(19)
(11)EP 2 990 603 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
18.03.2020 Bulletin 2020/12

(21)Application number: 15182547.8

(22)Date of filing:  26.08.2015
(51)Int. Cl.: 
F01D 5/14  (2006.01)
F04D 29/32  (2006.01)

(54)

COMPRESSOR ROTOR AIRFOIL AND METHOD OF FORMING A BLADE

VERDICHTERROTORSCHAUFEL UND VERFAHREN ZUR HERSTELLUNG EINER SCHAUFEL

SURFACES PORTANTES DE ROTOR DE COMPRESSEUR ET PROCEDE DE FORMATION D'UNE AUBE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 27.08.2014 US 201414469938

(43)Date of publication of application:
02.03.2016 Bulletin 2016/09

(73)Proprietor: Pratt & Whitney Canada Corp.
Longueuil, Québec J4G 1A1 (CA)

(72)Inventors:
  • DUONG, Hien
    Longueuil, Québec J4G 1A1 (CA)
  • BALIKE, Krishna Prasad
    Longueuil, Québec J4G 1A1 (CA)
  • VEITCH, Thomas
    Longueuil, Québec J4G 1A1 (CA)
  • WARIKOO, Raman
    Longueuil, Québec J4G 1A1 (CA)
  • LOBO, Keegan
    Longueuil, Québec J4G 1A1 (CA)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
EP-A1- 1 505 302
US-A1- 2012 243 975
US-A1- 2010 054 946
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The application relates generally to compressor rotor airfoils and, more particularly, to compressor rotor airfoils in gas turbine engines.

    BACKGROUND OF THE ART



    [0002] Compressors of a gas turbine engine include a plurality of rotors mounted on a rotating shaft. Each rotor includes a hub connected to the rotating shaft and a plurality of blades radially extending from the hub. The rotors are enclosed in a casing, also known as shroud. The rotors are spaced away from the shroud by a small amount called tip clearance. Under high velocity and certain thermal conditions, the blades may lengthen, even minimally, and as a result may reduce the tip clearance and in some cases even dig into the shroud. This phenomenon is sometimes referred as plowing. The plowing may scrape the shroud and may lead to damage of the blade and the shroud, which in turn may reduce performances of the gas turbine engine.

    [0003] US 2012/243975 A1, EP 1505302 A1 and US 2010/054946 A1 are useful in understanding the present disclosure.

    SUMMARY



    [0004] In one aspect, there is provided a compressor rotor for a gas turbine engine as defined in claim 1.

    [0005] In another aspect, there is provided a gas turbine engine comprising: a compressor section including a plurality of rotors, each of the plurality of rotors including a hub, the hubs being aligned axially, each of the rotors including a plurality of blades extending radially from the hub, the blades including an airfoil as defined in claim 1.

    [0006] In another aspect, there is provided a method of reducing a rub angle between a compressor rotor blade and a casing surrounding the blade as defined in 6.

    DESCRIPTION OF THE DRAWINGS



    [0007] Reference is now made to the accompanying figures in which:

    FIG. 1 is a schematic cross-sectional view of a gas turbine engine;

    FIG. 2 is a schematic of a portion of a compressor of the gas turbine engine of FIG. 1;

    FIGs. 3A and 3B are schematics of a blade for the compressor of FIG. 2 annotated to show a sweep angle α (FIG. 3A) and a dihedral angle β (FIG. 3B);

    FIG. 4 is a graph of a leading edge sweep angle α relative to a span Sp of a blade of the compressor of FIG. 2;

    FIG. 5 is a graph of a leading edge dihedral angle β relative to a span Sp of a blade of the compressor of FIG. 2;

    FIG. 6 is a graph of a leading edge sweep angle α relative to a leading edge dihedral angle β of a blade of the compressor of FIG. 2;

    FIG. 7 is a graph of a ratio of a leading edge sweep angle α over a leading edge dihedral angle β relative to a span Sp of the blade of the compressor of FIG. 2;

    FIG. 8 is a schematic cross-sectional view of the blade of the compressor of FIG. 2 taken along line 8-8 in FIG. 3A;

    FIG. 9 is a graph of a span Sp relative to axial and tangential center of gravity Xcg, Ycg components of the blade of the compressor of FIG. 2;

    FIG. 10 is the schematic cross-sectional view taken toward the tip along line 10a-10a in FIG. 3A (thin line) superimposed with a schematic cross-sectional view taken toward the hub (thick line) along line 10b-10b in FIG. 3A of the blade of the compressor of FIG. 2; and

    FIG. 11 is a plot of a thickness distribution of different cross-sections of the blade of the compressor of FIG. 2 versus a non-normalised chord.


    DETAILED DESCRIPTION



    [0008] FIG. 1 illustrates a gas turbine engine 10 of a type preferably provided for use in subsonic flight, generally comprising in serial flow communication along a centerline 11: a fan 12 through which ambient air is propelled, a compressor section 14 for pressurizing the air, a combustor 16 in which the compressed air is mixed with fuel and ignited for generating an annular stream of hot combustion gases, and a turbine section 18 for extracting energy from the combustion gases.

