(19)
(11)EP 2 997 911 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.07.2020 Bulletin 2020/31

(21)Application number: 15185808.1

(22)Date of filing:  18.09.2015
(51)International Patent Classification (IPC): 
A61B 17/12(2006.01)

(54)

A VASCULATURE OCCLUSION DEVICE DETACHMENT SYSTEM WITH TAPERED COREWIRE AND HEATER ACTIVATED DETACHMENT

TRENNUNGSSYSTEM FÜR GEFÄSSOKKLUSIONSVORRICHTUNG MIT KONISCHEM KERNDRAHT UND HEIZELEMENTAKTIVIERTER TRENNUNG

SYSTÈME DE DÉTACHEMENT DE DISPOSITIF D'OCCLUSION VASCULAIRE AVEC FIL CENTRAL CONIQUE ET DÉTACHEMENT ACTIVÉ PAR ÉLÉMENT CHAUFFANT


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 19.09.2014 US 201414491145

(43)Date of publication of application:
23.03.2016 Bulletin 2016/12

(73)Proprietor: DePuy Synthes Products, Inc.
Raynham, MA 02767 (US)

(72)Inventors:
  • LORENZO, Juan A.
    Miami, FL 33126 (US)
  • SLAZAS, Robert
    Miami, FL 33126 (US)

(74)Representative: Carpmaels & Ransford LLP 
One Southampton Row
London WC1B 5HA
London WC1B 5HA (GB)


(56)References cited: : 
EP-A1- 1 806 105
US-A1- 2013 197 547
CN-U- 203 591 293
US-A1- 2014 277 092
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    Field of the Invention



    [0001] The present invention relates to vasculature occlusive devices (e.g., embolic coils) for implantation within a blood vessel of a body. In particular, the present invention relates to an improved heating detachment system for an embolic coil delivery system in the treatment of blood vessel disorders.

    Description of Related Art



    [0002] Vascular disorders and defects such as aneurysms and other arterio-venous malformations are especially difficult to treat when located near critical tissues or where ready access to malformation is not available. Both difficulty factors apply especially to cranial aneurysms. Due to the sensitive brain tissue surrounding cranial blood vessels and the restricted access, it is very challenging and often risky to surgically treat defects of the cranial vasculature.

    [0003] Alternative treatments include vasculature occlusion devices, such as embolic coils, deployed using catheter delivery systems. In such systems used to treat cranial aneurysms, the distal end of an embolic coil delivery catheter is inserted into non-cranial vasculature of a patient, typically through a femoral artery in the groin, and guided to a predetermined delivery site within the cranium.

    [0004] Multiple embolic coils of various lengths, generally approximately 1 cm to as long as approximately 100 cm, and preselected stiffness often are packed sequentially within a cranial aneurysm to limit blood flow therein and to encourage embolism formation. Typically, physicians first utilize stiffer coils to establish a framework within the aneurysm and then select more flexible coils to fill spaces within the framework. Ideally, each coil conforms both to the aneurysm and to previously implanted coils. Each successive coil is selected individually based on factors including stiffness, length, and preformed shape which the coil will tend to assume after delivery.

    [0005] During implantation, the physician manipulates each embolic coil until it is in a satisfactory position, as seen by an imaging technique such as fluoroscopic visualization, before detaching the coil from the delivery system. It is beneficial for both ends of each coil to remain positioned within the aneurysm after delivery; otherwise, a length of coil protruding into the main lumen of the blood vessel invites undesired clotting external to the aneurysm. After each successive coil is detached, the next coil is subject to an increasing risk of becoming entangled in the growing mass of coils, thereby restricting the depth of insertion for that coil into the aneurysm.

    [0006] Difficulties may arise due to stretching of the embolic coils during repositioning or attempted retrieval of the coils, especially if the coil becomes entangled and complete insertion of the coil into the aneurysm is not accomplished. If pulling forces applied to a coil exceed its elastic limit, the coil will not return to its original shape. A stretched coil exhibits diminished pushability or retractability, and becomes more difficult to manipulate into an optimal position or to be removed. Moreover, a stretched coil occupies less volume than an unstretched coil, which increases the number of coils needed to sufficiently pack the aneurysm to encourage formation of a robust embolus positioned wholly within the aneurysm.
    To avoid such problems stretch resistance devices are used, such as that disclosed in US Patent No. 5,853,418, having a primary coil and an elongated stretch-resisting member fixedly attached to the primary coil in at least two locations.

