(19)
(11)EP 2 988 415 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.07.2020 Bulletin 2020/31

(21)Application number: 15181718.6

(22)Date of filing:  20.08.2015
(51)International Patent Classification (IPC): 
H02P 21/22(2016.01)
H02P 29/50(2016.01)
H02P 6/34(2016.01)

(54)

REDUCTION TECHNIQUE FOR PERMANENT MAGNET MOTOR HIGH FREQUENCY LOSS

REDUZIERUNGSTECHNIK FÜR PERMANENTMAGNETMOTOR-HOCHFREQUENZVERLUSTE

TECHNIQUE DE RÉDUCTION POUR PERTE DE HAUTE FRÉQUENCE DE MOTEUR À AIMANT PERMANENT


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 20.08.2014 US 201414464482

(43)Date of publication of application:
24.02.2016 Bulletin 2016/08

(60)Divisional application:
20181660.0

(73)Proprietor: Hamilton Sundstrand Corporation
Charlotte, NC 28217 (US)

(72)Inventor:
  • WHITE, Adam Michael
    Belvidere, IL 61008 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
US-A1- 2005 110 450
US-A1- 2014 139 169
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD



    [0001] The present disclosure relates to automatic control system design, and more particularly, to a system of motor loss reduction.

    BACKGROUND



    [0002] Conventional motor current controllers utilize a control loop feedback architecture. For instance, a proportional-integral-derivative PID controller may calculate an error value as the difference between a measured process variable and a desired set point/control variable. A proportional-integral (PI) controller may share some of the functionality as the functionality of a PID controller. High speed permanent magnet motors may experience high frequency rotor losses. US 2014/139169A1 describes a method of reducing periodic disturbances in the feedback quantity of a controlled system.

    SUMMARY



    [0003] The present invention is defined in the independent claim 1.

    [0004] The present disclosure relates to a system including a motor loss reducing controller system utilizing input band-shifting by a disturbance frequency, an integral control architecture and output inverse band-shifting and phase delay compensation by the disturbance frequency. The controller system may eliminate errors and/or take control action based on past and present control errors at the disturbance frequency. The feedback signal may be multiplied by the sine of the theta position of the frequency of interest and the feedback signal may be multiplied by the cosine of the theta position of the frequency of interest. Stated another way, the initial feedback signal is parsed into sine and cosine components at a particular frequency. This effectively band-shifts the feedback signal for treatment by the controller.

    [0005] According to various embodiments, a system including a motor loss reducing controller system utilizing input band-shifting, an Integral control architecture and inverse band-shifting is disclosed. The motor loss reducing controller system may provide correction of harmonic currents flowing to a motor, such as a permanent magnet (PM) motor from a motor controller. The compensation is added to the pulse width modulated voltage command signals. Within a compensator, d-axis and q-axis current feedback signals are frequency shifted down by n times the fundamental frequency. N may be an integer or non-integer value. This converts the initial motor stationary harmonic currents into DC values. The frequency shifting is completed by multiplying the feedback signal by sine and cosine carrier signals of the shifted frequency. An integral controller may cancel any component of error at a desired DC value. An inverse frequency-shift transformation is applied to the output of the I controller in order to shift the command output signal back to the original reference frame.

    [0006] According to various embodiments, a system comprising a motor loss controller structure configured motor loss reduction, comprising an input bandshifting stage, an integral controller stage, and an output inverse bandshifting with phase compensation stage is disclosed. The inputs to the system may be a feedback signal, a motor frequency signal and/or a control value. The sine of an angular component of the motor frequency signal may be multiplied by the feedback signal in the input bandshifting stage to form a first band-shifted feedback signal. The cosine of the angular component of the motor frequency signal may be multiplied by the feedback signal in the input bandshifting stage to form a second band-shifted feedback signal. Errors in the first band-shifted feedback signal and the second band-shifted feedback signal are cancelled via integral control in the I controller stage. An inverse frequency-shift transformation is applied to the output of the I controller stage in the output inverse bandshifting stage.