    [0009] FIG. 2 illustrates a portion of the compressor section 14 including a plurality of rotors 19 (only two of the rotors being shown). The rotor 19 is an integrally bladed rotor including a plurality of circumferentially distributed blades 20 extending radially from an annular hub 21. The blades 20 could be integrally formed with the hub 21 or could be connected thereto. The blades 20 are supported in a circumferentially extending row around hub 21 for rotation about the centerline 11 of the engine 10 (as depicted by arrow Dr in FIG. 2). As shown in FIG. 2, an annular compressor casing 22 (also known as shroud) surrounds the compressor blades 20. The compressor section 14 also includes a plurality of circumferential rows or stages of stator vanes 24 disposed between the plurality of compressor blades 20 in an alternating fashion. The stator vanes 24 project radially inwardly from the compressor casing 22.

    [0010] Each of the blades 20 includes a root 25 joining the blade 20 to the hub 21 and an airfoil portion 26 extending from the root 25. The airfoil portion 26 includes a tip 27 at a radially outer end thereof. The tip 27 is spaced radially from the compressor casing 22 to provide tip clearance. The hub 21 and annular casing 22 define inner and outer boundaries, respectively, for channeling a flow of air 28 through the compressor 10. The flow of air 28 is generally aligned with the centerline 11. The hub 21 forms with the compressor casing 22 a converging annular flow channel 29 for compressing air driven through the compressor section 14 by the blades 20. As such, the front blades 20 (i.e. the upstream stages of compressor blades) have a longer span Sp than the rear blades 20 (i.e. the downstream stages of compressor blades, the ones just upstream of the combustor 16).

    [0011] The airfoil portions 26 of the blades 20 include each a pressure side 32 and an opposed suction side 34. The pressure side 32 and suction side 34 extend in a span direction from the root 25 to the tip 27. The airfoil portion 26 further includes a leading edge 36 and a trailing edge 38 defined at the junction of the pressure side 32 and the suction side 34. The airfoil portion 26 also defines the span Sp extending between the root 25 and the tip 27, and a chord Ch extending transversally between the leading edge 36 and the trailing edge 38. When in operation, the blade 20 rotates in the direction of rotation Dr with the suction side 34 disposed forward of the pressure side 32. When the blades 20 are in operation connected to the hub 21, the root 25 is commonly referred to as the hub 21.

    [0012] Turning to FIGs. 3A and 3B, the airfoil portion 26 may be oriented at different positions relative to the flow of air 28 in order to optimise efficiency of the rotor 19. The airfoil portion 26 may also be twisted or leaned. Different angles may then be used to characterise the shape of the airfoil portion 26.

    [0013] A sweep angle α and a dihedral angle β may thus be defined. The sweep angle α and dihedral angle β can be defined at any point P along the leading edge 36. With reference to FIG. 3A, at any point P along the leading edge 36 the angle between the local velocity vector Vel of the incoming flow 28 and a tangent T to the leading edge 36 may define the sweep angle α. Forward sweep may be defined when the angle (α - 90°) is negative. Similarly, rearward sweep occurs when the angle (α -90°) is positive. With reference to FIG. 3B, the dihedral angle β may be defined as the angle between a vertical V and the tangent T to leading edge 36 at any point P. The vertical V is confounded with the radial direction R (shown in FIG. 2). The dihedral angle β is positive in the direction of rotation Dr.

    [0014] Flow around the airfoil portion 26 is complex. Depending on the shape of the airfoil portion 26 and the flow conditions, transonic flow may be present in the compressor section 14 (i.e. existence of subsonic flow in some portions of the compressor section 14, and sonic and supersonic flow in other portions of the compressor section 14). As a result of these flow conditions, boundary layer build up may occur at the tip 27 of the blade 20 which may influence the efficiency of the compressor section 14.

    [0015] Tip blade lean (in direction of rotation Dr) and forward sweep (in direction opposite to flow 28) may be used in the design of the blades 20 to alter the shock structure and reduce boundary layer accumulation, both of which may contribute to improvement in performance and increased stall margin. The stall initiation point may be defined as the point at which the compressor section 14 can no longer sustain an increase in pressure such that the gas turbine engine 10 stalls.

    [0016] Having a blade that is swept forward may provide several benefits to the tip 27. First, in terms of shock, the forward sweep may affect bow shock by sweeping the leading edge 36 while the passage shock is altered via a change in the shock location. The forward sweep thus may cause the shock to become more swallowed, which in turn, may increase the stall margin.