    [0007] In order to deliver the vaso-occlusive coils to a desired site, e.g., an aneurysm, in the vasculature, it is well-known to first position a relatively small profile, delivery catheter or micro-catheter at the targeted site using fluoroscopy, ultrasound, or other method of steerable navigation. A delivery or "pusher" wire is then passed through a proximal end of the catheter lumen, until a vaso-occlusive coil coupled to a distal end of the pusher wire is extended out of the distal end opening of the catheter and into the blood vessel at the targeted site. The vaso-occlusive device is then released or detached from the end pusher wire, and the pusher wire is withdrawn in a proximal direction back through the catheter. Depending on the particular needs of the patient, another occlusive device may then be pushed through the catheter and released at the same site in a similar manner.

    [0008] Several conventional methods are used to detach the wire from the embolic coil once it has been properly positioned at the targeted site in the blood vessel using a delivery catheter. One known way to release a vaso-occlusive coil from the end of the pusher wire is through the use of an electrolytically severable junction, which is an exposed section or detachment zone located along a distal end portion of the pusher wire. The detachment zone is typically made of stainless steel and is located just proximal of the vaso-occlusive device. An electrolytically severable junction is susceptible to electrolysis and disintegrates when the pusher wire is electrically charged in the presence of an ionic solution, such as blood or other bodily fluids. Thus, once the detachment zone exits out of the catheter distal end and is exposed in the vessel blood pool of the patient, a current applied to the conductive pusher wire completes a circuit with an electrode attached to the patient's skin, or with a conductive needle inserted through the skin at a remote site, and the detachment zone disintegrates due to electrolysis.

    [0009] One disadvantage of occlusive devices that are deployed using electrolytic detachment is that the electrolytic process requires a certain amount of time to elapse to effectuate release of the occlusive element. This time lag is also disadvantageous for occlusive delivery devices that utilize thermal detachment such as that described in US Patent No. 6,966,892.

    [0010] Another conventional detachment technique during delivery of a vaso-occlusive device involves the use of fluid pressure (e.g., hydraulic detachment) to release an embolic coil once it is properly positioned, as described in US Patent Nos. 6,063,100 and 6,179,857.

    [0011] The main problems associated with current detachment schemes are reliability of detachment, speed of detachment, convenience of detaching mechanism (e.g., hydraulic detachment requires a high pressure syringe, while electrolytic detachment requires a battery operated box), and length/stiffness of the distal section.

    [0012] It is therefore desirable to develop an improved heating detachment system for a vaso-occlusive device (e.g., an embolic coil device) that solves the aforementioned problems associated with conventional devices.
    US 2014/0277092 A1 discloses a vaso-occlusive delivery assembly including a pusher assembly having proximal and distal ends, a conductive sacrificial link disposed at the distal end of the pusher assembly, and a vaso-occlusive device secured to the pusher assembly by the sacrificial link.

    Summary of the Invention



    [0013] An aspect of the present invention relates to an improved heating detachment system for delivery of a vaso-occlusive device that is simpler, more reliable, quicker, more convenient and having a reduced length rigid distal section than that of conventional mechanical detachment systems.

    [0014] Another aspect of the present invention is directed to an improved detachment system for delivery of a vaso-occlusive device that optimizes distal flexibility, placement at a desired treatment site and detachment characteristics.

    [0015] Still another aspect of the present invention relates to a vasculature occlusion device detachment system including a heating fuse element having a predetermined resistivity, a first terminating end and an opposite second terminating end. The heating fuse element is made of a material that melts when a current is applied that exceeds a predetermined maximum current threshold. The system further includes an electrically conductive corewire electrically connected proximate its distal end directly to the first terminating end of the heating fuse element at a first electrical connection joint, the electrically conductive corewire being tapered over its distal section. An insulated electrically conductive wire separate from the electrically conductive corewire is electrically connected directly to the second terminating end of the heating fuse element at a second electrical connection joint. An inner insulation sleeve made from an electrical non-conductive material is placed over a distal section of the corewire and covers the first electrical connection joint. The inner insulation sleeve is disposed between the insulated electrically conductive wire and the electrically conductive corewire. An outer insulation sleeve made from an electrical non-conductive material is disposed over a distal section of an assembly including the insulated electrically conductive wire, the inner insulation sleeve and the electrically conductive corewire. The outer insulation sleeve covers the second electrical connection joint.

