(19)
(11)EP 2 991 252 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.11.2020 Bulletin 2020/45

(21)Application number: 15181746.7

(22)Date of filing:  20.08.2015
(51)International Patent Classification (IPC): 
H04J 3/16(2006.01)
H04J 14/02(2006.01)

(54)

OTN ADAPTATION FOR SUPPORT OF SUBRATE GRANULARITY AND FLEXIBILITY AND FOR DISTRIBUTION ACROSS MULTIPLE MODEM ENGINES

OTN-ANPASSUNG ZUR UNTERSTÜTZUNG DER SUBSTRATGRANULARITÄT UND -FLEXIBILITÄT UND ZUR VERTEILUNG ÜBER MEHRERE MODEM-ENGINES

ADAPTATION OTN POUR SUPPORT DE GRANULARITÉ À SOUS-DÉBIT ET DE FLEXIBILITÉ ET DE DISTRIBUTION À TRAVERS DE MULTIPLES MOTEURS DE MODEM


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 25.08.2014 US 201414467769

(43)Date of publication of application:
02.03.2016 Bulletin 2016/09

(60)Divisional application:
20197900.2

(73)Proprietor: Ciena Corporation
Hanover, MD 21076 (US)

(72)Inventors:
  • GAREAU, Sebastien
    Ottawa, Ontario K1W 0E2 (CA)
  • GAGNON, Ronald
    Ottawa, Ontario K2H 9R9 (CA)
  • MCCARTHY, Andrew
    Kanata, Ontario K2T 1B1 (CA)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
CN-A- 102 820 951
US-A1- 2013 243 428
  
  • STEVE GORSHE: "Proposal for the Multiplexing of ODU clients into OTUCn;C 0518 Rev.1", ITU-T DRAFT ; STUDY PERIOD 2013-2016, INTERNATIONAL TELECOMMUNICATION UNION, GENEVA ; CH, vol. 11/15, 11 March 2014 (2014-03-11), pages 1-5, XP017590160, [retrieved on 2014-03-11]
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

FIELD OF THE DISCLOSURE



[0001] The present disclosure relates generally to networking systems and methods. More particularly, the present disclosure relates to Optical Transport Network (OTN) adaptation for distribution to one or more optical modem engines.

BACKGROUND OF THE DISCLOSURE



[0002] In Optical Transport Network (OTN), there is momentum regarding flex modulation and flex line rates. There are different ways to achieve a flex rate. For example, some vendors have created proprietary Optical channel Data Unit Group (ODUG) Super High Order (SHO) wrappers to handle cases of 50G, 100G, 200G, etc. for modem technologies. In ITU-T, there have been discussions about defining OTUCn, a byte interleaved scheme for flexibility in increments of 100G. OTUCn stands for Optical channel Transport Unit Cn where C means 100 and n is a multiplier of 100, e.g. OTUC2 is 200 GB/s, OTUC4 is 400 GB/s, etc. The current ITU-T OTUCn standards are planning on defining a modular (not necessarily flexible) architecture for 100G slices and granularity. The problem is that this architecture does not give enough granularity on next-Gen devices for bandwidth versus performance/reach tradeoffs. It also does not cover some modulation rates (e.g., 8-Quadrature Amplitude Modulation (8QAM) at 150G) that are not aligned to 100G boundaries. Other initiatives have proposals to turn off single or groups of physical, virtual, or logical lanes in a Physical Medium Dependent (PMD) layer to achieve a desired rate. There are some significant implementation and logic complexities when designing a protocol to support multiple different rates at the physical layer.

[0003] This flexible line rate is becoming a hot topic in the industry and recent activities by end users include a desire for sub-100G granularity (25G or 50G). Again, some conventional schemes address flexibility by turning off physical or virtual lanes, but complexity and logic cost is significant. Resizing using lanes scheme is also a challenge. The 25G/50G granularity does not line up well to existing 10G traffic. Also, scaling conventional techniques for mux/mapping rates of 10G up to 500G requires large logic complexity.

[0004] As optical transmission systems start approaching the Shannon limit for non-linear noise and demand for increased data rates continues, Digital Signal Processing (DSP)/modem engines can get implemented in parallel devices or multiple engines get integrated to create super-channels with optical or electrical mixing. Low complexity and flexible schemes are needed for inverse multiplexing ("muxing") and distributing signals across these different channels at the physical layer. To minimize line-side penalties, an equal and symmetrical bandwidth split is required across the multiple engines, and there is high complexity involved to support flexible rate bandwidth splitting. For example, to split 340G across two devices would be 2x170G channels, 930G across three devices would be 3x310G channels, etc.

[0005] There are different conventional techniques developed to handle the breakup and inverse muxing of signals across multiple channels. For example, IEEE has defined Link Aggregation Groups (LAG) and ITU has been using Virtual Concatenation (VCAT) type of schemes of standard defined containers Low Order (LO)/High Order (HO) Optical channel Transport Unit-k (OTUk). LAG is a higher layer protocol utilizing smaller-sized channels to carry a super-channel. The protocol is implemented at Layer 2 (Ethernet) and adds huge complexity and memory requirements. It is typically implemented using a Network Processing Unit (NPU) and other types of devices; LAG is not an appropriate approach to be integrated into optical DSP/modem devices. Standard ITU-defined VCAT schemes include grouping smaller sized standard containers, which would be Optical channel Data Unit-2 (ODU2) to get 10G granularity on the line side. There is a large logic complexity to map a signal (i.e. 240G) to nxODU2 (i.e. 24) and then switch and distribute these ODU2 signals across multiple optical DSP/modem devices. The extra mapping complexity can add to wander and decrease network performance.

