(19)
(11)EP 3 003 162 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
14.08.2019 Bulletin 2019/33

(21)Application number: 14852061.2

(22)Date of filing:  06.10.2014
(51)Int. Cl.: 
G01S 7/52  (2006.01)
A61B 8/08  (2006.01)
G01S 15/89  (2006.01)
A61B 8/14  (2006.01)
(86)International application number:
PCT/KR2014/009371
(87)International publication number:
WO 2015/053515 (16.04.2015 Gazette  2015/15)

(54)

METHOD AND APPARATUS FOR OBTAINING ELASTIC FEATURE OF OBJECT

VERFAHREN UND VORRICHTUNG ZUR ERMITTLUNG DER ELASTIZITÄT EINES OBJEKTS

PROCÉDÉ ET APPAREIL POUR OBTENIR UNE CARACTÉRISTIQUE ÉLASTIQUE D'UN OBJET


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 07.10.2013 KR 20130119457

(43)Date of publication of application:
13.04.2016 Bulletin 2016/15

(73)Proprietor: Samsung Electronics Co., Ltd.
Gyeonggi-do 16677 (KR)

(72)Inventors:
  • SHIM, Hwan
    Yongin-si Gyeonggi-do 446-882 (KR)
  • KIM, Young-tae
    Seongnam-si Gyeonggi-do 463-956 (KR)
  • LIM, Hyung-joon
    Seoul 150-993 (KR)
  • JUNG, Yun-sub
    Yongin-si Gyeonggi-do 446-831 (KR)
  • CHEON, Byeong-geun
    Anyang-si Gyeonggi-do 431-852 (KR)
  • LEE, Min-gu
    Hwaseong-si Gyeonggi-do Gyeonggi-do (KR)

(74)Representative: Appleyard Lees IP LLP 
15 Clare Road
Halifax HX1 2HY
Halifax HX1 2HY (GB)


(56)References cited: : 
WO-A1-2012/116364
US-A- 5 810 731
US-A1- 2005 183 505
US-A1- 2012 296 215
KR-A- 20020 089 403
US-A1- 2005 101 865
US-A1- 2011 066 030
US-A1- 2013 211 253
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] One or more exemplary embodiments relate to a medical diagnosis field, and more particularly, to a method and apparatus for obtaining an elastic feature of an object by using an ultrasound apparatus.

    Background Art



    [0002] A general ultrasound apparatus is a non-invasive test apparatus and is used to show structural details, internal tissues, and the flow of liquids in a body. An ultrasound apparatus transmits an ultrasound signal to an object and generates an ultrasound image of the object by using a response signal reflected from the object. The ultrasound image is mainly presented as a B mode image which is generated as a function of a reflection coefficient which varies based on a difference in impedance between tissues. However, an object such as a malignant tumor, for which the variation in the reflection coefficient may be relatively small as compared to surrounding tissues, is difficult to observe in the B mode image.

    [0003] In particular, it is often difficult to discern, in the B mode image, a difference in dispersion efficiency between a normal tissue and an abnormal tissue. Accordingly, methods of distinguishing a normal tissue and an abnormal tissue by obtaining an elastic feature of a medium when an external pressure is applied or not applied to the medium have been suggested.

    [0004] U.S. Patent No. 5,810,731 discloses a method of obtaining an elastic feature of an object by transmitting a focused ultrasound signal to an object to induce shear waves in the object and measuring a shear wave feature. US/2013/0211253 A1 discloses on-axis shear wave characterization with ultrasound.

    [0005] However, in the disclosed methods, shear waves are not induced in an area which is perpendicular to a position of the object where a user locates a probe, that is, an area where a focused ultrasound signal is propagated, because the focused ultrasound signal is transmitted to the object in a direction which is perpendicular to the probe in order to induce shear waves in a direction which is perpendicular to the direction in which the focused ultrasound signal is propagated. In this aspect, even when a user locates a probe near an object in order to measure an elastic feature of a partial area of the object, according to a method of the related art, an elastic feature of a part of the object which is located under the position where the probe is located may not be obtained.

    [0006] Further, according to the methods of the related art, since the shear waves are induced in the object by using the focused ultrasound signal, there may be an increased
    risk due to a high sound pressure of the focused ultrasound signal.

    Disclosure of Invention


    Technical Problem



    [0007] One or more exemplary embodiments include an apparatus and method for accurately and quickly obtaining an elastic feature of an object.

    Solution to Problem



    [0008] According to a first aspect, the invention relates to a method for obtaining an elastic feature of an object as specified in claim 1.

    [0009] According to a second aspect, the invention relates to a method for obtaining an elastic feature of an object as specified in claim 9.

    [0010] According to a third aspect, the invention relates to a non-transitory computer readable storage medium as specified in claim 12.

    [0011] According to a fourth aspect, the invention relates to a non-transitory computer readable storage medium as specified in claim 13.

    [0012] According to a fifth aspect, the invention relates to an ultrasound apparatus as specified in claim 14.

    [0013] According to a sixth aspect, the invention relates to an ultrasound apparatus as specified in claim 15.

    Brief Description of Drawings



    [0014] 

    FIG. 1 illustrates an ultrasound apparatus which is configured for transmitting a first push ultrasound signal and a first grating lobe signal to an object, according to an exemplary embodiment;

    FIG. 2 is a flowchart which illustrates a method for obtaining an elastic feature of an object, according to an exemplary embodiment;

    FIG. 3 illustrates an exemplary method by which an ultrasound apparatus induces a first shear wave in the object, according to an exemplary embodiment;

    FIG. 4 illustrates an exemplary method by which an ultrasound apparatus induces a first shear wave in the object, according to another exemplary embodiment;

    FIG. 5 is a flowchart which illustrates a method for obtaining an elastic feature of an object, according to another exemplary embodiment;

    FIG. 6 illustrates a method by which the ultrasound apparatus measures a propagation velocity of the first shear wave, according to an exemplary embodiment;

    FIG. 7 is a flowchart which illustrates a method for obtaining an elastic feature of an object, according to another exemplary embodiment; and

    FIG. 8 is a block diagram which illustrates a structure of an ultrasound apparatus, according to an exemplary embodiment.


