78); and

    a plurality of blades (64, 66) including a common material and geometric shape arranged on the outer periphery (78), wherein a first plurality of blades (64, 66) includes a first material property different than a second material property of a second plurality of blades,

    wherein the first material property comprises a first elastic modulus and the second material property comprises a second elastic modulus, different from the first elastic modulus, and wherein the rotor comprises an integrally bladed rotor with the first and the second plurality of blades welded to the rotor.


     
    2. The rotor assembly (62) as recited in claim 1, at least one of the plurality of blades includes a grain structure different than at least one of the other of the plurality of blades.
     
    3. The rotor assembly (62) as recited in any preceding claim, wherein the plurality of blades (64, 66) includes alternating blades with differing material properties.
     
    4. A gas turbine engine (20) comprising:

    a compressor section (24);

    a combustor in fluid communication with the compressor section;

    a turbine section (28) in fluid communication with the combustor, wherein the turbine section drives the compressor section; and

    a rotor assembly (62), as claimed in any preceding claim, within the compressor section and/or the turbine section.


     
    5. A method of fabricating a bladed rotor for a gas turbine engine comprising:

    forming a rotor to include an outer periphery;

    forming a first blade according to a first forming process to include a first material property;

    forming a second blade according to a second forming process different than the first forming process to include a second material property different to the first material property; and

    assembling the first blade to the rotor;

    assembling the second blade to the rotor relative to the first blade; wherein the first material property comprises a first elastic modulus and the second material property comprises a second elastic modulus different than the first elastic modulus, and wherein the method further comprises

    a first forging process for forming the first blade with the first elastic modulus and a second forging process for forming the second blade with the second elastic modulus and wherein the rotor comprises an integrally bladed rotor with the first and the second plurality of blades welded to the rotor;

    forming the first blade and the second blade to include an identical geometric shape, wherein the first blade comprises a first material composition and the second blade comprises a second material composition different than the first material composition.


     
    6. The method as recited in claim 5, wherein the method includes the steps of welding the first blade to the rotor, and welding the second blade to the rotor relative to the first blade to provide a desired mistune of the integrally bladed rotor, and optionally inertia bonding the first blade and the second blade to the rotor.
     
    7. The method as recited in claim 6, including forming a plurality of first blades and a second plurality of second blades and welding the first and second plurality of blades to the rotor to provide a desired mistuning of the rotor.
     
    8. The method as recited in claim 5, wherein the first forming process induces localized compressive forces that are different than localized compressive forces induced by the second forming process.
     


    Ansprüche

    1. Rotorbaugruppe (62) für ein Gasturbinentriebwerk, umfassend:

    einen Rotor, der eine äußere Peripherie (78) definiert; und

    eine Vielzahl von Laufschaufeln (64, 66), die ein gemeinsames Material und eine gemeinsame geometrische Form beinhaltet und die an der äußerem Peripherie (78) angeordnet ist, wobei eine erste Vielzahl von Laufschaufeln (64, 66) eine erste Materialeigenschaft beinhaltet, die sich von einer zweiten Materialeigenschaft einer zweiten Vielzahl von Laufschaufeln unterscheidet,

    wobei die erste Materialeigenschaft ein erstes Elastizitätsmodul umfasst und die zweite Materialeigenschaft ein zweites Elastizitätsmodul umfasst, das sich von dem ersten Elastizitätsmodul unterscheidet, und wobei der Rotor einen einstückig beschaufelten Rotor mit der ersten und zweiten Vielzahl von Laufschaufeln umfasst, die an den Rotor geschweißt sind.


     
    2. Rotorbaugruppe (62) nach Anspruch 1, wobei mindestens eine der Vielzahl von Laufschaufeln eine Kornstruktur beinhaltet, die sich von mindestens einer der anderen der Vielzahl von Laufschaufeln unterscheidet.
     
    3. Rotorbaugruppe (62) nach einem der vorstehenden Ansprüche, wobei die Vielzahl von Laufschaufeln (64, 66) wechselnde Laufschaufeln mit unterschiedlichen Materialeigenschaften beinhaltet.
     
    4. Gasturbinentriebwerk (20), umfassend:

    einen Kompressorabschnitt (24);

    eine Brennkammer, die in Fluidkommunikation mit dem Kompressorabschnitt steht;

    einen Turbinenabschnitt (28), der in Fluidkommunikation mit der Brennkammer steht, wobei der Turbinenabschnitt den Kompressorabschnitt antreibt; und

    eine Rotorbaugruppe (62) nach einem der vorstehenden Ansprüche in dem Kompressorabschnitt und/oder dem Turbinenabschnitt.


     
    5. Verfahren zum Herstellen eines beschaufelten Rotors für ein Gasturbinentriebwerk, umfassend:

    Bilden eines Rotors, um eine äußere Peripherie zu beinhalten;

    Bilden einer ersten Laufschaufel gemäß einem ersten Bildungsvorgang, um eine erste Materialeigenschaft zu beinhalten;

    Bilden einer zweiten Laufschaufel gemäß einem zweiten Bildungsvorgang, der sich von dem ersten Bildungsvorgang unterscheidet, um eine zweite Materialeigenschaft zu beinhalten, die sich von der ersten Materialeigenschaft unterscheidet; und

    Anbringen der ersten Laufschaufel an dem Rotor;