[0006] CN 102 820 951 and EP2874332A1 relate to the field of optical transport networks, and in particular, to a method and an apparatus for transmitting and receiving a client signal in an optical transport network. STEVE GORSCHE: "Proposal for the Multiplexing of ODU clients into OTUCn;C 0518 Rev.1", ITU-T DRAFT; STUDY PERIOD 2013-2016, INTERNATIONAL TELECOMMUNICATION UNTION, GENEVA; CH, vol. 11/15, 11 March 2014 (2014-03-11), pages 105, XP017590160, [retrieved on 2014-03-11] recommends a frame structure and rate adaptation scheme for the multiplexing of ODUk and ODUflex clients into an OTUCN carrier.

BRIEF SUMMARY OF THE DISCLOSURE



[0007] In an exemplary embodiment, a method for Optical Transport Network (OTN) line side adaptation to provide sub-rate granularity and distribution is described according to appended claim 1.

[0008] In another exemplary embodiment, a circuit for Optical Transport Network (OTN) line side adaptation to provide sub-rate granularity and distribution is described according to appended claim 7.

[0009] In a further exemplary embodiment, a system for Optical Transport Network (OTN) line side adaptation to provide sub-rate granularity and distribution is described according to appended claim 12

BRIEF DESCRIPTION OF THE DRAWINGS



[0010] The present disclosure is illustrated and described herein with reference to the various drawings, in which like reference numbers are used to denote like system components/method steps, as appropriate, and in which:

FIG. 1 is an atomic function for an adaptation process of an OTUCn;

FIG. 2 is an atomic function for an adaptation process where a single client gets split among two or more different line interfaces;

FIG. 3 is a diagram atomic function for an adaptation process where two or more clients are provided to a same line interface;

FIG. 4 is a diagram of front-end adaptation with the adaptation process;

FIG. 5 is a diagram of cell adaptation of a plurality of cells;

FIG. 6 is a diagram of cell adaptation with unallocated tributary slots;

FIG. 7 is a block diagram of cell adaptation for different flows;

FIG. 8 is a block diagram of the line adaptation and a scheduler to service multiple flows;

FIG. 9 is a block diagram of two 500G adaptation circuits; and

FIG. 10 is a flow chart of a process for Optical Transport Network (OTN) line side adaptation to provide sub-rate granularity and distribution.


DETAILED DESCRIPTION OF THE DISCLOSURE



[0011] The following acronyms are utilized herein:
ASIC Application Specific Integrated Circuit
BIP Bit Interleaved Parity
CI Characteristic Information
COMMS Communications channel
DSP Digital Signal Processing
FAS Frame Alignment Signal
FEI Forward Error Indication
FPGA Field Programmable Gate Array
GFEC Generic Forward Error Correction
HEC Header Error Control
HO High Order
LAG Link Aggregation Group
LO Low Order
MS Multiplex Section
MSI Multiplex Structure Identifier
PMD Physical Medium Dependent
OAM Operations, Administration, Maintenance
ODU Optical channel Data Unit
ODUflex Optical channel Data Unit flexible
ODUCn Optical channel Data Unit (C=100) x n (n=1, 2, 3, ...)
OH Overhead
OMFI OPU Multiframe Identifier
OPU Optical channel Path Unit
OPUCn Optical channel Path Unit (C=100) x n (n=1, 2, 3, ...)
OTN Optical Transport Network
OTUk Optical channel Transport Unit level k (k=1, 2, 3, or 4)
OTUCn Optical channel Transport Unit (C=100) x n (n=1, 2, 3, ...)
PCS Physical Coding Sub-layer
PM Path Monitoring
QAM Quadrature Amplitude Modulation
RS Regenerator Section
SAR Segmentation and Reassembly
SD-FEC Soft Decision Forward Error Correction
SDN Software Defined Networking
SHO Super High Order
SM Section Monitoring
SV-IaDI Single Vendor Intra-Domain Integration
TDM Time Division Multiplexing
TS Tributary Slot
VCAT Virtual Concatenation


[0012] In various exemplary embodiments, OTN line adaptation systems and methods are described. In an exemplary embodiment, an OTUCn line adaptation layer for a proprietary line side (SV-IaDI) splits or segments the OTUCn into 10G tributary slots (i.e., 10x per OTUC1), and only transmits on the line side the allocated tributary slots and OTUCn overhead. The process removes extra unused capacity of a standard OTUCn 100G container. This adapts a standard OTUCn frame (or any HO or SHO OTN signal), but utilizes the tributary slot structure within an OPUCn payload to get to 10G granularity. LO ODUk (k=0, 1, 2, 3, 4, flex) can get mapped into OTUCn tributary slots with 10G granularity and these will be adapted on the line. On the receive side of the line, the m x 10G signal is reconstituted and put back into an OTUCn standard frame format. Ethernet clients can be sub-rate groomed, then mapped to an appropriately sized ODUflex, and then mapped to m x 10G tributary slots in the OTUCn structure. At the receive side of the line, the ODUflex signal is recovered from the equivalent set of allocated tributary slots.