    Best Mode for Carrying out the Invention



    [0015] According to one or more exemplary embodiments, a method for obtaining an elastic feature of an object includes inducing a first shear wave in the object by transmitting a first push ultrasound signal which is generated by a probe of an ultrasound apparatus and a first grating lobe signal which relates to the first push ultrasound signal toward the object, transmitting a first tracking ultrasound signal to an area of the object where the first shear wave has propagated, and receiving, from the object, a first reflection signal which relates to the first tracking ultrasound signal, measuring a first shear wave parameter which indicates a shear wave characteristic of the first shear wave based on the first reflection signal, and obtaining an elastic feature of the object by using the measured first shear wave parameter characterised in that the strength of the grating lobe signal is equal to the strength of the first push ultrasound signal and the step of inducing the first shear wave in the object further comprises synthesizing a first sub-shear wave induced in the object of the first push ultrasound signal and a second sub-shear wave induced in the object by the first grating lobe signal.

    [0016] The first push ultrasound signal may include an unfocused ultrasound signal.

    [0017] In the inducing of the first shear wave, the first shear wave may be induced in the object by transmitting a plurality of first push ultrasound signals and a plurality of first grating lobe signals which respectively relate to the first push ultrasound signals, both pluralities having a same steering angle, toward the object by using a plurality of elements which are included in the probe.

    [0018] The inducing the first shear wave may include transmitting the first push ultrasound signal toward the object by steering the first push ultrasound signal at a first steering angle.

    [0019] The method may further include inducing a second shear wave in the object by transmitting a second push ultrasound signal which is steered at a second steering angle that is different from the first steering angle and a second grating lobe signal which relates to the second push ultrasound signal toward the object, transmitting a second tracking ultrasound signal to an area of the object where the second shear wave has propagated and receiving, from the object, a second reflection signal which relates to the second tracking ultrasound signal, and measuring a second shear wave parameter which indicates a shear wave characteristic of the second shear wave based on the second reflection signal. In the above method, the obtaining of the elastic feature of the object comprises using the measured first shear wave parameter and the measured second shear wave parameter to determine an average parameter value and obtaining the elastic feature of the object by using the determined average parameter value.

    [0020] The receiving the first reflection signal may include transmitting the first tracking ultrasound signal a plurality of times to an area where the first shear wave has propagated and receiving, from the object, a plurality of first reflection signals which relate to the plurality of transmissions of the first tracking ultrasound signal, and the measuring the first shear wave parameter may include measuring the first shear wave parameter by applying a cross-correlation to the received plurality of first reflection signals.

    [0021] The obtaining the elastic feature of the object may further include generating an image of an elasticity of the object by mapping the elastic feature to at least one from among a black and white scale and a color scale.

    [0022] The transmitting the tracking ultrasound signal may include transmitting the first tracking ultrasound signal to a first position where the first shear wave has propagated and transmitting a second tracking ultrasound signal to a second position where the first shear wave has propagated, and the receiving the first reflection signal may include receiving the first reflection signal which relates to the first tracking ultrasound signal from the first position and receiving a second reflection signal which relates to the second tracking ultrasound signal from the second position. The measuring the first shear wave parameter may include measuring a first phase of the first shear wave from the first reflection signal and measuring a second phase of the first shear wave from the second reflection signal, and measuring a propagation velocity of the first shear wave by using a phase difference between the measured first phase and the measured second phase and by using a distance between the first position and the second position.

    [0023] According to one or more exemplary embodiments, a method for obtaining an elastic feature of an object includes inducing a first sub-shear wave in the object by transmitting a first push ultrasound signal which is generated by a probe of an ultrasound apparatus, and inducing a second sub-shear wave in the object by transmitting a first grating lobe signal which relates to the first push ultrasound signal toward the object, wherein the strength of the grating signal is equal to the strength of the first push ultrasound signal, transmitting a first tracking ultrasound signal to an area of the object where the first and second sub-shear waves have propagated, and receiving, from the object, a first reflection signal which relates to the first tracking ultrasound signal, measuring a first shear wave parameter of the first sub-shear wave and a second shear wave parameter of the second sub-shear wave based on the received first reflection signal, and using the measured first shear wave parameter of the first sub-shear wave and the measured second shear wave parameter of the second sub-shear wave to determine an average parameter value, and obtaining an elastic feature of the object by using the determined average parameter value.

    [0024] The first push ultrasound signal may include an unfocused ultrasound signal.

    [0025] The measuring the first shear wave parameter of the first sub-shear wave and the second shear wave parameter of the second sub-shear wave may include blocking a first component portion of the first reflection signal which relates to the first sub-shear wave by applying a first directional filter to the first reflection signal, and blocking a second component portion of the first reflection signal which relates to the second sub-shear wave by applying a second directional filter to the first reflection signal, and measuring the first shear wave parameter of the first sub-shear wave based on a result of the blocking the second component portion of the first reflection signal, and measuring the second shear wave parameter of the second sub-shear wave based on a result of the blocking the first component portion of the first reflection signal

    [0026] According to one or more exemplary embodiments, a non-transitory computer readable storage medium having stored thereon a program which, when executed by a computer of an ultrasound apparatus, performs the method of obtaining an elastic feature of an object includes inducing a first shear wave in the object by transmitting a first push ultrasound signal which is generated by a probe of the ultrasound apparatus and a first grating lobe signal which relates to the first push ultrasound signal toward the object, transmitting a first tracking ultrasound signal to an area of the object where the first shear wave has propagated, and receiving, from the object, a first reflection signal which relates to the first tracking ultrasound signal, measuring a first shear wave parameter which indicates a shear wave characteristic of the first shear wave based on the first reflection signal, and obtaining an elastic feature of the object by using the first shear wave parameter characterized in that the strength of the grating lobe signal is equal to the strength of the first push ultrasound signal and the first step of inducing the first shear sound wave in the objection further comprises synthesizing a first sub-shear wave induced in the object by the first push ultrasound signal and a second sub-shear wave induced in the object by the first grating lobe signal.