    [0007] According to various embodiments a motor loss controller configured to band-shift a motor frequency signal by a multiple of a fundamental frequency into parsed sine and cosine components and multiply a feedback signal by each of the parsed sine and cosine components is described herein. The motor loss controller may perform integral control of a control value band-shifted sine component and a control value band-shifted cosine component. The performing integral control may eliminate and/or reduce a disturbance on the output of the system by rejecting a DC disturbance in a band-shifted control value. The motor loss controller may inverse band-shift the sine component back to its original band. The motor loss controller may inverse band-shift the cosine component back to its original band. The motor loss controller may sum the inverse band-shifted sine component and the inverse band-shifted cosine component together to result in a controller output.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0008] The subject matter of the present disclosure is particularly pointed out and distinctly claimed in the concluding portion of the specification. A more complete understanding of the present disclosure, however, may best be obtained by referring to the detailed description and claims when considered in connection with the drawing figures, wherein like numerals denote like elements.

    FIG. 1 depicts a representative structure of a feedback controller, in accordance with various embodiments;

    FIG. 2 depicts a representative current controller structure showing the d and q axis PI controllers for conventional current regulation in conjunction with motor loss controllers coupled in parallel, in accordance with various embodiments;

    FIG. 3 depicts a loop gain and phase in accordance with various embodiments; and

    FIG. 4 depicts a loop gain and phase compensation set to 90° phase lead phase compensation at 1 kHz, in accordance with various embodiments.


    DETAILED DESCRIPTION



    [0009] The present disclosure relates to the design of a feedback controller for reducing motor loss, where the controller is configured for DC regulation of a control quantity as well as rejection (such as a complete rejection) of a disturbance at a known frequency. According to various embodiments, controller disclosed herein may be configured to, and/or utilized to, address this disturbance at the known frequency.

    [0010] According to various embodiments and with reference to FIGs. 1 and 2, a controller configured to reduce high frequency rotor losses in a high speed permanent magnet motor is disclosed herein. The motor loss controller system 101 applies a compensation of current ripple at the fifth and seventh harmonic frequencies of a fundamental frequency on the AC side of a DC to AC inverter. The motor loss controller system 101 compensates for the fifth and seventh harmonic currents that are otherwise present on the AC output of the inverter flowing to the connected motor, thereby reducing losses in the inverter (e.g., the transistors, diodes and/or magnetics of the inverter), the feeders connecting the inverter and motor, and in particular, the motor.

    [0011] In high speed PM motors connected to motor controller inverters, significant motor losses are commonly present due to fifth and seventh harmonic frequency power quality current distortions. Aerospace motors may operate at high speeds, for instance, at 1300 Hz. Thus, the fifth and seventh harmonic currents may be a high frequency value (e.g., 6500 and 9100 Hz). At these frequencies, eddy current rotor losses, stator lamination losses, rotor lamination losses, and skin effect losses may result in increased motor heating and thermal issues. Since motor eddy current and hysteresis losses increase at approximately the square of the frequency and the square of current amplitude, significant motor losses are produced due to the fifth and seventh harmonic currents.

    [0012] According to various embodiments, a controller configured to correct fifth and seventh harmonic currents flowing to a PM motor from a motor controller are disclosed herein. The compensation is added to the pulse width modulated (PWM) voltage command signals. Within the controller, d-axis and q-axis current feedback signals are frequency shifted down by a multiple of the fundamental frequency, such as six times the fundamental frequency. This converts the initial motor stationary reference frame fifth harmonic currents and seventh harmonic currents into DC values. The frequency shifting is completed by multiplying the feedback signal by sine and cosine carrier signals of the shifted frequency. After this transformation, any disturbance at six times the fundamental in the d-axis and q-axis currents are transformed to DC values. Notably, in response to integral control, the fifth and seventh harmonics of the motor current are transformed into a sixth harmonic frequency in the DQ reference frame. Thus, in response to control and/or elimination of the sixth order harmonic distortion in the DQ reference frame, the fifth and/or seventh order harmonics in the actual motor currents are effectively eliminated. Thus, motor loss controller system 101 may be configured to eliminate distortion in the DQ axes at six times the fundamental frequency.

    [0013] According to various embodiments, integral control may be utilized to completely cancel any component of error at DC (i.e. the error originally at the stationary fifth and seventh harmonics and at the sixth d-axis and q-axis harmonics). An inverse frequency-shift transformation is applied to the output of the I controller 200 stage in order to shift the command output signals back to the original reference frame.

    [0014] The present motor loss controller system 101 comprises phase compensation added to the output inverse band-shifting stage 300 to compensate for phase lag between PWM control signals and the resultant change in the motor current. The phase compensation assists with stabilization of the motor loss controller where it would otherwise not have phase margin and would thus be unstable. Since the transformations and integral control are limited to affecting the loop gain of the motor loss controller system 101 at and near the frequency of the frequency shifting, the phase delay characteristics of the motor loss controller system 101 remain unchanged at frequencies which are a sufficient distance from the band-shifting frequency (see FIGs. 3 and 4).