[0013] In another exemplary embodiment, an OTUCn cell adaptation layer for a proprietary line side (SV-IaDI) creates fixed-sized cells from multiple traffic streams. These cells are switched using scheduling algorithms across a cell switch which is distributed outside or inside multiple DSP/modem devices or engines. The switch distributes cells to the multiple DSP/modem devices or engines, which achieves flexible bandwidth split. Cells having taken different paths are deskewed and aligned on the receiver to recreate the original signal. The cells contain unique IDs for switching and path selection within the modem/DSP device scope (and the line adaptation). This provides a process for addressing the complexities of providing flexible bandwidth across multiple modem/DSP devices.

[0014] Advantageously, the OTN line adaptation systems and methods align to the ITU-T OTUCn structure and models, but extends the protocol (OTN frame format) to achieve flexible rates at small increments below 100G. This allows adaptation of a fixed rate interface to a flexible rate line interface. ITU standards are not planning on defining SV-IaDI adaptation for OTUCn. Note, SV-IaDI is an adaptation between standard client interfaces at OTUCn and optical modems. This allows flex line and bandwidth splits among multiple devices/wavelengths. Additionally, the OTN line adaptation systems and methods result in a small logic implementation in comparison to other muxing schemes. Also, the mapping into cells can be protocol agnostic, and does not have to be limited to 10G granularity. This approach provides flexibility of cells (or packets) to switch and assign different paths to the desired Time Division Multiplexing (TDM) (OTUCn) traffic.

[0015] The OTN line adaptation systems and methods use OTUCn as SHO (or HO OTUk) to avoid proprietary schemes and align with future 100G OTN standardization. The OTN line adaptation systems and methods prevent unnecessary mapping/demapping stages by carrying OTUCn OH + payload into cells and only sending used (allocated) tributary slots in 10G increments (or any other increments). The OTN line adaptation systems and methods carry tributary slots independently whether the traffic source includes a single Cn, groups of Cn (e.g., C5) in single chip or groups of Cn across multi-chips. In this manner, the OTN line adaptation systems and methods disassociate modem rate to OTUC1 and tributary slot structure.

[0016] Referring to FIG. 1, in an exemplary embodiment, an atomic function diagram illustrates an adaptation process 10. The adaptation process 10 is based on the ITU-T standard OTUCn frame structures and tributary slots. Note, because the adaptation process 10 operates between a client 12 and a line 14, the adaptation of OTUCn for SV-IaDI is not subject to standardization. That is, the adaptation process 10 is used for a vendor's line-side transmission. The adaptation process 10 is illustrated from the top, at a client_CI 12, down to a Line_CI 14. The adaptation process 10 takes in an OTUCn frame (OTUCn/CI 20), breaks-up the 64-byte overhead (per multi-frame OMFI) and 10G tributary payload into 10 x 10G streams (Cn10G/OTUCn, cell adaptation 22). The individual 10 x 10G streams are SARed (create cells/packets), with associated identifiers (IDs) for the streams. The OPUCn MSI OH contains the allocation and structure of the 10G tributary slots and can distinguish which slots are filled with data and which are empty. The cell adaptation 22 also includes OTUCn BIP compensation, a cell ID for each cell, and timing information.

[0017] Subsequent to the cell adaptation 22, line adaptation 24 is performed on the line TX side. On the line TX side, a scheduler can be used and configured to service and interleave only the cell streams that are filled with data (as reflected by the OPUCn MSI). The cell adaptation 22 provides CnlOG (n x 10G cells) (n ≥ 1), and the line adaptation 24 provides m10Gcells (not necessarily carrying a multiple of 100G). The OTUCn/ODUCn/OPUCn OH is distributed across cell streams based on the OMFI. This results in removing unused capacity in the OTUCn structure by only transmitting the used 10G streams. This also results in 10G granularity on the line side, but still utilizing the OAM, section and functions of the SHO OTUCn. In the line adaptation 24, since cell streams are interleaved, the OTUCn frame FAS cannot be used for alignment. A special cell can be used for alignment, with fixed occurrence in order to prevent the need for a PCS layer. After the line adaptation 24, SD-FEC 26 can be added and the line_CI 14 can be provided to a modem.

[0018] In the opposite direction after transmission on the line RX side, cells are received and reassembled for the used streams and tributary slots. The cell ID is used to distinguish the different streams. A standard OTUCn frame is recreated and empty streams (which have been omitted on the line) are filled in and set as unallocated in the OTUCn frame (MSI). The overall adaptation process 10 includes receiving a standard OTUCn in, performing the adaptation process 10 from the client_CI 12 to the line_CI 14, transmission (between two modems), performing the adaptation process 10 from the line_CI 14 to the client_CI 12, and providing the OTUCn as the output.