    [0027] According to one or more exemplary embodiments, a non-transitory computer readable storage medium having stored thereon a program which, when executed by a computer of an ultrasound apparatus, performs the method of obtaining an elastic feature of an object includes inducing a first sub-shear wave in the object by transmitting a first push ultrasound signal which is generated by a probe of the ultrasound apparatus and inducing a second sub-shear wave in the object by transmitting a first grating lobe signal which relates to the first push ultrasound signal toward the object, wherein the strength of the grating lobe signal is equal to the strength of the first push ultrasound signal, transmitting a first tracking ultrasound signal to an area of the object where the first and second sub-shear waves have propagated, and receiving, from the object, a first reflection signal which relates to the first tracking ultrasound signal, measuring a first shear wave parameter of the first sub-shear wave and a second shear wave parameter of the second sub-shear wave based on the received first reflection signal, and using the measured first shear wave parameter of the first sub-shear wave and the measured second shear wave parameter of the second sub-shear wave to determine an average parameter value, and obtaining an elastic feature of the object by using the determined average parameter value.

    [0028] According to one or more exemplary embodiments, an ultrasound apparatus may include a shear wave inducer configured to induce a first shear wave in an object by transmitting a first push ultrasound signal which is generated by a probe of the ultrasound apparatus and a first grating lobe signal which relates to the first push ultrasound signal toward the object, a shear wave detector configured to transmit a first tracking ultrasound signal to an area of the object where the first shear wave has propagated and to receive a first reflection signal which relates to the first tracking ultrasound signal from the object, and a controller configured to measure a first shear wave parameter which indicates a shear wave characteristic of the first shear wave based on the received first reflection signal and to obtain an elastic feature of the object by using the measured first shear wave parameter characterized in that the shear wave inducer is configured to induce the grating lobe signal having a strength equal to the strength of the first push ultrasound signal and the shear wave inducer is configured to induce the first shear wave in the object by synthesizing a first sub-shear wave generated by the first push ultrasound signal and a second sub-shear wave generated by the first grating lobe signal.

    [0029] According to one or more exemplary embodiments, an ultrasound apparatus includes a shear wave inducer configured to induce a first sub-shear wave in an object by transmitting a first push ultrasound signal which is generated by a probe of an ultrasound apparatus and to induce a second sub-shear wave in the object by transmitting a first grating lobe signal which relates to the first push ultrasound signal toward the object, wherein the strength of the grating lobe signal is equal to the strength of the first push ultrasound signal, a shear wave detector configured to transmit a first tracking ultrasound signal to an area of the object where the first and second sub-shear waves have propagated, and to receive, from the object, a first reflection signal which relates to the first tracking ultrasound signal, and a controller configured to measure a first shear wave parameter of the first sub-shear wave and to measure a second shear wave parameter of the second sub-shear wave based on the received first reflection signal, to use the measured first shear wave parameter of the first sub-shear wave and the measured second shear wave parameter of the second sub-shear wave to determine an average parameter value, and to obtain an elastic feature of the object by using the determined average parameter value.

    Mode for Invention



    [0030] Reference will now be made in detail to exemplary embodiments, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout. In this regard, the present exemplary embodiments may have different forms and should not be construed as being limited to the descriptions set forth herein. Accordingly, the exemplary embodiments are merely described below, by referring to the figures, to explain aspects of the present disclosure. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items. Expressions such as "at least one of," when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list.

    [0031] The terms such as "∼ portion", "∼ unit", "∼ module", and "∼ block" stated in the specification may signify a unit which is configured to process at least one function or operation, and the unit may be embodied by hardware such as a field-programmable gate array (FPGA) or an application-specific integrated circuit (ASIC), software, or a combination of hardware and software. However, the unit may be configured to be located in a storage medium to be addressed or configured to be able to operate one or more processors. Accordingly, the unit as an example includes constituent elements such as software constituent elements, object-oriented software constituent elements, class constituent elements, and task constituent elements, processes, functions, attributes, procedures, sub-routines, segments of program codes, drivers, firmware, microcodes, circuits, data, a database, data structures, tables, arrays, and variables. The constituent elements and functions provided by the "units" may be combined into a smaller number of constituent elements and units or may be further divided into additional constituent elements and units. Accordingly, the present exemplary embodiments are not limited by a specific combination of hardware and software.

    [0032] In the present specification, an "image" may signify multi-dimensional data which is formed of discrete image elements, for example, pixels in a two-dimensional (2D) image and/or voxels in a three-dimensional (3D) image. For example, an image may include an ultrasound image.

    [0033] Further, in the present specification, an "object" may include any one or more of a human, an animal, or a part of a human or an animal. For example, an object may include organs such as the liver, the heart, the womb, the brain, a breast, the abdomen, etc., and/or blood vessels. In addition, an object may include a phantom that signifies matter which has a volume that approximates the intensity and effective atomic number of a living thing, and may include a sphere phantom which has a property similar to that of a human body.