    [0015] Traditionally, controllers have been designed to regulate to a constant set point value, such as controlling a motor speed at a substantially constant 10,000 rpm. Proportional integral type controllers are well suited for holding steady the average value rate of the command, (e.g. 10,000 rpm); however, for systems having a reoccurring disturbance (such as current distortions causing motor loss), a proportional integral type controller is not able to eliminate the disturbance. In many circumstances, it is preferable that the oscillation be reduced or eliminated. Among other attributes, the controller disclosed herein provides an approach for eliminating and/or reducing that oscillation (e.g. a disturbance, such as a sinusoidal disturbance, at a known frequency).

    [0016] According to various embodiments, and with reference to FIG. 1, the structure of a motor loss controller system 101 utilizing input band-shifting stage 100, I controller 200 stage and output inverse band-shifting stage 300 is disclosed. The inputs to the motor loss controller system 101 may include a control value 25, such as zero, a feedback signal 75, and an input at the motor frequency, which is a known frequency. The inputs to the motor loss controller system 101 may further include a phase shifting component as described further below. Depicted by representative multiplier box 150, the feedback signal may be multiplied by the sine of the ω(t) angular position of the integral of six times the motor frequency signal.

    [0017] Direct-quadrature transformation is a mathematical transformation that rotates the reference frame of three-phase systems in an effort to simplify the analysis of three-phase circuits. The direct-quadrature transformation can be thought of in geometric terms as the projection of the three separate sinusoidal phase quantities onto two axes rotating with the same angular velocity as the sinusoidal phase quantities. The two axes are called the direct, or d, axis; and the quadrature or q, axis; that is, with the q-axis being at an angle of 90 degrees from the direct axis.

    [0018] The inputs to the controller are the d or q axis feedback currents and the motor frequency. The controller reduces current distortion at 6 times the fundamental frequency in the d and q reference frame. Only the d-axis controller is shown (a virtually identical controller is used in the q-axis) in FIG. 1. A phase lead (see φ component 260 on FIG. 1) may be added to the output sine and cosine operation for a harmonic of interest, such as the sixth order harmonics, to compensate for plant behavior (for instance a 90 degree lead angle to compensate inductor lag between applied voltage and resultant current).

    [0019] Depicted by representative multiplier box 160 the feedback signal may be multiplied by cosine of six times the ω(t) angular position of the integral of the motor frequency. Stated another way, the initial feedback signal is parsed into sine and cosine components at an integral of a particular frequency. This effectively band-shifts the feedback signal for treatment by the motor loss controller.

    [0020] In the frequency domain, the feedback signal is shifted (e.g., down or up) by the determined frequency ω, generally speaking, such that the disturbance oscillation becomes a DC quantity. The I controller 200 stage is configured to eliminate that disturbance because the disturbance is now at a DC level and can be eliminated by a I controller 200 stage. The six times ω(t) angular position of the integral of the motor frequency may be summed 250 with a phase lead 260 to compensate for phase delay. For instance, if at the sixth harmonic of the motor frequency has a 100 degree phase leg at the output of the system as compared to the motor frequency input, 100 degrees of phase delay compensation may be introduced to the system. Thus, the motor loss controller system 101 compensates for phase leg in the inverse band-shifting stage.

    [0021] The motor loss reduction controller may be configured to act on the band-shifted (down) frequency signal to eliminate the disturbance of interest, such as the sixth order harmonic. The output inverse band-shifting stage 300 transforms the band-shifted treated signal back to the original frequency of the feedback signal. Stated another way, via integral control action, the I controller is able to reject, for example to perfectly reject, any DC disturbance at the I controller input, which therefore likewise rejects (due to input band-shifting and output inverse band-shifting) the AC disturbance that was present at feedback signal 75, at the six times motor frequency contained in integrated phase shifted motor frequency signal 50. The integral gain control output of the I controller 200 stage is multiplied with the sine component and the cosine component of the integrated phase shifted motor frequency signal 50. The outputs are summed together by a summer 350 and transmitted as an output as the controller output 95.

    [0022] According to various embodiments and with reference to FIG. 2, a current controller structure showing the d and q axis PI controllers for conventional current regulation in conjunction with motor loss controller system 101 of FIG. 1 is shown.