[0019] Referring to FIGS. 2 and 3, in an exemplary embodiment, flow diagrams illustrate an adaptation processes 10A, 10B. The adaptation processes 10A, 10B are similar to the adaptation process 10, but are described to illustrate disassociation of the client_CI 12 from the line_CI 14. On the line TX side, cells are switched (via cell switch) using IDs to redirect a path to an appropriate optical modem/DSP device. Again, the granularity of this switching cell flow can be 10G; although other rates are possible. Client rates, interfaces and OTUCn frame format is disassociated to the actual line rate and engine instance. A scheduler is used in the line adaptation 24 and modem/DSP device to service the different cell flows destined for its line. On the line RX side, cells received then switched (via cell switch) back to desired OTUCn processing logic and group. Suppose the layer that OTUCn is adapted to is called Cn10G and the layer below (not carrying a multiple of 100G) is called m10Gcell. The number of client interfaces is disassociated from the number of line interfaces. For example, FIG. 2 illustrates the adaptation process 10A where a single client, client_CI 12, gets split among two different line interfaces, line_CI 14A, 14B. FIG. 3 illustrates the adaptation process 10A where two clients, client_CI 12A, 12B, are provided to a same line interface, line_CI 14.

[0020] Referring to FIG. 4, in an exemplary embodiment, a diagram illustrates the front-end adaptation with the adaptation process 10. FIG. 4 illustrates an example of converting an OTUCn to a modem bus. The OTUCn includes OPUCn payload 30, OPUCn OH 32, ODUCn payload 34, ODUCn OH 36, OTUCn payload 38, and OTUCn OH 40. The OPUCn payload 30 is split into 10 tributary flows or TSs and each of the 10 tributary payloads is mapped to one of the 10x flows per OTUC1, based on OMFI. Note, FIG. 4 illustrates four OMFIs, but there may be 10 in this exemplary embodiment for 10G tributary slots. The OPUCn OH 32, ODUCn OH 36, and the OTUCn OH 40 is split amongst the 10x tributary flows based on OMFI.

[0021] As described herein, there can be N flows of cells, where N ≥ 0, and each of the N flows represents an allocated tributary slot in the OTN signal, where the sub-rate equals the overall OTN signal rate divided by N. In this example, N = 10 and the OTUCn = 100, so each flow is 10G. In the cell adaptation 22, before the cell switch, OTUCn frames (OTUCn/ODUCn/OPUCn OH + tributary payload) are converted into 10x tributary flows and cells. Where N = 0, no allocated payload, only overhead is provided from the OTN signal, i.e. the systems and methods contemplate a sub-rate signal where there is no payload, only overhead.

[0022] Referring to FIG. 6, in an exemplary embodiment, cell adaptation is illustrated with unallocated tributary slots. In this example, tributary slots are occupied for OMFI = 0, 3, but unallocated for OMFI = 1, 2. Note, the OTN OH is still sent when there are unallocated tributary slots. A framer is needed to hunt for OTN FAS in cell stream (after reassembly), and no alignment of cells is needed. The framer looks for the normal frame position, or back to back OH cells if unused tributary.

[0023] Referring to FIG. 7, in an exemplary embodiment, a block diagram illustrates the cell adaptation 22 for different flows. Here, the TS from multiple frames of OTUCn 20 are adapted into the cells via a cell adaptation function 60 (SAR). The cell adaptation function 60 can be implemented in circuitry with various queues or buffers. The cell adaptation function 60 connects to a cell switch 62 which is configured to provide the cells to the line adaptation 24.

[0024] Referring to FIG. 8, in an exemplary embodiment, a block diagram illustrates the line adaptation 24 and a scheduler 70. The line adaptation 24 includes circuitry after the cell switch 62, and the line adaptation 24 is configured to combine cells from all used and allocated flows using the scheduler 70. The scheduler 70 can utilize round-robin, a calendar, or the like. OH circuitry 74 and framing circuitry 76 also connects to the scheduler 70. Subsequent to the scheduler 70, scrambling circuitry 78 is configured to scramble the data.

[0025] Referring to FIG. 9, in an exemplary embodiment, a block diagram illustrates two 500G adaptation circuits 80. The 500G adaptation circuits 80 perform the adaptation processes described herein and physically reside between client interface and optical modem. Note, for illustration purposes, two of the 500G adaptation circuits 80 are illustrated to show scheduling between the 500G adaptation circuits 80. The 500G adaptation circuits 80 include OTU4/ODU4/OTUC1/ODUflex framers 82 which is communicatively coupled to the client. The framers 82 are configured to operate at a client rate - OTU4/ODU4/OTUC1/ODUflex. The framers 82 are communicatively coupled to ODTUC1.j PT=0x22 multiplexers 84 (payload type = 0x22).

[0026] The multiplexers 84 are configured to interface at tributary slots with the framers 82. The multiplexers 84 are communicatively coupled to OTUC1 framers 86 which are configured to interface the tributary slots. Subsequent to the OTUC1 framers 86, the cell adaptation function 60 (SAR) is configured to interface to the OTUC1s from the framers 86 with the 10x tributary slots therein. The cell adaptation function 60 (SAR) connection to the cell switch 62 which is communicatively coupled to the scheduler 70 and a scheduler 90 for cells between the 500G adaptation circuits 80. Finally, the scheduler 70 is configured to interface to a modem for optical transmission of the cells.

[0027] Referring to FIG. 10, in an exemplary embodiment, a flow chart illustrates a process 100 for Optical Transport Network (OTN) line side adaptation to provide sub-rate granularity and distribution. The process 100 includes segmenting an OTN signal into N flows of cells with associated identifiers, based on tributary slots of the OTN signal, wherein N ≥ 0, and wherein the cells do not include unallocated payload from the OTN signal (step 102). The process 100 also includes switching the cells to a scheduler (step 104). Finally, the process 100 includes scheduling, from the scheduler, the cells for a line side modem (step 106). Note, the steps 104, 106 can include switching the cells, with a scheduler, to one or more line side modems. The OTN signal can be one of a) from a client and the N flows of cells from the client are sent to different line side modems and b) from two or more clients and the N flows of cells from the two or more clients are sent to a same line side modem.