    [0034] Still further, in the present specification, a "user" may be a doctor, a nurse, a clinical pathologist, a medical imaging expert, a technician who fixes a medical apparatus, and/or any other suitable type of user, but the exemplary embodiments are not limited thereto.

    [0035] FIG. 1 illustrates an ultrasound apparatus 100 which is configured for transmitting a first push ultrasound signal 113 and a first grating lobe signal 115 to an object 10, according to an exemplary embodiment. Referring to FIG. 1, the ultrasound apparatus 100 may include a probe 110 that transmits an ultrasound signal toward the object 10 and receives a reflection signal which is reflected from the object 10. The ultrasound apparatus 100 may generate an image of the object 10 by using the received reflection signal. The probe 110 may include an array probe which includes a plurality of elements 111 that are separately and/or independently controllable by the ultrasound apparatus 100.

    [0036] The ultrasound apparatus 100, according to the present exemplary embodiment, transmits the first push ultrasound signal 113 and the first grating lobe signal 115 that is generated to correspond to the first push ultrasound signal 113 toward the object 10 via the probe 110 in order to induce a first shear wave which is generated by the first push ultrasound signal 113 and the first grating lobe signal 115 in the object 10.

    [0037] The first grating lobe signal 115 is a signal which propagates in a non-axial direction and which is generated by the probe 110. In general, a grating lobe signal is a signal that should be removed because it reduces a lateral direction contrast aspect of an ultrasound image. The grating lobe signal may be weakened by reducing the width of an element of the probe 110 by an amount that makes the element width less than or equal
    to 1/2 of the wavelength of an ultrasound signal.

    [0038] In the present exemplary embodiment, however, by designing the probe 110 such that the strength of the grating lobe signal equals the strength of a main beam, rather than weakening or removing the grating lobe signal generated by the probe 110, an induced shear wave in the object 10 may result from the transmission of the grating lobe signal.

    [0039] The first push ultrasound signal 113 may include an unfocused ultrasound signal. The ultrasound apparatus 100, according to the present exemplary embodiment, transmits the first push ultrasound signal 113 toward the object 10 so that a risk due to a high sound pressure may be reduced.

    [0040] Further, the ultrasound apparatus 100, according to the present exemplary embodiment, may transmit the first push ultrasound signal 113 toward the object 10 by steering the first push ultrasound signal 113 at a first steering angle "a". The steering angle signifies an angle between a preset reference axis 117 and a direction in which an ultrasound signal propagates. For example, the ultrasound apparatus 100 may set the first steering angle "a" of the first push ultrasound signal 113 to be within a range of between 0° and 90°. Accordingly, a shear wave may be induced in an area of the object 10 that is perpendicular to a position where the probe 110 is located.

    [0041] In addition, the ultrasound apparatus 100, according to the present exemplary embodiment, may generate the first grating lobe signal 115 such that a steering angle "b" of the first grating lobe signal 115 is different from the first steering angle "a" of the first push ultrasound signal 113 by a predetermined angle. For example, the steering angle "b" of the first grating lobe signal 115 may be set to an angle which is determined by subtracting an angular measure of the first steering angle "a" of the first push ultrasound signal 113 from 180°. Accordingly, the first push ultrasound signal 113 and the first grating lobe signal 115 may be transmitted toward the object 10 in the symmetrical directions with respect to a center of a vertical axis 118 of the probe 110. The steering angle "b" of the first grating lobe signal 115 may be controlled by adjusting the pitch and width of an element of the probe 110.

    [0042] FIG. 2 is a flowchart which illustrates a method for obtaining an elastic feature of the object 10, according to an exemplary embodiment. Referring to FIG. 2, in operation S210, the ultrasound apparatus 100 transmits, toward the object 10, the first push ultrasound signal 113 which is generated by the probe 110 and the first grating lobe signal 115 which relates to the first push ultrasound signal 113. As described above, the first push ultrasound signal 113 may include an unfocused ultrasound signal. The ultrasound apparatus 100 may transmit the first push ultrasound signal 113 toward the object 10 by steering the first push ultrasound signal 113 by the first steering angle "a".

    [0043] In operation S220, the ultrasound apparatus 100 induces in the object 10 a first shear wave which is generated by the first push ultrasound signal 113 and the first grating lobe signal 115. The first shear wave which is induced in the object 10 will be described below with reference to FIG. 3.

    [0044] In operation S230, the ultrasound apparatus 100 transmits a first tracking ultrasound signal to an area of the object 10 where the first shear wave has propagated.

    [0045] In operation S240, the ultrasound apparatus 100 receives a first reflection signal from the object 10 which relates to the first tracking ultrasound signal.

    [0046] In operation S250, the ultrasound apparatus 100 measures a first shear wave parameter which indicates a shear wave characteristic of the first shear wave, based on the first reflection signal which is received from the object 10. The first shear wave parameter may include at least one from among a propagation velocity of the first shear wave and an attenuation coefficient of the first shear wave.

    [0047] The propagation velocity Vs of the first shear wave may be obtained by applying Equation 1, and the attenuation coefficient α of the first shear wave may be obtained by applying Equation 2. In Equations 1 and 2, "R" and "X" respectively are a real number component and an imaginary number of an acoustic impedance of the object 10, ρ is a density of the object 10, and ω is an angular frequency of the first shear wave.





    [0048] Further, the ultrasound apparatus 100, according to the present exemplary embodiment, may measure the first shear wave parameter by transmitting the first tracking ultrasound signal multiple times toward the area where the first shear wave has propagated, receiving, from the object 10, a corresponding plurality of first reflection signals which respectively relate to the plurality of transmissions of the first tracking ultrasound signal toward the object 10, and then applying a cross-correlation to the plurality of received first reflection signals.