    [0017] Second, increased flow toward the tip 27 may subject the tip 27 more toward negative incidence, reduce front loading and may reduce tip clearance flow. As mentioned above, tip clearance is the space defined between the tip 27 of the blade and the compressor casing 22. The portion of the flow of air 28 which escapes from the flow channel 29 through the tip clearance may reduce the ability of the compressor section 14 to sustain pressure rise, increase downstream flow blockage and may reduce its stall margin. The downstream blades 20 may have an increased tip clearance relative to the upstream blades 20 which may increase tip clearance flow.

    [0018] Third, forward sweep at the tip 27 may allow the tip 27 to "grab" flow sooner than other section resulting in lower axial diffusion and less boundary layer accumulation.

    [0019] Fourth, because of the centrifugal effects produced by the rotor, there may be a migration of secondary flow along blade's 20 surface from the hub 21 to tip 27, which may result in a thick tip boundary layer build up. While secondary flow can be affected by radial loading, any secondary flow migrating from hub 21 to tip 27 may also be reduced with forward sweep as it will likely be swept downstream before reaching tip 27.

    [0020] Fifth, in a multistage environment such as the one partially shown in FIG. 2, sweep may improve overall efficiency with improved interaction between rows of blades 20.

    [0021] The blade 20 having a forward sweep, flow has a positive incidence reduced compared to a blade with lesser or no forward sweep. While lesser positive incidence may improve stall margin, it may reduce flow chocking because of a reduction in effective area seen by flow. In a multistage compressor such as the one of FIG. 2, the throat area may be adjusted to counter this effect. Having an airfoil portion 26 that is leaned may also provide benefits to the tip 27. Blade's lean may reduce the acute suction side dihedral angle. Blade lean may be as effective as forward sweep in reducing shock/boundary layer/tip clearance interaction.

    [0022] A combination of sweep and blade lean may thus be adopted. In a multistage environment, certain physical spacing is required between blade rows for structural reasons. Unless the compressor length can be increased to accommodate a forward swept blade (at the expense of engine weight and cost) this imposes a limitation on how much forward sweep a rotor can employ. Thus to maximize the benefit of sweep/lean in a confined axial space, blade lean may be maximized (provided rotor remains structurally acceptable).

    [0023] The airfoil portion 26 described herein is shaped to accommodate the structural limitations imposed by the design of the compressor section 14 while aiming at reducing at least some of the losses induced by the flow around the airfoil portions 26. As a result, the airfoil portions 26 presented herein may have, among other design features presented below, a ratio of the sweep angle α over the dihedral angle β may be below 1. According to an embodiment, the ratio may be comprised between 0 and 1. The blade 20 shown herein may also have a dihedral tip with a reverse direction, and/or an axial component of a center of gravity of a cross-section taken chordally toward the tip of the airfoil being upstream relative to an axial component of a center of gravity of a cross-section taken chordally toward the root of the airfoil.

    [0024] Turning now to FIGs. 4 to 8, several parameters defining the airfoil portion 26 will be discussed. FIGs. 4 to 8 show only one example of parameters for the airfoil portion 26.

    [0025] In FIG. 4, the sweep angle α of the leading edge 36 of the airfoil portion 26 is plotted against the span Sp at the leading edge 36 of the airfoil portion 26. From 0 to about 75% of the span Sp, the airfoil portion 26 is swept rearward (sweep angle α is positive). From about 75% to the tip 27, the airfoil portion 26 is swept forward (sweep angle α is negative). The increase of sweep along the span Sp is monotonic. A transition between rearward and forward sweep may depend on the application of the rotor 19, among many parameters rotor Mach number and pressure ratio it has to produce. In one embodiment, the forward sweep S could be between 5 and 45 % of the span Sp of the airfoil portion 26. In one embodiment, the forward sweep S could be between 10 and 35 % of the span Sp of the airfoil portion 26.

    [0026] Forward sweep for transonic rotors may reduce secondary flow migration from the hub 21 to the tip 27. As a result, at the tip 27, there is less mixing loss due to interaction between the tip leakage flow, shock and secondary flow. Lower mixing losses induce lower flow blockage which could lead to improve flow capacity at high speeds. Also, forward sweep may pull flow toward the tip 27 and as a result improves rotor stall margin at both high and low (part) speeds.

    [0027] Forward sweep for subsonic rotors may also reduce secondary flow migration from the hub 21 to the tip 27, and mixing losses due to interaction between tip leakage flow with secondary flow. The rotor 19 may thus be less sensitive to tip clearance increase. Forward sweep may pull flow toward the tip 27 and as a result improves rotor stall margin at both high and low (part) speeds.

    [0028] In FIG. 5, the dihedral angle β of the leading edge 36 of the airfoil portion 26 is plotted against the span Sp at the leading edge 36 of the airfoil portion 26. The dihedral angle β is a positive dihedral angle, decreasing from the hub 21 (i.e. 0 on the span Sp axis) to the tip 27 (i.e. 1 on the span Sp axis). The dihedral angle β is about 72 degrees at the hub 21 and about 42 degrees at the tip 27. The dihedral angle β may be comprised between 40 and 70 degrees. While the dihedral angle β is shown herein to decrease from hub 21 to tip 27, it could instead increase.