    [0016] Yet another aspect of the present invention is directed to a method of manufacturing the vasculature occlusion device detachment system in the preceding paragraph. The first terminating end of the heating fuse element is electrically connected directly to the electrically conductive corewire proximate its distal end at the first electrical connection joint. Next, the inner insulation sleeve is positioned over a distal section of the electrically conductive corewire and covering the first electrical connection joint. The second terminating end of the heating fuse element is threaded through the loop of the vasculature occlusion device. A second electrical connection joint is formed by electrically connecting the second terminating end of the heating fuse element to the insulated electrically conductive wire at the second electrical connection joint. The outer insulation sleeve is positioned over a distal section of the assembly and covering the second electrical connection joint.

    Brief Description of the Drawing



    [0017] The foregoing and other features of the present invention will be more readily apparent from the following detailed description and drawings of illustrative of the invention wherein like reference numbers refer to similar elements throughout the several views and in which:

    Figure 1A is a side view of the present inventive fuse heating detachment system for an embolic coil, with a cross-sectional portion of the embolic coil showing the interior thereof;

    Figure 1B is a side view of the delivery catheter with the present inventive fuse heating detachment system for an embolic coil assembled therein;

    Figure 2A is an enlarged top view of the heating fuse element with reduced localized cross-section, in a closed state prior to activation and application of a current;

    Figure 2B is an enlarged top view of the heating fuse element of Figure 2A, in an open state, after activation of an applied current; and

    Figure 3 is a schematic electric circuit diagram illustrating a closed loop formed by the power supply, electrically conductive corewire, the insulated electrically conductive wire and the heating fuse element.


    Detailed Description of the Invention



    [0018] The terms "proximal"/"proximally" and "distal"/"distally" refer to a direction closer to or away from, respectively, an operator (e.g., surgeon, physician, nurse, technician, etc.) who would insert the medical device into the patient, with the tip-end (i.e., distal end or leading end) of the device inserted inside a patient's body. Thus, for example, a "proximal direction" would refer to the direction towards the operator, whereas "distal direction" would refer to the direction away from the operator towards the leading or tip-end of the medical device.

    [0019] By way of illustrative example only, the present inventive heating detachment system is utilized for delivery of an embolic component, e.g., embolic helical coil. It is, however, intended and within the scope of the present invention to use the present inventive heating detachment system with any type of vaso-occlusive device.

    [0020] Figure 1A is a side view of an exemplary fuse heating detachment system in accordance with the present invention for delivery of a vaso-occlusive device, typically a helical embolic coil 5 formed by a series of loops/windings defining a coil lumen 25. The present inventive detachment system is not limited to embolic coils, but instead is equally suited for any type or shape vaso-occlusive device. Embolic coil 5 has a proximal coil junction 10 located at its proximal end. Proximal coil junction 10 is a joint, preferably made out of at least one of an adhesive, an epoxy and/or a polymer. Most preferably, the joint made of adhesive, epoxy and/or polymer is of relatively low strength and/or relatively low durometer. That is, the relatively low strength of the epoxy/adhesive, or the relatively low durometer of the polymer used to fill that junction (which is related to its tear-out strength) is preferably less than the buckling strength of a delivery catheter used to implant the vaso-occlusive device in a blood vessel. A loop, ring or eyelet 35 extends in a proximal direction from the proximal coil junction 10 of the embolic coil 5. Preferably, only a single loop, ring or eyelet is provided on the embolic coil. Opposite its proximal end, a distal end of the embolic coil 5 is closed off by a distal bead 15. One or more stretch resistant (SR) members 20, e.g., suture filaments, disposed in the coil lumen 25 provide stretch resistance when excessive pulling forces are applied to the embolic coil 5 during implantation in a patient. Preferably, each stretch resistant member 20 extends longitudinally the entire length of the coil lumen 25 secured at its respective ends by the proximal coil junction 10 and distal bead 15 to minimize excessive elongation.