    [0049] In addition to the above-described methods, the first shear wave parameter of the first shear wave which is induced in the object 10 may be measured by any one or more of a variety of methods within a scope that is well-known to those of ordinary skill in the art.

    [0050] In operation S260, the ultrasound apparatus 100 may obtain an elastic feature of the object 10 by using the first shear wave parameter. The elastic feature of the object 10 may include at least one from among a shear modulus, a Young's modulus, and a shear viscosity of the object 10. A shear modulus G of the object 10 may be obtained by applying Equation 3. Young's modulus E of the object 10 may be obtained by applying Equation 4. A shear viscosity η of the object 10 may be obtained by applying Equation 5.







    [0051] The ultrasound apparatus 100, according to the present exemplary embodiment, may generate an image of an elasticity of the object 10 by mapping the elastic feature of the object 10 to either or both of a black and white scale and a color scale, and output a generated image of the elasticity via a display (not shown).

    [0052] FIG. 3 illustrates an exemplary method by which the ultrasound apparatus 100 induces a first shear wave in the object 10, according to an exemplary embodiment. Referring to FIG. 3, a first sub-shear wave 114 which is induced in the object 10 by the first push ultrasound signal 113 propagates in a direction A that is perpendicular to the direction in which the first push ultrasound signal 113 propagates. In addition, a second sub-shear wave 116 which is induced in the object 10 by the first grating lobe signal 115 propagates in a direction B that is perpendicular to the direction in which the first grating lobe signal 115 propagates.

    [0053] When the steering angle of the first grating lobe signal 115 is set to be an angle which is determined by subtracting an angular measure of the steering angle of the first push ultrasound signal 113 from 180°, x-axis components of the first sub-shear wave 114 induced by the first push ultrasound signal 113 and the second sub-shear wave 116 induced by the first grating lobe signal 115 are offset with each other, and only y-axis components thereof remain. As a result, in an area where both the first and second sub-shear waves 114 and 116 exist, the first and second sub-shear waves 114 and 116 are synthesized with each other, and thus, the synthesized first shear wave exists and propagates in a direction C. The ultrasound apparatus 100, according to the present exemplary embodiment, may obtain an elastic feature of the object 10 by measuring the first shear wave parameter of the first shear wave that propagates in the direction C.

    [0054] FIG. 4 illustrates an exemplary method by which the ultrasound apparatus 100 induces a first shear wave in the object 10, according to another exemplary embodiment. Referring to FIG. 4, the ultrasound apparatus 100, according to the present exemplary embodiment, may transmit a plurality of first push ultrasound signals 113 and a corresponding plurality of first grating lobe signals 115 which respectively relate to the first push ultrasound signals 113, both pluralities having a same steering angle, by using a plurality of elements 111, thereby inducing in the object 10 a first shear wave that is generated by the first push ultrasound signals 113 and the first grating lobe signals 115.

    [0055] When a first shear wave is induced in the object 10 by using only one first push ultrasound signal 113 and one first grating lobe signal 115, the strength of the first shear wave may be weak, and therefore, in the present exemplary embodiment, the first shear wave is induced in the object 10 by using at least two of the first push ultrasound signals 113 and at least two of the first grating lobe signals 115. IN order to enable the first sub-shear waves 114 induced by the first push ultrasound signals 113 to overlap with each other, an interval between the first push ultrasound signals 113 is adjusted.

    [0056] FIG. 5 is a flowchart which illustrates a method for obtaining an elastic feature of the object 10, according to another exemplary embodiment. The method for obtaining an elastic feature of the object 10 which is illustrated in FIG. 5 may be performed instead of operation S260 of FIG. 2.

    [0057] In operation S510, the ultrasound apparatus 100 transmits, to the object 10, a second push ultrasound signal that is steered at a second steering angle which is different from the first steering angle of the first push ultrasound signal 113, and also transmits a second grating lobe signal which corresponds to the second push ultrasound signal.

    [0058] In operation S520, the ultrasound apparatus 100 induces, in the object 10, a second shear wave that is generated by the second push ultrasound signal and the second grating lobe signal.

    [0059] In operation S530, the ultrasound apparatus 100 transmits a second tracking ultrasound signal to an area of the object 10 where the second shear wave has propagated.

    [0060] In operation S540, the ultrasound apparatus 100 receives a second reflection signal which relates to the second tracking ultrasound signal from the object 10.

    [0061] In operation S550, the ultrasound apparatus 100 measures a second shear wave parameter which indicates a shear wave characteristic of the second shear wave, based on the received second reflection signal. The method for measuring the shear wave parameter based on the reflection signal has already been described above with reference to FIG. 2, and thus, a detailed description thereof will be omitted here.

    [0062] In operation S560, the ultrasound apparatus 100 determines an average parameter value of the first shear wave parameter measured in operation S250 of FIG. 2 and the second shear wave parameter. The ultrasound apparatus 100 may determine the average parameter value of the first and second shear wave parameters by applying a respective weight to each of the first and second shear wave parameters.

    [0063] In operation S570, the ultrasound apparatus 100 obtains an elastic feature of the object 10 by using the determined average parameter value.

    [0064] According to a method for obtaining an elastic feature of the object 10 according to another exemplary embodiment, because the elastic feature of the object 10 is obtained after determining an average parameter value of the first shear wave parameter of the first shear wave which is induced by the first push ultrasound signal 113 and the first grating lobe signal 115 and the second shear wave parameter of the second shear wave which is induced by the second push ultrasound signal and the second grating lobe signal, the elastic feature of the object 10 may be relatively more accurately obtained.

    [0065] FIG. 6 illustrates a method by which the ultrasound apparatus 100 measures a propagation velocity of the first shear wave, according to an exemplary embodiment. Reference will be made to FIG. 6 to describe an exemplary method other than the above-described method for measuring the first shear wave parameter of the first shear wave in FIG. 2.