    [0029] Opposite to the sweep angle α, the dihedral angle β in this example, does not evolve monotonically along the span Sp at the leading edge 36. In the embodiment shown in FIG. 5, a direction of the dihedral angle β is reversed locally twice near the tip 27, i.e. the dihedral angle β span-wise distribution has a first inflection point P1 and a second inflection point P2. From 0% span Sp to about 80% span Sp (point P1), the dihedral angle β decreases. From about 80% span Sp to about 95% span Sp (point P2), the dihedral angle β increases, and from 95% span Sp to 100% span Sp, the dihedral angle β decreases again. Under centrifugal force and thermal effects, the rotor 19 may expand radially. Large amounts of dihedral angle β may cause the blade 20 to rub into the casing 22 during high speed conditions. Having at least one inflection point P1 may affect a rub angle µ at the tip 27 of the blade 20 with the casing 22, and may be beneficial for avoiding additional deflection of the airfoil portion 26 when the blade 20 is rubbing into the casing 22. FIG. 8 shows a position of the tip 27 of the airfoil portion 26 relative to the casing 22. The casing 22 is illustrated in FIG. 8 by a line TSh tangent to the casing 22, and the rub angle µ may be defined between a tangent Tps to the pressure side 32 and the tangent TSh to the casing 22. While in the particular illustration of FIG. 8, the tangent TSh to the casing 22 seems to match a tangent to the tip 27, it is contemplated that the tangent to the tip 27 could be at an angle with the tangent TSh to the casing 22. Computations have determined that the rub angle µ is decreased when the blade 20 includes at least one inflection point in the dihedral angle β span-wise distribution. While the particular illustration of FIG. 8 shows schematically a rub angle µ lesser than 90 degrees, it is contemplated that the rub angle µ could be 90 or greater than 90 degrees.

    [0030] By having a non-monotonic decrease (or in other embodiments non-monotonic increase) of the dihedral angle β toward the casing 22, the rub angle µ may be decreased which in turn may decrease damages or force resulting from the rubbing are decreased. In other terms, decreasing rub angle may decrease the risk of damage to the casing 22 (i.e. adrabable) during a rub by reducing the extent to which the blade elongates as a result of plowing into the casing 22 during a rub. In turn, the compressor section 14 may become more efficient. Computational Fluid Dynamics analyses supported by rig/engine test data have shown that the change to surge margin and performance may be insignificant with this type of dihedral angle β distribution.

    [0031] A second inflection point P2 in the dihedral angle β span-wise distribution may be used to obtain a more optimised rub angle µ than would the blade 20 have with the first inflection point P1 only. The second inflection point P2 may be omitted and airfoil portion 26 may have only one inflection point in the dihedral angle β span-wise distribution. The dihedral angle β span-wise distribution may also have more than two inflection points. While the inflections in dihedral angle β span-wise distribution are shown in FIG. 5 to take place at the tip 27, it is contemplated that the inflections could be taking place mid-span or toward the hub 21. The inflections of the dihedral angle β span-wise distribution is shown herein applied to a blade having a ratio of sweep angle α over dihedral angle β below 1, but it is contemplated that the inflection(s) of the dihedral angle β span-wise distribution could be applied to a variety of blades not bounded to the above ratio of sweep angle α over dihedral angle β. In one embodiment, the inflection(s) of the dihedral angle β span-wise distribution may occur between 5 to 10% of the span Sp.

    [0032] The high tip dihedral angle β may increase tensile stress at the hub 21 on the pressure side 32 of the airfoil portion 26 and compression stress on the suction side 34 at the hub 21 of the airfoil portion 26. As discussed below with reference to FIGs. 10 and 11, a thickness distribution along cross-sections of the blade 20 may be determined to at least reduce these compressive stresses and tension stresses.

    [0033] FIG. 6 shows a distribution of the leading edge dihedral angle β relative to the leading edge sweep angle α. The distribution shows two inflection points P3, P4 which correspond to the two inflection points P1, P2 of the dihedral angle β span-wise distribution.

    [0034] FIG. 7 shows a ratio of the sweep angle α over the dihedral angle β as a function of the span Sp of the airfoil portion 26. The ratio decrease monotonically from the hub 21 to the tip 27. The ratio is below 0.5. In other embodiments, the ratio could be below 1. It is contemplated that the ratio could not be monotonic. This graph shows that the dihedral angle β is always larger than the sweep angle α for the blade 20 described herein. This ratio is in response to spatial limitations in the rotor 19, where forward sweep is limited, as described above.