    [0021] Referring to Figure 1B, using a corewire or pusher, embolic coil 5 is advanced via a delivery catheter 80 to a target site in the body (e.g., within the blood vessel). In contrast to conventional pusher members having a central lumen, there is no central lumen defined longitudinally through the corewire of the present invention. Corewire 45 has a stiffer proximal section proximate its proximal end compared to its more flexible distal section proximate its distal end. As is illustrated in Figure 1B, flexibility of the corewire 45 needed to advance the delivery system through distal tortuosity is achieved by providing tapers over its distal section wherein the tapers may be ground, and wherein the length and/or number of tapers determines the flexibility of the distal section. Thus, the length and/or number of tapers shown in the drawings are merely for illustrative purposes only and may be adapted, as desired. The corewire is made from any biocompatible electrically conductive material such as stainless steel or Nitonal. Corewire 45 may be made either as an integrated single piece construction throughout or, alternatively, as a two-piece construction secured, attached, connected or mounted together. For instance, the proximal section of the corewire may be a first material (e.g., stainless steel), while the distal section connected to the proximal section may be made of a second material (e.g., Nitonal) different than the first material. A non-conductive coating (e.g., insulation sleeve) 55 is disposed about the exterior of the corewire 45. Attached, secured, connected or otherwise mounted to its outer surface and extending preferably the length of the corewire 45 is a separate insulated electrically conductive wire 60.

    [0022] A heating fuse element 30 having a given resistivity such as an electrical conductive wire or electrical conductive strip is preferably configured as a segment having two terminating ends. Typically, heating fuse element 30 is substantially U-shaped or hemispherical. Any other shape is contemplated and within the intended scope of the present invention so long as the heating fuse element 30 is configured as a segment having two terminating ends. Preferably, heating fuse element 30 has a failure section 65 substantially midway between its terminating ends. Failure section 65 is a mechanically induced deformation and/or reduced diameter (e.g., thinner) cross-section to further increase the localized electrical resistance in this section of the heating fuse element thereby narrowing or targeting the location in which the heating fuse element melts and/or severs.

    [0023] One terminating end 40 of the heating fuse element 30 is electrically connected directly to the distal end of the corewire 45 forming a first electrical connection joint 70. An inner insulation sleeve 83 made of an electrically non-conductive material is placed over a distal section of the corewire disposed between the insulation sleeve 55 and electrically conductive wire 60. The inner insulation sleeve 83 protects the first electrical connection joint 70 while also preventing an electrical connection between the second terminating end 50 of the heating fuse element 30 and the corewire 45. The second terminating end 50 of the heating fuse element 30 is threaded through the loop 35 of the embolic coil 5. An electrical circuit is completed or closed by electrically connecting the second terminating end 50 of the heating fuse element 30 directly to a stripped distal end of the insulated electrical wire 60 forming a second electrical connection joint 75. An outer insulation sleeve 85, also made of an electrically non-conductive material, is placed over at least a portion of the insulated conductive wire 60, the inner insulation sleeve 83 and the corewire 45. The outer insulation sleeve 85 secures the second electrical connection joint 75 to the insulated conductive wire 60 while protecting the second electrical connection joint 75 itself. Either the same or different electrically non-conductive materials may be used for the inner and outer insulation sleeves 83, 85. In the electrical circuit schematic shown in Figure 3, a power supply 90 (e.g., a battery) is connected across the conductors (i.e., proximal ends of corewire 45 and insulated electrically conductive wire 60) producing a current across the resistive heating fuse element 30 thereby increasing the electrical resistance therein. Each of the first and second electrical connection joints 70, 75 may be established via solder, welding, conductive epoxy or any other electrical joint connection.

    [0024] In operation, the first terminating end 40 of the heating fuse element 30 is electrically connected to the corewire 45 proximate its distal end thereby forming the first electrical joint 70. Inner insulation sleeve 83 is positioned over a distal section of the electrically conductive corewire 45 while also covering the first electrical connection joint 70. The second terminating end of 50 of the heating fuse element 30 is then threaded through the loop 35 of the embolic coil 5. Once threaded through the loop 35, the second terminating end 50 of the heating fuse element 30 is electrically connected to the insulated electrically conductive wire 60 at the second electrical connection joint 75. Next, the outer insulation sleeve 85 is positioned over a distal section of the assembly (including the insulated electrically conductive wire 60, the inner insulation sleeve 83 and the electrically conductive corewire 45) and is also positioned to cover the second electrical connection joint 75. Now that the delivery device has been assembled, using the electrically conductive corewire 45 the vasculature occlusion device 5 is advanced via the delivery catheter 80 to a target site in a human body. Once the embolic coil 5 has been properly positioned at a desired treatment site within the blood vessel, electrical activation of the heating element 30 by the power source (e.g., a battery) 90 increases the electrical resistance therein. Due to its design, the resistance is greatest in the failure section 65 of the heating fuse element 30. An increase in the resistance in the failure section 65 beyond the predetermined threshold tolerance of the material causes the failure section 65 of the heating fuse element 30 to melt and thus sever thereby releasing the embolic coil 5 secured therein. Thereafter, the delivery catheter 80, corewire 45, insulated electrically conductive wire 60 and heating element 30 are withdrawn from the human body by pulling in a proximal direction leaving in place the embolic coil 5 within the blood vessel at its desired treatment site.