    [0023] According to various embodiments and with reference to FIG. 3, the loop gain and phase of an embodiment of motor loss controller system 101. The loop gain comprises an integral plant in conjunction with the motor loss controller system 101 of Figure 1. The motor frequency is 1000/6 Hz. The phase compensation is set to 0 degrees. Almost infinite gain at 1 kHz will result in the gain crossing 0 dB at 1 kHz (not shown in figure 3). The 180° phase lag at 1 kHz in conjunction with any sampling or sensor delays means that the system is likely to be unstable or will have very little gain margin.

    [0024] According to various embodiments and with reference to FIG. 4, the loop gain and phase of an embodiment of motor loss controller system 101 is shown. The loop gain comprises an integral plant in conjunction with the motor loss controller system 101 of FIG. 1. The motor frequency is 1000/6 Hz. The gain at 1 kHz results in adequate disturbance rejection. The phase compensation is set to 90° phase lead phase compensation at 1 kHz, which compensates for 90° of phase lag in the integral plant. Thus, with the lead compensation, as depicted, the signal no longer dips down to minus 180 degrees phase lag. The loop phase near 1 kHz is 90° advanced relative to FIG. 3, thus 90° of phase margin is depicted, resulting in enhanced stability.


    Claims

    1. A system (101) comprising:

    a motor loss controller structure configured for motor loss reduction, comprising an input bandshifting stage (100), an integral controller stage (200), and an output inverse bandshifting stage (300);

    wherein inputs to the system are a feedback current signal (75), a motor frequency signal (50) and a control value (25),

    wherein the sine of an angular component of a multiple of the motor frequency signal (50) is multiplied by the feedback current signal (75) in the input bandshifting stage (100) to form a first band-shifted feedback signal,

    wherein the cosine of the angular component of a multiple of the motor frequency signal (50) is multiplied by the feedback current signal (75) in the input bandshifting stage (100) to form a second band-shifted feedback signal,

    wherein errors in the first band-shifted feedback signal and the second band-shifted feedback signal are cancelled via integral control in the integral controller stage (200), characterized in that

    an inverse frequency-shift transformation is applied to an output of the integral controller stage (200) in the output inverse bandshifting stage (300), wherein the first band-shifted feedback signal is subtracted from the control value (25), wherein the second band-shifted feedback signal is subtracted from the control value (25), and wherein the feedback current signal comprises at least one of a d-axis component or a q-axis component, and wherein the inverse bandshifting stage comprises a phase delay compensation, and wherein the motor loss controller outputs a compensation signal which is added to a voltage signal for controlling the motor.


     
    2. The system of any preceding claim, wherein the system (101) is configured to eliminate distortion in at least one of the d-axis or the q-axis at six times a fundamental frequency.
     
    3. The system of any preceding claim, wherein the system (101) is configured to eliminate fifth or seventh order harmonics of a motor current.
     
    4. The system of any preceding claim, wherein the inputs to the system (101) further comprise a phase shifting component.
     
    5. The system of any preceding claim, wherein a conventional proportional-integral controller is implemented in parallel with the motor loss controller structure for both the d-axis and the q-axis.
     


    Ansprüche

    1. System (101), umfassend:

    eine Motorverluststeuerstruktur, die für Motorverlustreduzierung konfiguriert ist und eine Eingabebandverschiebungsstufe (100), eine Integralreglerstufe (200) und eine Ausgabeumkehrbandverschiebungsstufe (300) umfasst;

    wobei es sich bei den Eingaben in das System um ein Rückkopplungsstromsignal (75), ein Motorfrequenzsignal (50) und einen Steuerwert (25) handelt,

    wobei der Sinuswert einer Winkelkomponente eines Vielfachen des Motorfrequenzsignals (50) in der Eingabebandverschiebungsstufe (100) mit dem Rückkopplungsstromsignal (75) multipliziert wird, um ein erstes bandverschobenes Rückkopplungssignal zu bilden,

    wobei der Kosinuswert der Winkelkomponente eines Vielfachen des Motorfrequenzsignals (50) in der Eingabebandverschiebungsstufe (100) mit dem Rückkopplungsstromsignal (75) multipliziert wird, um ein zweites bandverschobenes Rückkopplungssignal zu bilden,