[0028] The segmenting can be determined based on the OMFI and MSI associated with the OTN signal, and N is based on a number of allocated tributary slots in the OTN signal. When N = 0, only overhead is provided in the cells to the line side modem. The OTN signal is an Optical channel Transport Unit (C=100) x n (n=1, 2, 3, ...) (OTUCn) or a High Order or Super High Order OTN signal with tributary slots. The signal provided to the line side modem is a sub-rate of the OTUCn or the High Order or Super High Order OTN signal with tributary slots or a full-rate of the same signal. The scheduling can utilize round robin or a calendar. The method can further include inserting a framing cell to enable recovery from the line side modem. The scheduling can include scheduling some of the cells to a second line side modem.

[0029] In the various exemplary embodiments described herein, reference has been made to OTUCn for illustration purposes. Those of ordinary skill in the art will recognize the systems and methods can also be used on High Order (HO) OTN signals with corresponding tributary slots. For example, a HO OTU4 has 80 TSs of 1.25G each, and the systems and methods described herein can enable transmission of less than the 80 TSs, i.e. a sub-rate, to provide a composite signal of less than 100G to the line side modem when there are unallocated TSs. The systems and methods also contemplate operations with any Super High Order (SHO) OTN signal that may be developed. For example, OTUCn has been described herein where C = 100 and n = 1, 2, 3..., and there may be other variants of this such as OTULn where L = 50 and n = 1, 2, 3,... for increments of 50G (whereas the OTUCn has increments of 100G). Any such embodiments are contemplated herein.

[0030] It will be appreciated that some exemplary embodiments described herein may include one or more generic or specialized processors ("one or more processors") such as microprocessors, digital signal processors, customized processors, and field programmable gate arrays (FPGAs) and unique stored program instructions (including both software and firmware) that control the one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions of the methods and/or systems described herein. Alternatively, some or all functions may be implemented by a state machine that has no stored program instructions, or in one or more application specific integrated circuits (ASICs), in which each function or some combinations of certain of the functions are implemented as custom logic. Of course, a combination of the aforementioned approaches may be used. Moreover, some exemplary embodiments may be implemented as a non-transitory computer-readable storage medium having computer readable code stored thereon for programming a computer, server, appliance, device, etc. each of which may include a processor to perform methods as described and claimed herein. Examples of such computer-readable storage mediums include, but are not limited to, a hard disk, an optical storage device, a magnetic storage device, a ROM (Read Only Memory), a PROM (Programmable Read Only Memory), an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Programmable Read Only Memory), Flash memory, and the like. When stored in the non-transitory computer readable medium, software can include instructions executable by a processor that, in response to such execution, cause a processor or any other circuitry to perform a set of operations, steps, methods, processes, algorithms, etc.

[0031] Although the present disclosure has been illustrated and described herein with reference to preferred embodiments and specific examples thereof, it will be readily apparent to those of ordinary skill in the art that other embodiments and examples may perform similar functions and/or achieve like results.


Claims

1. A method for Optical Transport Network OTN line side adaptation to provide sub-rate granularity and distribution, the method comprising:

subsequent to receiving OTN signal, segmenting the OTN signal into N flows of cells with associated identifiers, based on a number of allocated tributary slots of the OTN signal, wherein N ≥ 0, wherein, when N>O, the cells only include allocated payload from the OTN signal (102), the method characterized by in that, when N=O, the cells only include overhead; and

switching the cells, with a scheduler, to one or more line side modems (104) for transmission thereof where a rate of the one or more line side modems (104) is disassociated from a line rate of the OTN signal.


 
2. The method of claim 1, wherein the segmenting is determined based on an Optical channel Path Unit Multiframe Identifier, OMFI, and Multiplex Structure Identifier, MSI, associated with the OTN signal, and N is based on a number of allocated tributary slots in the OTN signal.
 
3. The method of claims 1-2, wherein the OTN signal is an Optical channel Transport Unit OTUCn, wherein C=100 and n is a multiplier of 100 e.g. 1, 2, 3,..., or a High Order or Super High Order OTN signal with tributary slots, and wherein a signal provided to the one or more line side modems is a sub-rate or a full-rate of the OTUCn or the High Order or Super High Order OTN signal with tributary slots.
 
4. The method of claims 1-3, wherein the OTN signal is from a client and the N flows of cells from the client are sent to different line side modems.
 
5. The method of claims 1-4, wherein the OTN signal is from two or more clients and the N flows of cells from the two or more clients are sent to a same line side modem.
 
6. The method of claims 1-5, further comprising:
inserting a framing cell to enable recovery from the one or more line side modems.
 