    [0025] The present inventive detachment system advantageously minimizes the length (as measured from approximately its midsection to one of its terminating ends) of the heating fuse element 30. For example, with this alternative embodiment such length of the heating fuse element may be reduced to a range between approximately 1.0 mm to approximate 3.0 mm, preferably approximately 2mm.

    [0026] Additional design factors or considerations are contemplated other than that of maximizing heat transfer to the coil securing suture. On the one hand, the heating fuse element 30 is desirably sufficiently long (as measured in an axial direction) to produce sufficient resistance when the embolic coil 5 is implanted. While on the other hand, the length of the heating fuse element 30 is sufficiently short to minimize micro-catheter kick back (i.e., push back out of aneurysm). A shorter length heating fuse element also optimizes the flexibility of the distal end of the coil delivery system desirable during delivery of the vaso-occulsive device to the target site in the human body.

    [0027] In accordance with the present invention, the corewire serves as one of the electrical conductors and the insulated electrically conductive wire as the other electrical conductor in forming a closed loop electrical path along with the power supply and heating fuse element. Preferably, the corewire also serves the dual function of advancing the vaso-occlusive device in the delivery catheter. In response to current provided by the power supply a sufficient resistance is produced in the heating fuse element that melts and/or severs at least a section thereof (e.g., the failure section 65) thereby releasing the embolic coil at a target site within the body.

    [0028] The present invention has been shown and described for delivery and detachment of an embolic coil. Other vaso-occlusive devices are contemplated and within the scope of the present invention.

    [0029] Thus, while there have been shown, described, and pointed out fundamental novel features of the invention as applied to a preferred embodiment thereof, it will be understood that various omissions, substitutions, and changes in the form and details of the devices illustrated, and in their operation, may be made by those skilled in the art without departing from the scope of the invention. For example, it is expressly intended that all combinations of those elements and/or steps that perform substantially the same function, in substantially the same way, to achieve the same results be within the scope of the disclosure. Substitutions of elements from one described embodiment to another are also fully intended and contemplated. It is also to be understood that the drawings are not necessarily drawn to scale, but that they are merely conceptual in nature. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto.


    Claims

    1. A detachment system comprising:

    a heating fuse element (30) having a predetermined resistivity; the heating fuse element having a first terminating end (40) and an opposite second terminating end (50); the heating fuse element being made of a material that melts or severs when an applied current exceeds a predetermined maximum current threshold;

    an electrically conductive corewire (45) having a proximal end and an opposite distal end; the electrically conductive corewire being electrically connected proximate its distal end directly to the first terminating end of the heating fuse element at a first electrical connection joint (70); and

    an insulated electrically conductive wire (60) separate from the electrically conductive corewire; the insulated electrically conductive wire having a proximal end and an opposite distal end; the distal end of the insulated electrically conductive wire being electrically connected directly to the second terminating end of the heating fuse element at a second electrical connection joint (75);

    an inner insulation sleeve (83) made from an electrical non-conductive material; the inner insulation sleeve is disposed over a distal section of the corewire and covers the first electrical connection joint; the inner insulation sleeve is disposed between the insulated electrically conductive wire and the electrically conductive corewire; and

    an outer insulation sleeve (85) made from an electrical non-conductive material; the outer insulation sleeve is disposed over a distal section of an assembly including the insulated electrically conductive wire, the inner insulation sleeve and the electrically conductive corewire; the outer insulation sleeve covers the second electrical connection joint,

    characterised in that the electrically conductive corewire is tapered over its distal section.


     
    2. The system in accordance with claim 1, further comprising a power source (90) electrically connected to the respective proximal ends of the electrically conductive corewire and the insulated electrically conductive wire.
     
    3. The system in accordance with claim 1, wherein the heating fuse element is a conductive wire or a conductive strip.
     
    4. The system in accordance with claim 1, wherein i) the electrically conductive corewire is tapered from its proximal end towards is distal end, or ii) the electrically conductive corewire does not have a lumen defined therein.
     
    5. The system in accordance with claim 1, further comprising a vasculature occlusion device (5) having a proximal end and an opposite distal end; a loop (35) protruding in a proximal direction from the proximal end of the vasculature occlusion device; the heating fuse element being threaded through the loop.
     