    [0035] FIG. 9 shows the center of gravity CG of the airfoil portion 26 at different sections along the span Sp of the airfoil portion 26. The center of gravity CG can be projected onto an axial axis (i.e. parallel to the engine axis 11) (Xcg) and a radial axis R (i.e. perpendicular is the engine axis 11) (Ycg). The radial axis R is shown in FIG. 2. Xcg represents axial sweep, while Ycg represents tangential lean. The abscises axis of the plot represents a distance (in inches) of the center of gravity CG of a given cross-section relative to an arbitrary 0. The ordinates axis of the plot represents a position (normalised) of that given cross-section along the span Sp. Positive values on the abscises axis of the plot correspond to deviation of the center of gravity CG in the direction of flow 28, and negative values on the abscises axis of the plot correspond to deviation of the center of gravity CG in a direction opposite to the direction of flow 28.

    [0036] Referring more specifically to the Xcg distribution, the Xcg of the airfoil portion 26 at the hub 21 is disposed downstream relative to the Xcg of the airfoil portion 26 at the tip 27. In the example shown in FIG. 9, the Xcg at the hub 21 is at 0.15 inch on the axial axis 11, while the Xcg at the tip 27 is at 0.1 inch on the axial axis 11. Starting at about 65% of the span Sp of the airfoil portion 26, any point of the airfoil portion 26 above that is disposed upstream. The Xcg distribution shows that the Xcg at the hub 21 is downstream relative to the Xcg at the tip 27 is a consequence of the forward sweep imparted to the blade 20. It is contemplated that blades other than the blade 20 could have such Xcg distribution. For example, radial or backward sweep rotors with hub section thicken further to the rear could have this distribution.

    [0037] Referring to FIGS. 10 and 11, one way to achieve the above feature of the Xcg distribution is to thicken the airfoil portion 26 toward the hub 21.

    [0038] Referring more specifically to FIG. 10, a schematic cross-section CS-hub of the airfoil portion 26 toward the hub 21 (thick line) is shown superimposed with a schematic cross-section CS-tip of the airfoil portion 26 toward the tip 27 (thin line). A thick portion of the airfoil portion 26 may be defined by a portion along the chord Ch of a given cross-section of the airfoil portion 26 for which the thickness is at least 85% of a maximum thickness of that airfoil portion 26, and which spans chordwise between at most between +20% and -20% from the maximum thickness. If the maximum thickness extends over an area of the chord Ch, a chordwise center of the area of maximum thickness may be used as a reference point for determining the chordwise span of the thick portion. The maximum thickness may be located at 50% of the chord Ch for a given cross-section or at a different location on that chord.

    [0039] For the two cross-sections shown in FIG. 10, a thick portion ThickP_hub of the hub's cross-section CS-hub may be defined by a portion of the airfoil portion 26 along the chord Ch for which the thickness is at least 85% of the maximum thickness T_maxhub of the hub's cross-section CS-hub and which spans chordwise between +/-20% from the maximum thickness T_maxhub. Similarly, a thick portion ThickP_tip of the tip's cross-section CS-tip may be defined by a portion of the airfoil 26 along the chord Ch for which the thickness is at least 85% of the maximum thickness T_maxtip of the tip's cross-section CS-tip and spans chordwise +/- 15% from the maximum thickness T_maxtip.

    [0040] It is contemplated that the thick portion of the airfoil portion 26 could be defined by a portion of the airfoil 26 along the chord Ch of a given cross-section of the airfoil portion 26 for which the thickness is about 85% of the maximum thickness of that airfoil portion 26, for example, 80%, 90% or even 92%. It is also contemplated that the thick portion could extend chordwise to less than +/- 15% from the maximum thickness. For example, the thick portion could extend +/- 10% chordwise from the maximum thickness.

    [0041] While the cross-section CS-tip, shown herein, has a more convention airfoil shape with a thick portion being short and disposed toward the leading edge 36, the cross-section CS-hub has the thick portion ThickP_hub extending along a longer portion of the chord Ch toward the trailing edge 38. As a result, a center of gravity CG-hub is disposed axially downstream at Xcg-hub relative to the center of gravity CG-tip.

    [0042] Referring now more specifically to FIG. 11, a thickness distribution of the cross-sections CS-hub and CS-tip are plotted along with baseline thickness distributions of the cross-sections at the hub 21 and at the tip 27. The abscises axis of the plot represents a position along a non-normalised chord Ch and the ordinates axis a thickness of the cross-sections.

    [0043] The plots show that the cross-section CS-hub is globally thicker than the cross-section CS-tip, with a maximum thickness T_max_hub at the hub 21 being more than twice a maximum thickness T_max_tip at the tip 27. A distribution of the thickness at the hub 21 has been modified compared to a baseline to provide the Xcg distribution described above. In one embodiment, the thick portion ThickP_hub extends along a portion of the chord Ch comprised around between 30% and 60% of the chord Ch. In another example, the thick portion ThickP_hub extends along a portion of the chord Ch comprised around between 45% and 65% of the chord Ch. In comparison, the thick portion ThickP_tip extends along a portion of the chord Ch comprised around between 30% and 45% of the chord Ch. By designing the blade 20 with a longer thick portion ThickP_hub at the hub 21 compared to the tip 27, the center of gravity CG-hub is disposed axially downstream relative to the center of gravity CG-tip. In another example, the thick portion ThickP_hub extends between -15% and +15% of the chord Ch percentage where the maximum thickness T_maxhub is found. The maximum thickness T_maxhub may or may not be at 50% of the chord Ch.