7. A circuit for Optical Transport Network, OTN, line side adaptation to provide sub-rate granularity and distribution, the circuit comprising
cell adaptation circuitry (60) configured to segment, subsequent to receiving an OTN Signal, the OTN signal into N flows of cells with associated identifiers, based on a number of allocated tributary slots of the OTN signal, wherein N ≥ 0, wherein, when N>O, the cells only include allocated payload from the OTN signal and switch the cells to a scheduler; the circuit characterized in that, when N=O, the cells only include overhead; and by further comprising line adaptation circuitry (24) configured to schedule, from the scheduler, the cells to one or more line side modems for transmission thereof where a rate of the one or more line side modems is disassociated from a line rate of the OTN signal.
 
8. The circuit of claim 7, wherein the N flows are determined based on Optical channel Path Unit Multiframe Identifier, OMFI, and Multiplex Structure Identifier, MSI, and N is based on a number of allocated tributary slots in the OTN signal.
 
9. The circuit of claims 7-8, wherein the OTN signal is an Optical channel Transport Unit OTUCn, wherein C=100 and n is a multiplier of 100 e.g. 1, 2, 3,..., or a High Order or Super High Order OTN signal with tributary slots.
 
10. The circuit of claims 7-9, wherein a signal provided to the one or more line side modems is a sub-rate or a full-rate of the OTUCn or the High Order or Super High Order OTN signal with tributary slots.
 
11. The circuit of claims 7-10, wherein the OTN signal is one of a) from a client and the N flows of cells from the client are sent to different line side modems and b) from two or more clients and the N flows of cells from the two or more clients are sent to a same line side modem.
 
12. A system for Optical Transport Network, OTN, line side adaptation to provide sub-rate granularity and distribution, the system comprising:

a first adaptation circuit (80) communicatively coupled to a first line side modem; and

a second adaptation circuit (80) communicatively coupled to a second line side modem;

wherein each of the first adaptation circuit and the second adaptation circuit comprise cell adaptation circuitry (60) configured to segment, subsequent to receiving an OTN signal, the OTN signal into N flows of cells with associated identifiers, based on a number of allocated tributary slots of the OTN signal, wherein N ≥ 0, wherein, when N>O, the cells only include allocated payload from the OTN signal and switch the cells to a scheduler, each of the first and second adaptation circuits characterized in that, when N=0 the cells only include overhead, and and further comprising line adaptation circuitry (24) configured to schedule, from the scheduler, the cells to one or more line side modems for transmission thereof where a rate of the one or more line side modems is disassociated from a line rate of the OTN signal.


 
13. The system of claim 12, wherein the N flows are determined based on Optical channel Path Unit Multiframe Identifier, OMFI, and Multiplex Structure Identifier, MSI, and N is based on a number of allocated tributary slots in the OTN signal.
 


Ansprüche

1. Verfahren für leitungsseitige Adaption eines Optical Transport Network OTN, um Subraten-Granularität und -Verteilung bereitzustellen, wobei das Verfahren umfasst:

im Anschluss an Empfangen eines OTN-Signals Segmentieren des OTN-Signals in N Flüsse von Zellen mit verknüpften Identifikatoren auf Basis einer Zahl von zugeordneten abhängigen Zeitschlitzen des OTN-Signals, wobei N ≥ 0, wobei wenn N > 0 die Zellen nur zugeordnete Nutzlast von dem OTN-Signal (102) beinhalten, wobei das Verfahren dadurch gekennzeichnet ist, dass wenn N=0, die Zellen nur Overhead beinhalten; und

Umschalten der Zellen mit einem Scheduler auf ein oder mehrere leitungsseitige Modems (104) zum Senden davon, wobei eine Rate des einen oder der mehreren leitungsseitigen Modems (104) von einer Leitungsrate des OTN-Signals getrennt ist.


 
2. Verfahren nach Anspruch 1, wobei das Segmentieren auf Basis eines Optical Channel Path Unit Multiframe Identifier, OMFI, und Multiplex Structure Identifier, MSI, bestimmt wird, welche mit dem OTN-Signal verknüpft sind, und N auf einer Zahl von zugeordneten abhängigen Zeitschlitzen in dem OTN-Signal basiert.
 
3. Verfahren nach Anspruch 1 - 2, wobei das OTN-Signal eine Optical Channel Transport Unit, OTUCn, ist, wobei C=100 und n ein Multiplikator von 100 ist, z. B. 1, 2, 3, ..., oder ein High Order oder Super High Order OTN-Signal mit abhängigen Zeitschlitzen ist, und wobei ein Signal, welches für das eine oder die mehreren leitungsseitigen Modems bereitgestellt wird, eine Subrate oder eine Vollrate der OTUCn oder des High Order oder Super High Order OTN-Signals mit abhängigen Zeitschlitzen ist.
 
4. Verfahren nach Anspruch 1 - 3, wobei das OTN-Signal von einem Client stammt und die N Flüsse von Zellen von dem Client an unterschiedliche leitungsseitige Modems gesendet werden.
 
5. Verfahren nach Anspruch 1 - 4, wobei das OTN-Signal von zwei oder mehr Clients stammt und die N Flüsse von Zellen von den zwei oder mehr Clients an ein selbes leitungsseitiges Modem gesendet werden.
 
6. Verfahren nach Anspruch 1 - 5, weiter umfassend:
Einfügen einer Rahmungszelle, um Wiederherstellung aus dem einen oder den mehreren leitungsseitigen Modems zu ermöglichen.
 