    wobei Fehler im ersten bandverschobenen Rückkopplungssignal und im zweiten bandverschobenen Rückkopplungssignal in der Integralreglerstufe (200) über Integralreglung behoben werden, dadurch gekennzeichnet, dass in der Ausgabeumkehrbandverschiebungsstufe (300) eine Umkehrfrequenzverschiebungstransformation auf eine Ausgabe der Integralreglerstufe (200) angewendet wird, wobei das erste bandverschobene Rückkopplungssignal von dem Steuerwert (25) subtrahiert wird, wobei das zweite bandverschobene Rückkopplungssignal von dem Steuerwert (25) subtrahiert wird und wobei das Rückkopplungsstromsignal mindestens eines von einer d-Achsenkomponente oder einer q-Achsenkomponente umfasst und wobei die Umkehrbandverschiebungsstufe einen Phasenverzögerungsausgleich umfasst und wobei die Motorverluststeuerung ein Ausgleichssignal ausgibt, das zu einem Spannungssignal zum Steuern des Motors addiert wird.


     
    2. System nach dem vorhergehenden Anspruch, wobei das System (101) dazu konfiguriert ist, eine Verzerrung in mindestens einer der d-Achse oder der q-Achse mit sechsfacher Grundfrequenz zu beseitigen.
     
    3. System nach einem der vorhergehenden Ansprüche, wobei das System (101) dazu konfiguriert ist, Harmonische fünfter oder siebter Ordnung eines Motorstroms zu beseitigen.
     
    4. System nach einem der vorhergehenden Ansprüche, wobei die Eingaben in das System (101) ferner eine Phasenverschiebungskomponente umfassen.
     
    5. System nach einem der vorhergehenden Ansprüche, wobei sowohl für die d-Achse als auch für die q-Achse ein herkömmlicher Proportional-Integral-Regler parallel zu der Motorverluststeuerstruktur umgesetzt wird.
     


    Revendications

    1. Système (101) comprenant :

    une structure de dispositif de commande de perte de moteur configurée pour la réduction de perte de moteur, comprenant un étage de décalage de bande d'entrée (100), un étage de dispositif de commande intégré (200) et un étage de décalage de bande inverse de sortie (300) ;

    dans lequel les entrées du système sont un signal de courant de rétroaction (75), un signal de fréquence de moteur (50) et une valeur de commande (25),

    dans lequel le sinus d'une composante angulaire d'un multiple du signal de fréquence de moteur (50) est multiplié par le signal de courant de rétroaction (75) dans l'étage de décalage de bande d'entrée (100) pour former un premier signal de rétroaction à bande décalée,

    dans lequel le cosinus de la composante angulaire d'un multiple du signal de fréquence de moteur (50) est multiplié par le signal de courant de rétroaction (75) dans l'étage de décalage de bande d'entrée (100) pour former un second signal de rétroaction à bande décalée,

    dans lequel les erreurs dans le premier signal de rétroaction à bande décalée et le second signal de rétroaction à bande décalée sont annulées via une commande intégrée dans l'étage de dispositif de commande intégré (200), caractérisé en ce qu'une transformation de décalage de fréquence inverse est appliquée à une sortie de l'étage de dispositif de commande intégré (200) dans l'étage de décalage de bande inverse de sortie (300), dans lequel le premier signal de rétroaction à bande décalée est soustrait de la valeur de commande (25), dans lequel le second signal de rétroaction à bande décalée est soustrait de la valeur de commande (25), et dans lequel le signal de courant de rétroaction comprend au moins l'une d'une composante d'axe d ou d'une composante d'axe q, et dans lequel l'étage de décalage de bande inverse comprend une compensation de retard de phase, et dans lequel le dispositif de commande de perte de moteur délivre un signal de compensation qui est ajouté à un signal de tension pour commander le moteur.


     
    2. Système selon une quelconque revendication précédente, dans lequel le système (101) est configuré pour éliminer la distorsion dans au moins l'un de l'axe d ou de l'axe q à six fois une fréquence fondamentale.
     
    3. Système selon une quelconque revendication précédente, dans lequel le système (101) est configuré pour éliminer les harmoniques du cinquième ou du septième ordre d'un courant de moteur.
     
    4. Système selon une quelconque revendication précédente, dans lequel les entrées du système (101) comprennent en outre une composante de déphasage.
     
    5. Système selon une quelconque revendication précédente, dans lequel un dispositif de commande proportionnel intégré conventionnel est mis en œuvre en parallèle avec la structure de dispositif de commande de perte de moteur à la fois pour l'axe d et l'axe q.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description