    [0044] The above thickness distribution may improve performance of the gas turbine engine 10 since frontal blockage is minimized. In addition to minimize radial flow migration hub front turning is minimized. Reduction in front turning could result in small flow area. It is thus desirable to minimize frontal thickness to have maximum flow area while more thickness is added rearward to keep root stress to acceptable level. This Xcg distribution, thus, may allow more freedom to optimize the airfoil surface curvature distribution to achieve a radial pressure distribution that can result in reduced secondary flow migration. The changes in shapes of the cross-sections CS-hub to CS-tip may be done smoothly from the hub 21 to the tip 27 by decreasing smoothly (linearly or not)the length of the thick portion.

    [0045] The above description is meant to be exemplary only, and one skilled in the art will recognize that changes may be made to the embodiments described without departing from the scope of the invention disclosed. The shapes of the airfoils described herein could be used in high speed rotors as well as in low speed rotors, and could be used in rotors that are not part of a compressor section of a gas turbine engine. The shapes of the airfoils described herein are not limited to transonic rotors. In the absence of shocks, as in subsonic designs, for rear stages of multistage compressor, both forward sweep and lean may be degrees of freedom that allow to design a blade as described above. Still other modifications which fall within the scope of the present invention will be apparent to those skilled in the art, in light of a review of this disclosure, and such modifications are intended to fall within the appended claims.


    Claims

    1. A compressor rotor airfoil (20) for a gas turbine engine, the airfoil comprising:

    opposed pressure and suction sides (32, 34) joined together at chordally opposite leading and trailing edges (36, 38), the pressure and suction sides extending in a span direction from a root (25) to a tip (27); and

    a leading edge dihedral angle (β) defined at a point (P) on the leading edge between a tangent (T) to the airfoil and a vertical (V), the leading edge dihedral angle having a span-wise distribution;

    characterized in that:
    the dihedral angle decreases from the root to a first inflection point (P1) along the span, increases from the first inflection point to a second inflection point (P2) along the span, and decreases from the second inflection point to the tip, wherein the first inflection point is disposed at about 80% of the span, and the second inflection point is disposed at about 95% of the span.


     
    2. The airfoil of claim 1, wherein the distribution of the leading edge dihedral angle has at most two changes of direction.
     
    3. The airfoil of claim 1, including a leading edge sweep angle (α) defined relative to the tangent to the airfoil and a flow velocity vector (Vel); and a ratio of the leading edge sweep angle to the leading edge dihedral angle being smaller than 1.
     
    4. The airfoil of claim 1, wherein a center of gravity of a cross-section of the airfoil along a chord (Ch) having an axial component, an axial component of a center of gravity of a cross-section at the tip of the airfoil being upstream relative to an axial component of a center of gravity of a cross-section at the root of the airfoil.
     
    5. A gas turbine engine (10) comprising:
    a compressor section (14) including a plurality of rotors (19), each of the plurality of rotors including a hub (21), the hubs being aligned axially, each of the rotors including a plurality of blades (20) extending radially from the hub, the blades including an airfoil according to any preceding claim.
     
    6. A method of reducing a rub angle between a compressor rotor blade and a casing surrounding the blade, the method comprising:

    forming an airfoil having opposed pressure and suction sides joined together at chordally opposite leading and trailing edges, the pressure and suction sides extending in a span direction from a root to a tip, a leading edge dihedral angle being defined between a tangent to the airfoil and a vertical at a point on the leading edge, the leading edge dihedral angle having a span-wise distribution;

    characterized in that:
    the dihedral angle decreases from the root to a first inflection point along the span, increases from the first inflection point to a second inflection point along the span, and decreases from the second inflection point to the tip, wherein the first inflection point is disposed at about 80% of the span, and the second inflection point is disposed at about 95% of the span.


     
    7. The method of claim 6, forming the airfoil comprises forming the airfoil with at most two changes of direction in the distribution of the leading edge dihedral angle
     
    8. The method of claim 6, wherein forming the airfoil comprises forming the airfoil with a ratio of a leading edge sweep angle to the leading edge dihedral angle being smaller than 1, the leading edge sweep angle being between a tangent to the airfoil and flow velocity vector.
     
    9. The method of claim 6, wherein forming the airfoil comprises forming the airfoil with a center of gravity of a cross-section of the airfoil along a chord having an axial component at the tip of the airfoil being upstream relative to an axial component of a center of gravity of a cross-section at the root of the airfoil.
     