    6. The system in accordance with claim 1, wherein the heating fuse element is U-shaped or hemispherical in shape.
     
    7. The system in accordance with claim 1, wherein the length of the heating fuse element measured from approximately its midsection to one of its terminating ends is between approximately 1 mm and approximately 3 mm.
     
    8. The system in accordance with claim 1, wherein the heating fuse element has a failure section (65) approximately midway between the first terminating end and the second terminating end; the failure section of the heating fuse element having a mechanically induced deformation and/or reduced diameter cross-section to induce failure therein.
     
    9. A method of assembling the detachment system in accordance with claim 5, comprising the steps of:

    electrically connecting the first terminating end of the heating fuse element to the electrically conductive corewire proximate its distal end at the first electrical connection joint;

    positioning the inner insulation sleeve over a distal section of the electrically conductive corewire and covering the first electrical connection joint;

    threading the second terminating end of the heating fuse element through the loop of the vasculature occlusion device;

    electrically connecting the second terminating end of the heating fuse element to the insulated electrically conductive wire at the second electrical connection joint; and

    positioning the outer insulation sleeve over a distal section of the assembly and covering the second electrical connection joint.


     
    10. The method in accordance with claim 9, wherein the heating fuse element is U-shaped or hemispherical in shape.
     
    11. The method in accordance with claim 9, wherein the length of the heating fuse element measured from its midsection to one of its terminating ends is between approximately 1 mm and approximately 3 mm.
     
    12. The method in accordance with claim 9, wherein the heating fuse element has a failure section approximately midway between the first terminating end and the second terminating end; the failure section of the heating fuse element having a mechanically induced deformation and/or reduced diameter cross-section to induce failure therein.
     


    Ansprüche

    1. Trennungssystem, das Folgendes umfasst:

    ein Wärmesicherungselement (30) mit einer vorbestimmten Resistivität; wobei das Wärmesicherungselement ein erstes abschließendes Ende (40) und ein gegenüberliegendes zweites abschließendes Ende (50) aufweist; wobei das Wärmesicherungselement aus einem Material gefertigt ist, das schmilzt oder bricht, wenn ein angelegter Strom eine vorbestimmte maximale Stromschwelle überschreitet;

    einen elektrisch leitfähigen Kerndraht (45) der ein proximales Ende und ein gegenüberliegendes distales Ende aufweist; wobei der elektrisch leitfähige Kerndraht nahe seinem distalen Ende direkt mit dem ersten abschließenden Ende des Wärmesicherungselements an einem ersten elektrischen Verbindungspunkt (70) elektrisch verbunden ist; und

    einen isolierten elektrisch leitfähigen Draht (60), der von dem elektrisch leitfähigen Kerndraht getrennt ist;

    wobei der isolierte elektrisch leitfähige Draht ein proximales Ende und ein gegenüberliegendes distales Ende aufweist; wobei das distale Ende des isolierten elektrisch leitfähigen Drahts direkt mit dem zweiten abschließenden Ende des Wärmesicherungselements an einem zweiten elektrischen Verbindungspunkt (75) elektrisch verbunden ist;

    eine innere Isolierhülse (83), gefertigt aus einem elektrisch nicht leitfähigen Material; wobei die innere Isolierhülse über einem distalen Abschnitt des Kerndrahts angeordnet ist und den ersten elektrischen Verbindungspunkt abdeckt; wobei die innere Isolierhülse zwischen dem isolierten elektrisch leitfähigen Draht und dem elektrisch leitfähigen Kerndraht angeordnet ist; und

    eine äußere Isolierhülse (85), gefertigt aus einem elektrisch nicht leitfähigen Material; wobei die äußere Isolierhülse über einem distalen Abschnitt einer Anordnung, umfassend den isolierten elektrisch leitfähigen Draht, die innere Isolierhülse und den elektrisch leitfähigen Kerndraht, angeordnet ist; wobei die äußere Isolierhülse den zweiten elektrischen Verbindungspunkt abdeckt, dadurch gekennzeichnet, dass der elektrisch leitfähige Kerndraht über seinem distalen Abschnitt konisch ist.


     
    2. System nach Anspruch 1, ferner umfassend eine Leistungsquelle (90), elektrisch mit den entsprechenden proximalen Enden des elektrisch leitfähigen Kerndrahts und des isolierten elektrisch leitfähigen Drahts verbunden.
     