    [0066] The ultrasound apparatus 100, according to the present exemplary embodiment, may transmit a first tracking ultrasound signal 610 to a first position 601 in an area where the first shear wave has propagated, and receive a first reflection signal which is reflected from the first position 601. Next, the ultrasound apparatus 100 may transmit a second tracking ultrasound signal 630 to a second position 603 in an area where the first shear wave has propagated, and receive a second reflection signal which is reflected from the second position 603. The ultrasound apparatus 100 may measure a first phase of the first shear wave from the first reflection signal and a second phase of the first shear wave from the second reflection signal.

    [0067] In detail, the ultrasound apparatus 100 measures a first phase of the first shear wave that passes through the first position 601 by using the first reflection signal, and measures a second phase of the first shear wave that passes through the second position 603 by using the second reflection signal. The ultrasound apparatus 100 may measure a propagation velocity of the first shear wave as the first shear wave parameter by using a phase difference between the measured first and second phases and a distance d between the first and second positions 601 and 603.

    [0068] For example, the ultrasound apparatus 100 may obtain a propagation velocity Cs of the first shear wave by applying Equation 6. In Equation 6, ω is an angular frequency of the first shear wave, Δr is a distance d between the first and second positions, and Δϕ is a phase difference between the first and second phases.



    [0069] Although in the above description the first shear wave parameter of the first shear wave induced in the object 10 is measured, it is possible to obtain an elastic feature of the object 10 by measuring a first shear wave parameter of the first sub-shear wave 114 which is induced in the object 10 by the first push ultrasound signal 113 and by measuring a second shear wave parameter of the second sub-shear wave 116 which is induced in the object 10 by the first grating lobe signal 115 and using the measured first and second shear wave parameters.

    [0070] FIG. 7 is a flowchart which illustrates a method for obtaining an elastic feature of the object 10, according to another exemplary embodiment.

    [0071] In operation S710, the ultrasound apparatus 100 transmits, to the object 10, the first push ultrasound signal 113 which is generated by the probe 110 of the ultrasound apparatus 100 and the corresponding first grating lobe signal 115 which relates to the first push ultrasound signal 113. In operation S720, the ultrasound apparatus 100 induces, in the object 10, the first sub-shear wave 114 which is generated by the first push ultrasound signal 113 and the second sub-shear wave 116 which is generated by the first grating lobe signal 115. In operation S730, the ultrasound apparatus 100 transmits a first tracking ultrasound signal to an area of the ultrasound apparatus 100 where the first sub-shear wave 114 and the second sub-shear wave 116 have propagated. In operation S740, the ultrasound apparatus 100 receives, from the object 10, a first reflection signal which relates to the first tracking ultrasound signal.

    [0072] In operation S750, the ultrasound apparatus 100 measures a first shear wave parameter of the first sub-shear wave 114 and a second shear wave parameter of the second sub-shear wave 116 based on the received first reflection signal. Because the first and second sub-shear waves 114 and 116 may be offset in the object 10, the ultrasound apparatus 100 may measure the respective first and second shear wave parameters of the first and second sub-shear waves 114 and 116 by applying the first reflection signal to a directional filter and using a filtered reflection signal.

    [0073] For example, the ultrasound apparatus 100 may block a first component portion of the first reflection signal, which first component portion corresponds to the first sub-shear wave 114, by applying a first directional filter to the first reflection signal which is received from the object 10, and may block a second component portion of the first reflection signal, which second component portion corresponds to the second sub-shear wave 116, by applying a second directional filter to the first reflection signal. Next, the ultrasound apparatus 100 may measure the first shear wave parameter of the first sub-shear wave 114 based on a result of the blocking the second component portion of the first reflection signal, and may measure the second shear wave parameter of the second sub-shear wave 116 based on a result of the blocking the first component portion of the first reflection signal. Because the directional filter is well-known to those of ordinary skill in the art, a detailed description thereof will be omitted herein.

    [0074] In operation S760, the ultrasound apparatus 100 determines an average parameter value of the first shear wave parameter of the first sub-shear wave 114 and the second shear wave parameter of the second sub-shear wave 116. The ultrasound apparatus 100 may apply a respective weight to each of the first shear wave parameter of the first sub-shear wave 114 and the second shear wave parameter of the second sub-shear wave 116, and then may determine an average value of the first shear wave parameter of the first sub-shear wave 114 to which a first weight is applied and the second shear wave parameter of the second sub-shear wave 116 to which a second weight is applied.

    [0075] In operation S770, the ultrasound apparatus 100 may obtain an elastic feature of the object 10 by using the average parameter value which is determined in operation S760.

    [0076] According to a method for obtaining an elastic feature of the object 10 according to another exemplary embodiment, the ultrasound apparatus 100 may measure the first shear wave parameter of the first sub-shear wave 114 and the second shear wave parameter of the second sub-shear wave 116 by one-time scanning, and then accurately and quickly obtain an elastic feature of the object 10 by using a result of the measurements.

    [0077] FIG. 8 is a block diagram which illustrates a structure of an ultrasound apparatus 800, according to an exemplary embodiment. Referring to FIG. 8, the ultrasound apparatus 800 may include a shear wave induction unit (also referred to herein as a "shear wave inducer") 810, a shear wave detection unit (also referred to herein as a "shear wave detector") 830, and a control unit (also referred to herein as a "controller") 850. Each of the shear wave induction unit 810, the shear wave detection unit 830, and the control unit 850 may be configured by using a microprocessor.