    Anbringen der zweiten Laufschaufel an dem Rotor in Bezug auf die erste Laufschaufel; wobei die erste Materialeigenschaft ein erstes Elastizitätsmodul umfasst und die zweite Materialeigenschaft ein zweites Elastizitätsmodul umfasst, das sich von dem ersten Elastizitätsmodul unterscheidet, und wobei das Verfahren ferner Folgendes umfasst

    einen ersten Schmiedevorgang zum Bilden der ersten Laufschaufel mit dem ersten Elastizitätsmodul und einem zweiten Schmiedevorgang zum Bilden der zweiten Schaufel mit dem zweiten Elastizitätsmodul und wobei der Rotor einen einstückig beschaufelten Rotor mit der ersten und zweiten Vielzahl von an den Rotor geschweißten Laufschaufeln umfasst;

    Bilden der ersten Laufschaufel und der zweiten Laufschaufel, um eine identische geometrische Form zu beinhalten, wobei die erste Laufschaufel eine erste Materialzusammensetzung umfasst und die zweite Laufschaufel eine zweite Materialzusammensetzung umfasst, die sich von der ersten Materialzusammensetzung unterscheidet.


     
    6. Verfahren nach Anspruch 5, wobei das Verfahren die Schritte des Schweißens der ersten Laufschaufel an den Rotor und des Schweißens der zweiten Laufschaufel an den Rotor in Bezug auf die erste Laufschaufel beinhaltet, um eine gewünschte Dejustierung des einstückig beschaufelten Rotors bereitzustellen, und optional ein Schwungradreibbinden der ersten Laufschaufel und der zweiten Laufschaufel an den Rotor.
     
    7. Verfahren nach Anspruch 6, beinhaltend eine Vielzahl von ersten Laufschaufeln und eine zweite Vielzahl von zweiten Laufschaufeln und ein Schweißen der ersten und zweiten Vielzahl von Laufschaufeln an den Rotor, um eine gewünschte Dejustierung des Rotors bereitzustellen.
     
    8. Verfahren nach Anspruch 5, wobei der erste Bildungsvorgang örtliche Druckkräften induziert, die sich von örtlichen Drucckräften unterscheiden, die durch den zweiten Bildungsvorgang induziert werden.
     


    Revendications

    1. Ensemble rotor (62) pour un moteur à turbine à gaz, comprenant :

    un rotor définissant une périphérie extérieure (78) ; et

    une pluralité d'aubes (64, 66) comportant un matériau commun et une forme géométrique agencée sur la périphérie extérieure (78), dans lequel une première pluralité d'aubes (64, 66) comporte une première propriété de matériau différente d'une seconde propriété de matériau d'une seconde pluralité d'aubes,

    dans lequel la première propriété de matériau comprend un premier module de young et la seconde propriété de matériau comprend un second module de young, différent du premier module de young ; etdans lequel le rotor comprend un rotor à aubes d'un seul tenant avec la première et la seconde pluralité d'aubes soudées au rotor.


     
    2. Ensemble rotor (62) selon la revendication 1, au moins l'une de la pluralité d'aubes comporte une structure de grain différente de celle d'au moins l'une de l'autre de la pluralité d'aubes.
     
    3. Ensemble rotor (62) selon une quelconque revendication précédente, dans lequel la pluralité d'aubes (64, 66) comporte des aubes alternées avec des propriétés de matériau différentes.
     
    4. Moteur à turbine à gaz (20) comprenant :

    une section de compresseur (24) ;

    une chambre de combustion en communication fluidique avec la section de compresseur ;

    une section de turbine (28) en communication fluidique avec la chambre de combustion, dans lequel la section de turbine entraîne la section de compresseur ; et

    un ensemble rotor (62) selon une quelconque revendication précédente, à l'intérieur de la section de compresseur et/ou de la section de turbine.


     
    5. Procédé de fabrication d'un rotor à aubes pour un moteur à turbine à gaz, comprenant :

    la formation d'un rotor pour inclure une périphérie extérieure ;

    la formation d'une première aube selon un premier processus de formage pour inclure une première propriété de matériau ;

    la formation d'une seconde aube selon un second processus de formage différent du premier processus de formage pour inclure une seconde propriété de matériau différente de la première propriété de matériau ; et

    l'assemblage de la première aube au rotor ;

    l'assemblage de la seconde aube au rotor par rapport à la première aube ; dans lequel la première propriété de matériau comprend un premier module de young et la seconde propriété de matériau comprend un second module de young, différent du premier module de young, et dans lequel le procédé comprend en outre

    un premier processus de forgeage pour former la première aube avec le premier module de young et un second processus de forgeage pour former la seconde aube avec le second module de young et dans lequel le rotor comprend un rotor à aubes d'un seul tenant avec la première et la seconde pluralité d'aubes soudées au rotor ;

    la formation de la première aube et de la seconde aube pour inclure une forme géométrique identique, dans lequel la première aube comprend une première composition de matériau et la seconde aube comprend une seconde composition de matériau différente de la première composition de matériau.


     
    6. Procédé selon la revendication 5, dans lequel le procédé comporte les étapes de soudage de la première aube au rotor, et de soudage de la seconde aube au rotor par rapport à la première aube pour fournir un désaccordage souhaité du rotor à aubes d'un seul tenant, et éventuellement une liaison par inertie de la première aube et de la seconde aube au rotor.
     
    7. Procédé selon la revendication 6, comportant la formation d'une pluralité de premières aubes et d'une seconde pluralité de secondes aubes et le soudage de la première et de la seconde pluralité d'aubes au rotor pour fournir un désaccordage souhaité du rotor.
     
    8. Procédé selon la revendication 5, dans lequel le premier processus de formage induit des forces de compression localisées qui sont différentes des forces de compression localisées induites par le second processus de formage.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description