7. Schaltung für leitungsseitige Adaption eines Optical Transport Network, OTN, um Subraten-Granularität und -Verteilung bereitzustellen, wobei die Schaltung umfasst
eine Zellenadaptierungsschaltung (60), welche konfiguriert ist, im Anschluss an Empfangen eines OTN-Signals, das OTN-Signal in N Flüsse von Zellen mit verknüpften Identifikatoren auf Basis einer Zahl von zugeordneten abhängigen Zeitschlitzen des OTN-Signals zu segmentieren, wobei N ≥ 0, wobei wenn N > 0 die Zellen nur zugeordnete Nutzlast von dem OTN-Signal beinhalten und die Zellen auf einen Scheduler umschalten;
wobei die Schaltung dadurch gekennzeichnet ist, dass wenn N=0, die Zellen nur Overhead beinhalten; und dass sie weiter eine Leitungsadaptierungsschaltung (24) umfasst, welche konfiguriert ist, die Zellen von dem Scheduler auf ein oder mehrere leitungsseitige Modems zum Senden davon zu planen, wobei eine Rate des einen oder der mehreren leitungsseitigen Modems von einer Leitungsrate des OTN-Signals getrennt ist.
 
8. Schaltung nach Anspruch 7, wobei die N Flüsse auf Basis eines Optical Channel Path Unit Multiframe Identifier, OMFI, und Multiplex Structure Identifier, MSI, bestimmt werden, und N auf einer Zahl von zugeordneten abhängigen Zeitschlitzen in dem OTN-Signal basiert.
 
9. Schaltung nach Anspruch 7 - 8, wobei das OTN-Signal eine Optical Channel Transport Unit, OTUCn, ist, wobei C=100 und n ein Multiplikator von 100 ist, z. B. 1, 2, 3, ..., oder ein High Order oder Super High Order OTN-Signal mit abhängigen Zeitschlitzen ist.
 
10. Schaltung nach Anspruch 7 - 9, wobei ein Signal, welches für das eine oder die mehreren leitungsseitigen Modems bereitgestellt wird, eine Subrate oder eine Vollrate des OTUCn oder des High Order oder Super High Order OTN-Signals mit abhängigen Zeitschlitzen ist.
 
11. Schaltung nach Anspruch 7 - 10, wobei das OTN-Signal eines von a) von einem Client ist und den N Flüsse von Zellen von dem Client an unterschiedliche leitungsseitige Modems gesendet werden und b) von zwei oder mehr Clients ist und die N Flüsse von Zellen von den zwei oder mehr Clients an ein selbes leitungsseitiges Modem gesendet werden.
 
12. System für leitungsseitige Adaption eines Optical Transport Network, OTN, um Subraten-Granularität und -Verteilung bereitzustellen, wobei das System umfasst:

eine erste Adaptionsschaltung (80), welche mit einem ersten leitungsseitigen Modem kommunikativ gekoppelt ist; und

eine zweite Adaptionsschaltung (80) welche mit einem zweiten leitungsseitigen Modem kommunikativ gekoppelt ist;

wobei jede von der ersten Adaptionsschaltung und der zweiten Adaptionsschaltung eine Zellenadaptierungsschaltung (60) umfasst, welche konfiguriert ist, um im Anschluss an Empfangen eines OTN-Signals, das OTN-Signal in N Flüsse von Zellen mit verknüpften Identifikatoren auf Basis einer Zahl von zugeordneten abhängigen Zeitschlitzen des OTN-Signals zu segmentieren, wobei N ≥0, wobei wenn N > 0 die Zellen nur zugeordnete Nutzlast von dem OTN-Signal beinhalten und die Zellen auf einen Scheduler umschaltet, wobei jede der ersten und zweiten Adaptionsschaltung dadurch gekennzeichnet ist, dass wenn N = 0, die Zellen nur Overhead beinhalten, und weiter eine Leitungsadaptierungsschaltung (24) umfassend, welche konfiguriert ist, um die Zellen von dem Scheduler auf ein oder mehrere leitungsseitige Modems zum Senden davon zu planen, wobei eine Rate des einen oder der mehreren leitungsseitigen Modems von einer Leitungsrate des OTN-Signals getrennt ist.


 
13. System nach Anspruch 12, wobei die N Flüsse auf Basis eines Optical Channel Path Unit Multiframe Identifier, OMFI, und Multiplex Structure Identifier, MSI, bestimmt werden, und N auf einer Zahl von zugeordneten abhängigen Zeitschlitzen in dem OTN-Signal basiert.
 


Revendications

1. Procédé d'adaptation côté ligne de réseau de transport optique, OTN, pour fournir une granularité et une distribution à débit inférieur, le procédé comprenant :

à la suite de la réception d'un signal OTN, la segmentation du signal OTN en N flux de cellules avec des identifiants associés, sur la base d'un nombre de créneaux tributaires alloués du signal OTN, dans lequel N ≥ 0, dans lequel, lorsque N > 0, les cellules incluent uniquement une charge utile allouée depuis le signal OTN (102),

le procédé étant caractérisé en ce que, lorsque N = 0, les cellules incluent uniquement un surdébit ; et

la commutation des cellules, avec un programmateur, à un ou plusieurs modems côté ligne (104) pour la transmission de celles-ci où un débit des un ou plusieurs modems côté ligne (104) est dissocié d'un débit de ligne du signal OTN.