    [0078] The shear wave induction unit 810 controls the probe 110 to transmit the first push ultrasound signal 113 which is generated by the probe 110 and the corresponding first grating lobe signal 115 which relates to the first push ultrasound signal 113 toward the object 10, thereby inducing in the object 10 a first shear wave that is generated by the first push ultrasound signal 113 and the first grating lobe signal 115. The first push ultrasound signal 113 may include an unfocused ultrasound signal and may have a steering angle which falls within a range of between 0° and 90°. The first shear wave may include a shear wave which is obtained by synthesizing a first sub-shear wave 114 which is generated by the first push ultrasound signal 113 and a second sub-shear wave 116 which is generated by the first grating lobe signal 115.

    [0079] The shear wave induction unit 810 may transmit a plurality of first push ultrasound signals 113 and a corresponding plurality of first grating lobe signals 115 which respectively relate to the first push ultrasound signals 113, both pluralities having a same steering angle, toward the object by using a plurality of elements 111 which are included in the probe 110 of the ultrasound apparatus 800, thereby inducing in the object 10 the first shear wave that is generated by the first push ultrasound signals 113 and the first grating lobe signals 115.

    [0080] The shear wave induction unit 810 may transmit, toward the object 10, a second push ultrasound signal which has a second steering angle which is different from a first steering angle of the first push ultrasound signal 113, and a corresponding second grating lobe signal which relates to the second push ultrasound signal, thereby inducing in the object 10 a second shear wave which is generated by the second push ultrasound signal and the second grating lobe signal.

    [0081] The shear wave detection unit 830 controls the probe 110 to transmit a first tracking ultrasound signal to an area of the object 10 where at least one of the first shear wave and the second shear wave has propagated, and to receive, from the object 10, a first reflection signal which relates to the first tracking ultrasound signal.

    [0082] The shear wave detection unit 830 may transmit the first tracking ultrasound signal a plurality of times to the area of the object 10 where at least one of the first shear wave and the second shear wave has propagated, and receive, from the object 10, a corresponding plurality of first reflection signals which respectively relate to the plurality of transmissions of first tracking ultrasound signals to the object 10.

    [0083] The control unit 850 may measure a first shear wave parameter which indicates a shear wave characteristic of the first shear wave based on the first reflection signal which is received by the probe 110, and obtain an elastic feature of the object 10 by using the measured first shear wave parameter.

    [0084] Further, the control unit 850 may measure a first shear wave parameter of the first sub-shear wave 114 and a second shear wave parameter of the second sub-shear wave 116 based on the first reflection signal which is received by the probe 110, determine an average parameter value by using the measured first shear wave parameter of the first sub-shear wave 114 and the measured second shear wave parameter of the second sub-shear wave 116, and obtain the elastic feature of the object 10 by using the determined average. The control unit 850 may apply a first directional filter and a second directional filter to the first reflection signal which is received by the probe 110 in order to measure an accurate respective value of each of the first shear wave parameter of the first sub-shear wave 114 and the second shear wave parameter of the second sub-shear wave 116.

    [0085] In addition, when the shear wave detection unit 830 receives the first reflection signal from the area of the object 10 where the second sub-shear wave has propagated, the control unit 850 may measure the second shear wave parameter which indicates the shear wave characteristic of the second sub-shear wave, determine an average parameter value of the first and second shear wave parameters, and obtain the elastic feature of the object 10 by using the determined average parameter value.

    [0086] Although it is not illustrated in FIG. 8, the ultrasound apparatus 800, according to the present exemplary embodiment, may further include an image generation unit (also referred to herein as an "image generator") which is configured for generating an image of an elasticity of the object 10 by mapping the elastic feature of the object 10 to at least one from among a black and white scale and a color scale, and a display which is configured for outputting a generated image of elasticity of the object 10.

    [0087] The display may include any one or more of a cathode-ray tube (CRT) display, a liquid-crystal display (LCD) display, a plasma display panel (PDP) display, an organic light-emitting diode (OLED) display, a field emission display (FED) display, a light-emitting diode (LED) display, a vacuum fluorescent display (VFD) display, a digital light processing (DLP) display, a primary flight display (PFD) display, a 3D display, a transparent display, and/or any other suitable type of display, and a variety of display apparatuses within a range that is well-known to those of ordinary skill in the art.

    [0088] In addition, other exemplary embodiments can also be implemented via computer readable code/instructions which are stored in/on a medium, e.g., a computer readable medium, in order to control at least one processing element to implement any of the above described exemplary embodiments. The medium can correspond to any transitory or non-transitory medium/media which permits the storage and/or transmission of the computer readable code.

    [0089] The computer readable code can be recorded/transferred on a medium in any one or more of a variety of ways, with examples of the medium including recording media, such as magnetic storage media (e.g., ROM, floppy disks, hard disks, etc.) and optical recording media (e.g., CD-ROMs, or DVDs), and transmission media such as Internet transmission media.

    [0090] It should be understood that the exemplary embodiments described herein should be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each exemplary embodiment should typically be considered as available for other similar features or aspects in other exemplary embodiments.

    [0091] While one or more exemplary embodiments have been described with reference to the figures, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the scope of the present inventive concept as defined by the following claims.


    Claims

    1. A method for obtaining an elastic feature of an object (10), the method comprising:

    inducing (S220) a first shear wave in the object by transmitting (S210) a first push ultrasound signal (113) which is generated by a probe (110) of an ultrasound apparatus (100) and a first grating lobe signal (115) which relates to the first push ultrasound signal toward the object;

    transmitting (S230) a first tracking ultrasound signal (610) to an area of the object where the first shear wave has propagated, and receiving (S240), from the object, a first reflection signal which relates to the first tracking ultrasound signal;

    measuring (S250) a first shear wave parameter which indicates a shear wave characteristic of the first shear wave based on the first reflection signal; and

    obtaining (S260) an elastic feature of the object by using the measured first shear wave parameter characterized in that:

    the strength of the first grating lobe signal (115) is equal to the strength of the first push ultrasound signal (113); and

    the step of inducing the first shear wave in the object (10) further comprises synthesizing a first sub-shear wave (114) induced in the object by the first push ultrasound signal (113) and a second sub-shear wave (116) induced in the object by the first grating lobe signal (115).