    3. System nach Anspruch 1, wobei das Wärmesicherungselement ein leitfähiger Draht oder ein leitfähiger Streifen ist.
     
    4. System nach Anspruch 1, wobei i) der elektrisch leitfähige Kerndraht von seinem proximalen Ende in Richtung seines distalen Endes konisch ist, oder ii) der elektrisch leitfähige Kerndraht kein darin definiertes Lumen aufweist.
     
    5. System nach Anspruch 1, ferner umfassend eine Gefäßokklusionsvorrichtung (5) mit einem proximalen Ende und einem gegenüberliegenden distalen Ende; eine Öse (35), die in proximaler Richtung aus dem proximalen Ende der Gefäßokklusionsvorrichtung herausragt; wobei das Wärmesicherungselement durch die Öse gefädelt wird.
     
    6. System nach Anspruch 1, wobei das Wärmesicherungselement U-förmig oder hemisphärisch nach der Form ist.
     
    7. System nach Anspruch 1, wobei die Länge des Wärmesicherungselements, gemessen etwa von seinem mittleren Abschnitt zu einem seiner abschließenden Enden zwischen etwa 1 mm und etwa 3 mm ist.
     
    8. System nach Anspruch 1, wobei das Wärmesicherungselement einen Bruchabschnitt (65) etwa in der Mitte zwischen dem ersten abschließenden Ende und dem zweiten abschließenden Ende aufweist; wobei der Bruchabschnitt des Wärmesicherungselements eine mechanisch induzierte Verformung und/oder einen Querschnitt mit verringertem Durchmesser zum Induzieren eines Bruches darin aufweist.
     
    9. Verfahren zum Zusammenbauen des Trennungssystems nach Anspruch 5, das die folgenden Schritte umfasst:

    elektrisches Verbinden des ersten abschließenden Endes des Wärmesicherungselements mit dem elektrisch leitfähigen Kerndraht nahe seinem distalen Ende am ersten elektrischen Verbindungspunkt;

    Positionieren der inneren Isolierhülse über einem distalen Abschnitt des elektrisch leitfähigen Kerndrahts und Abdecken des ersten elektrischen Verbindungspunkts;

    Einfädeln des zweiten abschließenden Endes des Wärmesicherungselements in die Öse der Gefäßokklusionsvorrichtung;

    elektrisches Verbinden des zweiten abschließenden Endes des Wärmesicherungselements mit dem isolierten elektrisch leitfähigen Draht am zweiten elektrischen Verbindungspunkt; und

    Positionieren der äußeren Isolierhülse über einem distalen Abschnitt der Anordnung und Abdecken des zweiten elektrischen Verbindungspunkts;


     
    10. Verfahren nach Anspruch 9, wobei das Wärmesicherungselement U-förmig oder hemisphärisch nach der Form ist.
     
    11. Verfahren nach Anspruch 9, wobei die Länge des Wärmesicherungselements, gemessen von seinem mittleren Abschnitt zu einem seiner abschließenden Enden zwischen etwa 1 mm und etwa 3 mm ist.
     
    12. Verfahren nach Anspruch 9, wobei das Wärmesicherungselement einen Bruchabschnitt etwa in der Mitte zwischen dem ersten abschließenden Ende und dem zweiten abschließenden Ende aufweist; wobei der Bruchabschnitt des Wärmesicherungselements eine mechanisch induzierte Verformung und/oder einen Querschnitt mit verringertem Durchmesser zum Induzieren eines Bruches darin aufweist.
     


    Revendications

    1. Système de détachement comprenant :

    un élément fusible chauffant (30) ayant une résistivité prédéterminée ; cet élément fusible chauffant ayant une première extrémité de terminaison (40) et une deuxième extrémité de terminaison opposée (50) ; cet élément fusible chauffant étant fait en un matériau qui fond ou se rompt lorsqu'un courant appliqué dépasse un seuil de courant maximum prédéterminé ;

    une tige d'armature électriquement conductrice (45) ayant une extrémité proximale et une extrémité distale opposée ; cette tige d'armature électriquement conductrice étant connectée électriquement à proximité de son extrémité distale directement à la première extrémité de terminaison de l'élément fusible chauffant au niveau d'un premier joint de connexion électrique (70) ; et

    un fil électriquement conducteur isolé (60) séparé de la tige d'armature électriquement conductrice ; ce fil électriquement conducteur isolé ayant une extrémité proximale et une extrémité distale opposée ; l'extrémité distale de ce fil électriquement conducteur isolé étant connectée électriquement directement à la deuxième extrémité de terminaison de l'élément fusible chauffant au niveau d'un deuxième joint de connexion électrique (75) ;