    Ansprüche

    1. Verdichterrotorschaufelprofil (20) für ein Gasturbinentriebwerk, wobei das Schaufelprofil Folgendes umfasst:

    gegenüberliegende Druck- und Ansaugseiten (32, 34), die an einer Vorder- und einer Hinterkante (36, 38), die sehnenartig einander gegenüberliegen, miteinander verbunden sind, wobei sich die Druck- und Ansaugseiten in einer Spannrichtung von einer Wurzel (25) zu einer Spitze (27) erstrecken; und

    einen Vorderkanten-Raumwinkel (β), der an einem Punkt (P) an der Vorderkante definiert ist, zwischen einer Tangente (T) zum Schaufelprofil und einer Vertikalen (V), wobei der Vorderkanten-Raumwinkel eine Spannweitenverteilung aufweist;

    dadurch gekennzeichnet, dass:
    der Raumwinkel von der Wurzel zu einem ersten Inflexionspunkt (P1) entlang der Spannweite abnimmt, von dem ersten Inflexionspunkt zu einem zweiten Inflexionspunkt (P2) entlang der Spannweite zunimmt und von dem zweiten Inflexionspunkt zur Spitze abnimmt, wobei der erste Inflexionspunkt bei etwa 80 % der Spannweite angeordnet ist und der zweite Inflexionspunkt bei etwa 95 % der Spannweite angeordnet ist.


     
    2. Schaufelprofil nach Anspruch 1, wobei die Verteilung des Vorderkanten-Raumwinkels höchstens zwei Richtungsänderungen aufweist.
     
    3. Schaufelprofil nach Anspruch 1, beinhaltend einen Vorderkanten-Pfeilwinkel (α), der relativ zu der Tangente zu dem Schaufelprofil definiert ist, und einen Strömungsgeschwindigkeitsvektor (Vel); und wobei ein Verhältnis des Vorderkanten-Pfeilwinkels zum Vorderkanten-Raumwinkel kleiner ist als 1.
     
    4. Schaufelprofil nach Anspruch 1, wobei ein Schwerpunkt eines Querschnitts des Schaufelprofils entlang einer Sehne (Ch) eine axiale Komponente aufweist, wobei eine axiale Komponente eines Schwerpunkts des Querschnitts an der Spitze des Schaufelprofils stromaufwärts relativ zu einer axialen Komponente eines Schwerpunkts eines Querschnitts an der Wurzel des Schaufelprofils ist.
     
    5. Gasturbinentriebwerk (10), umfassend:
    einen Verdichterabschnitt (14), beinhaltend eine Vielzahl von Rotoren (19), wobei jeder der Vielzahl von Rotoren eine Nabe (21) beinhaltet, wobei die Naben axial ausgerichtet sind, wobei jeder der Rotoren eine Vielzahl von Schaufeln (20) beinhaltet, die sich radial von der Nabe erstrecken, wobei die Schaufeln ein Schaufelprofil nach einem der vorhergehenden Ansprüche beinhaltet.
     
    6. Verfahren zum Reduzieren eines Reibwinkels zwischen einer Verdichterrotorschaufel und einem Gehäuse, welches die Schaufel umgibt, wobei das Verfahren Folgendes umfasst:

    Bilden eines Schaufelprofils, welches gegenüberliegende Druck- und Ansaugseiten aufweist, die an einer Vorder- und einer Hinterkante, die sehnenartig einander gegenüberliegen, miteinander verbunden sind, wobei sich die Druck- und Ansaugseiten in einer Spannrichtung von einer Wurzel zu einer Spitze erstrecken, wobei ein Vorderkanten-Raumwinkel an einem Punkt an der Vorderkante zwischen einer Tangente zu dem Schaufelprofil und einer Vertikalen definiert ist, wobei der Vorderkanten-Raumwinkel eine Spannweitenverteilung aufweist;

    dadurch gekennzeichnet, dass:
    der Raumwinkel von der Wurzel zu einem ersten Inflexionspunkt entlang der Spannweite abnimmt, von dem ersten Inflexionspunkt zu einem zweiten Inflexionspunkt entlang der Spannweite zunimmt und von dem zweiten Inflexionspunkt zur Spitze abnimmt, wobei der erste Inflexionspunkt bei etwa 80 % der Spannweite angeordnet ist und der zweite Inflexionspunkt bei etwa 95 % der Spannweite angeordnet ist.


     
    7. Verfahren nach Anspruch 6, wobei das Bilden des Schaufelprofils das Bilden des Schaufelprofils mit höchstens zwei Richtungsänderungen bei der Verteilung des Vorderkanten-Raumwinkels umfasst.
     
    8. Verfahren nach Anspruch 6, wobei das Bilden des Schaufelprofils das Bilden des Schaufelprofils mit einem Verhältnis eines Vorderkanten-Pfeilwinkels zu dem Vorderkanten-Raumwinkel kleiner als 1 umfasst, wobei der Vorderkanten-Pfeilwinkel zwischen einer Tangente zum Schaufelprofil und einem Strömungsgeschwindigkeitsvektor liegt.
     