 
2. Procédé selon la revendication 1, dans lequel la segmentation est déterminée sur la base d'un identifiant multitrames d'unité de voie de canal optique, OMFI, et d'un identifiant de structure de multiplexage, MSI, associés au signal OTN, et N est basé sur un nombre de créneaux tributaires alloués dans le signal OTN.
 
3. Procédé selon les revendications 1 et 2, dans lequel le signal OTN est une unité de transport de canal optique OTUCn, dans lequel C = 100 et n est un multiplicateur de 100, par exemple 1, 2, 3, ..., ou un signal OTN d'ordre élevé ou d'ordre très élevé avec des créneaux tributaires, et dans lequel un signal fourni aux un ou plusieurs modems côté ligne est un débit inférieur ou un débit plein de l'OTUCn ou du signal OTN d'ordre élevé ou d'ordre très élevé avec des créneaux tributaires.
 
4. Procédé selon les revendications 1 à 3, dans lequel le signal OTN est depuis un client et les N flux de cellules depuis le client sont envoyés à différents modems côté ligne.
 
5. Procédé selon les revendications 1 à 4, dans lequel le signal OTN est depuis deux clients ou plus et les N flux de cellules depuis les deux clients ou plus sont envoyés à un même modem côté ligne.
 
6. Procédé selon les revendications 1 à 5, comprenant en outre :
l'insertion d'une cellule de tramage pour permettre un rétablissement depuis les un ou plusieurs modems côté ligne.
 
7. Circuit d'adaptation côté ligne de réseau de transport optique, OTN, pour fournir une granularité et une distribution à débit inférieur, le circuit comprenant
une circuiterie d'adaptation de cellule (60) configurée pour segmenter, à la suite de la réception d'un signal OTN, le signal OTN en N flux de cellules avec des identifiants associés, sur la base d'un nombre de créneaux tributaires alloués du signal OTN, dans lequel N ≥ 0, dans lequel, lorsque N > 0, les cellules incluent uniquement une charge utile allouée depuis le signal OTN, et commuter les cellules à un programmateur,
le circuit étant caractérisé en ce que, lorsque N = 0, les cellules incluent uniquement un surdébit ; et comprenant en outre
une circuiterie d'adaptation de ligne (24) configurée pour programmer, depuis le programmateur, les cellules à un ou plusieurs modems côté ligne pour la transmission de celles-ci où un débit des un ou plusieurs modems côté ligne est dissocié d'un débit de ligne du signal OTN.
 
8. Circuit selon la revendication 7, dans lequel les N flux sont déterminés sur la base d'un identifiant multitrames d'unité de voie de canal optique, OMFI, et d'un identifiant de structure de multiplexage, MSI, et N est basé sur un nombre de créneaux tributaires alloués dans le signal OTN.
 
9. Circuit selon les revendications 7 et 8, dans lequel le signal OTN est une unité de transport de canal optique OTUCn, dans lequel C = 100 et n est un multiplicateur de 100, par exemple 1, 2, 3, ..., ou un signal OTN d'ordre élevé ou d'ordre très élevé avec des créneaux tributaires.
 
10. Circuit selon les revendications 7 à 9, dans lequel un signal fourni aux un ou plusieurs modems côté ligne est un débit inférieur ou un débit plein de l'OTUCn ou du signal OTN d'ordre élevé ou d'ordre très élevé avec des créneaux tributaires.
 
11. Procédé selon les revendications 7 à 10, dans lequel le signal OTN est l'un parmi a) depuis un client et les N flux de cellules depuis le client sont envoyés à différents modems côté ligne, et b) depuis deux clients ou plus et les N flux de cellules depuis les deux clients ou plus sont envoyés à un même modem côté ligne.
 
12. Système d'adaptation côté ligne de réseau de transport optique, OTN, pour fournir une granularité et une distribution à débit inférieur, le système comprenant :

un premier circuit d'adaptation (80) couplé, de manière à pouvoir communiquer, à un premier modem côté ligne ; et

un second circuit d'adaptation (80) couplé, de manière à pouvoir communiquer, à un second modem côté ligne ;

dans lequel chacun du premier circuit d'adaptation et du second circuit d'adaptation comprend

une circuiterie d'adaptation de cellule (60) configurée pour segmenter, à la suite de la réception d'un signal OTN, le signal OTN en N flux de cellules avec des identifiants associés, sur la base d'un nombre de créneaux tributaires alloués du signal OTN, dans lequel N ≥ 0, dans lequel, lorsque N > 0, les cellules incluent uniquement une charge utile allouée depuis le signal OTN, et commuter les cellules à un programmateur,

chacun des premier et second circuits d'adaptation étant caractérisé en ce que, lorsque N = 0, les cellules incluent uniquement un surdébit ; et comprenant en outre

une circuiterie d'adaptation de ligne (24) configurée pour programmer, depuis le programmateur, les cellules à un ou plusieurs modems côté ligne pour la transmission de celles-ci où un débit des un ou plusieurs modems côté ligne est dissocié d'un débit de ligne du signal OTN.


 
13. Système selon la revendication 12, dans lequel les N flux sont déterminés sur la base d'un identifiant multitrames d'unité de voie de canal optique, OMFI, et d'un identifiant de structure de multiplexage, MSI, et N est basé sur un nombre de créneaux tributaires alloués dans le signal OTN.
 




Drawing





























Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description