    un manchon d'isolation interne (83) fait à partir d'un matériau électriquement non conducteur ; ce manchon d'isolation interne étant disposé au-dessus d'une section distale de la tige d'armature et recouvrant le premier joint de connexion électrique ; ce manchon d'isolation interne étant disposé entre le fil électriquement conducteur isolé et la tige d'armature électriquement conductrice ; et

    un manchon d'isolation externe (85) fait à partir d'un matériau électriquement non conducteur ; ce manchon d'isolation externe étant disposé au-dessus d'une section distale d'un ensemble comprenant le fil électriquement conducteur isolé, le manchon d'isolation interne et la tige d'armature électriquement conductrice ; ce manchon d'isolation externe recouvrant le deuxième joint de connexion électrique,

    caractérisé en ce que la tige d'armature électriquement conductrice est tronconique sur sa section distale.


     
    2. Système selon la revendication 1, comprenant en outre une source d'alimentation (90) connectée électriquement aux extrémités proximales respectives de la tige d'armature électriquement conductrice et du fil électriquement conducteur isolé.
     
    3. Système selon la revendication 1, dans lequel l'élément fusible chauffant est un fil conducteur ou une bande conductrice.
     
    4. Système selon la revendication 1, dans lequel i) la tige d'armature électriquement conductrice est tronconique depuis son extrémité proximale vers son extrémité distale, ou ii) la tige d'armature électriquement conductrice n'a pas de lumière définie à l'intérieur.
     
    5. Système selon la revendication 1, comprenant en outre un dispositif d'occlusion de système vasculaire (5) ayant une extrémité proximale et une extrémité distale opposée ; une boucle (35) faisant saillie dans une direction proximale depuis l'extrémité proximale du dispositif d'occlusion de système vasculaire ; l'élément fusible chauffant étant enfilé à travers cette boucle.
     
    6. Système selon la revendication 1, dans lequel l'élément fusible chauffant est en forme de U ou a une forme hémisphérique.
     
    7. Système selon la revendication 1, dans lequel la longueur de l'élément fusible chauffant mesurée depuis à peu près sa section médiane jusqu'à une de ses extrémités de terminaison est située entre environ 1 mm et environ 3 mm.
     
    8. Système selon la revendication 1, dans lequel l'élément fusible chauffant a une section de défaillance (65) à peu près à mi-chemin entre la première extrémité de terminaison et la deuxième extrémité de terminaison ; cette section de défaillance de l'élément fusible chauffant ayant une déformation produite mécaniquement et/ou une section transversale à diamètre réduit pour provoquer une défaillance à l'intérieur de celui-ci.
     
    9. Procédé d'assemblage du système de détachement selon la revendication 5, comprenant les étapes consistant à :

    connecter électriquement la première extrémité de terminaison de l'élément fusible chauffant à la tige d'armature électriquement conductrice à proximité de son extrémité distale au niveau du premier joint de connexion électrique ;

    le positionnement du manchon d'isolation interne au-dessus d'une section distale de la tige d'armature électriquement conductrice et le recouvrement du premier joint de connexion électrique ;

    l'enfilage de la deuxième extrémité de terminaison de l'élément fusible chauffant à travers la boucle du dispositif d'occlusion de système vasculaire ;

    la connexion électrique de la deuxième extrémité de terminaison de l'élément fusible chauffant à la tige d'armature électriquement conductrice au niveau du deuxième joint de connexion électrique ; et

    le positionnement du manchon d'isolation externe au-dessus d'une section distale de l'ensemble et le recouvrement du deuxième joint de connexion électrique.


     
    10. Procédé selon la revendication 9, dans lequel l'élément fusible chauffant est en forme de U ou a une forme hémisphérique.
     
    11. Procédé selon la revendication 9, dans lequel la longueur de l'élément fusible chauffant mesurée depuis sa section médiane jusqu'à une de ses extrémités de terminaison est située entre environ 1 mm et environ 3 mm.
     
    12. Procédé selon la revendication 9, dans lequel l'élément fusible chauffant a une section de défaillance à peu près à mi-chemin entre la première extrémité de terminaison et la deuxième extrémité de terminaison ; cette section de défaillance de l'élément fusible chauffant ayant une déformation produite mécaniquement et/ou une section transversale à diamètre réduit pour provoquer une défaillance à l'intérieur de celui-ci.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description