    9. Verfahren nach Anspruch 6, wobei das Bilden des Schaufelprofils das Bilden des Schaufelprofils mit einem Schwerpunkt eines Querschnitts des Schaufelprofils entlang einer Sehne umfasst, aufweisend eine axiale Komponente an der Spitze des Schaufelprofils stromaufwärts relativ zu einer axialen Komponente eines Schwerpunkts eines Querschnitts an der Wurzel des Schaufelprofils.
     


    Revendications

    1. Surface portante (20) de rotor de compresseur pour un moteur à turbine à gaz, la surface portante comprenant :

    des intrados et extrados opposés (32, 34) reliés entre eux au niveau des bords d'attaque et de fuite (36, 38) opposés dans le sens de la corde, les intrados et extrados s'étendant dans une direction d'envergure d'une emplanture (25) à une extrémité (27) ; et

    un angle dièdre de bord d'attaque (β) défini au niveau d'un point (P) sur le bord d'attaque entre une tangente (T) à la surface portante et une verticale (V), l'angle dièdre de bord d'attaque ayant une répartition dans le sens de l'envergure ;

    caractérisée en ce que :
    l'angle dièdre diminue de l'emplanture à un premier point d'inflexion (P1) le long de l'envergure, augmente du premier point d'inflexion à un second point d'inflexion (P2) le long de l'envergure et diminue du second point d'inflexion à l'extrémité, dans laquelle le premier point d'inflexion est disposé à environ 80 % de l'envergure, et le second point d'inflexion est disposé à environ 95 % de l'envergure.


     
    2. Surface portante selon la revendication 1, dans laquelle la répartition de l'angle dièdre de bord d'attaque a au plus deux changements de direction.
     
    3. Surface portante selon la revendication 1, comportant un angle de balayage de bord d'attaque (α) défini par rapport à la tangente à la surface portante et un vecteur de vitesse d'écoulement (Vel) ; et un rapport de l'angle de balayage de bord d'attaque à l'angle dièdre de bord d'attaque étant inférieur à 1.
     
    4. Surface portante selon la revendication 1, dans laquelle un centre de gravité d'une section transversale de la surface portante le long d'une corde (Ch) a une composante axiale, une composante axiale d'un centre de gravité d'une section transversale au niveau de l'extrémité de la surface portante étant en amont par rapport à une composante axiale d'un centre de gravité d'une section transversale au niveau de l'emplanture de la surface portante.
     
    5. Moteur à turbine à gaz (10) comprenant :
    une section de compresseur (14) comportant une pluralité de rotors (19), chacun de la pluralité de rotors comportant un moyeu (21), les moyeux étant alignés axialement, chacun des rotors comportant une pluralité d'aubes (20) s'étendant radialement depuis le moyeu, les aubes comportant une surface portante selon une quelconque revendication précédente.
     
    6. Procédé de réduction d'un angle de frottement entre une aube de rotor de compresseur et un carter entourant l'aube, le procédé comprenant :

    la formation d'une surface portante ayant des intrados et extrados opposés reliés entre eux au niveau des bords d'attaque et de fuite opposés dans le sens de la corde, les intrados et extrados s'étendant dans une direction d'envergure d'une emplanture à une extrémité, un angle dièdre de bord d'attaque étant défini entre une tangente à la surface portante et une verticale au niveau d'un point sur le bord d'attaque, l'angle dièdre de bord d'attaque ayant une répartition dans le sens de l'envergure ;

    caractérisé en ce que :
    l'angle dièdre diminue de l'emplanture à un premier point d'inflexion le long de l'envergure, augmente du premier point d'inflexion à un second point d'inflexion le long de l'envergure et diminue du second point d'inflexion à l'extrémité, dans lequel le premier point d'inflexion est disposé à environ 80 % de l'envergure, et le second point d'inflexion est disposé à environ 95 % de l'envergure.


     
    7. Procédé selon la revendication 6,
    la formation de la surface portante comprend la formation de la surface portante avec au plus deux changements de direction dans la répartition de l'angle dièdre de bord d'attaque.
     
    8. Procédé selon la revendication 6,
    dans lequel la formation de la surface portante comprend la formation de la surface portante avec un rapport d'un angle de balayage de bord d'attaque à l'angle dièdre de bord d'attaque inférieur à 1, l'angle de balayage de bord d'attaque étant compris entre une tangente à la surface portante et un vecteur de vitesse d'écoulement.
     
    9. Procédé selon la revendication 6,
    dans lequel la formation de la surface portante comprend la formation de la surface portante avec un centre de gravité d'une section transversale de la surface portante le long d'une corde ayant une composante axiale au niveau de l'extrémité de la surface portante étant en amont par rapport à une composante axiale d'un centre de gravité d'une section transversale au niveau de l'emplanture de la surface portante.
     




    Drawing







































    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description