     
    2. The method of claim 1, wherein the first push ultrasound signal (113) comprises an unfocused ultrasound signal.
     
    3. The method of claim 1, wherein the first shear wave is induced in the object (10) by transmitting a plurality of first push ultrasound signals (113) and a plurality of first grating lobe signals (115) which respectively relate to the first push ultrasound signals, both pluralities having a same steering angle (a, b), toward the object by using a plurality of elements (111) which are included in the probe (110.
     
    4. The method of claim 1, wherein the inducing (S220) the first shear wave comprises transmitting the first push ultrasound signal (113) toward the object (10) by steering the first push ultrasound signal at a first steering angle (a).
     
    5. The method of claim 4, further comprising:

    inducing (S520) a second shear wave in the object (10) by transmitting (S510) a second push ultrasound signal which is steered at a second steering angle (b) that is different from the first steering angle (a) and a second grating lobe signal which relates to the second push ultrasound signal toward the object; transmitting (S530) a second tracking ultrasound signal (630) to an area of the object where the second shear wave has propagated and receiving (S540), from the object, a second reflection signal which relates to the second tracking ultrasound signal; and

    measuring (S550) a second shear wave parameter which indicates a shear wave characteristic of the second shear wave based on the second reflection signal, wherein the obtaining (S260) the elastic feature of the object comprises using the measured first shear wave parameter and the measured second shear wave parameter to determine (S560) an average parameter value and obtaining (S570) the elastic feature of the object by using the determined average parameter value.


     
    6. The method of claim 1, wherein the receiving (S240) the first reflection signal comprises transmitting the first tracking ultrasound signal (610) a plurality of times to an area where the first shear wave has propagated and receiving, from the object (10), a plurality of first reflection signals which relate to the plurality of transmissions of the first tracking ultrasound signal (610), and
    the measuring the first shear wave parameter comprises measuring the first shear wave parameter by applying a cross-correlation to the received plurality of first reflection signals.
     
    7. The method of claim 1, wherein the obtaining (S260) the elastic feature of the object (10) further comprises generating an image of an elasticity of the object by mapping the elastic feature to at least one from among a black and white scale and a color scale.
     
    8. The method of claim 1, wherein the transmitting (S230) the first tracking ultrasound signal comprises:

    transmitting the first tracking ultrasound signal (610) to a first position (601) where the first shear wave has propagated and transmitting a second tracking ultrasound signal (630) to a second position (603) where the first shear wave has propagated; and

    wherein the receiving (S240) the first reflection signal comprises:

    receiving the first reflection signal which relates to the first tracking ultrasound signal from the first position and receiving a second reflection signal which relates to the second tracking ultrasound signal from the second position,

    wherein the measuring (S250) the first shear wave parameter comprises:

    measuring a first phase of the first shear wave from the first reflection signal and measuring a second phase of the first shear wave from the second reflection signal; and

    measuring a propagation velocity (Vs) of the first shear wave by using a phase difference (ΔΦ) between the measured first phase and the measured second phase and by using a distance between the first position and the second position.


     
    9. A method for obtaining an elastic feature of an object (10), the method comprising:

    inducing (S720) a first sub-shear wave (114) in the object by transmitting (S710) a first push ultrasound signal (113) which is generated by a probe (110) of an ultrasound apparatus (100), and inducing (S720) a second sub-shear wave (116) in the object by transmitting (S710) a first grating lobe signal (115) which relates to the first push ultrasound signal toward the object, wherein the strength of the first grating lobe signal (115) is equal to the strength of the first push ultrasound signal (113);

    transmitting (S730) a first tracking ultrasound signal (610) to an area of the object where the first and second sub-shear waves have propagated, and receiving (S740), from the object, a first reflection signal which relates to the first tracking ultrasound signal;

    measuring (S750) a first shear wave parameter of the first sub-shear wave and a second shear wave parameter of the second sub-shear wave based on the received first reflection signal; and

    using the measured first shear wave parameter of the first sub-shear wave and the measured second shear wave parameter of the second sub-shear wave to determine (S760) an average parameter value, and obtaining (S770) an elastic feature of the object by using the determined average parameter value.


     
    10. The method of claim 9, wherein the first push ultrasound signal (113) comprises an unfocused ultrasound signal.
     
    11. The method of claim 9, wherein the measuring (S750) the first shear wave parameter of the first sub-shear wave (114) and the second shear wave parameter of the second sub-shear wave (116) comprises:

    blocking a first component portion of the first reflection signal which relates to the first sub-shear wave by applying a first directional filter to the first reflection signal, and blocking a second component portion of the first reflection signal which relates to the second sub-shear wave by applying a second directional filter to the first reflection signal; and

    measuring the first shear wave parameter of the first sub-shear wave based on a result of the blocking the second component portion of the first reflection signal, and measuring the second shear wave parameter of the second sub-shear wave based on a result of the blocking the first component portion of the first reflection signal.


     
    12. A non-transitory computer readable storage medium having stored thereon a program which, when executed by a computer of an ultrasound apparatus (100, 800) according to claim 14, performs the method of claim 1.
     
    13. A non-transitory computer readable storage medium having stored thereon a program which, when executed by a computer of an ultrasound apparatus (100, 800) according to claim 15, performs the method of claim 9.
     
    14. An ultrasound apparatus (100, 800) comprising:

    a shear wave inducer (810) configured to induce a first shear wave in an object (10) by transmitting a first push ultrasound signal (113) which is generated by a probe (110) of the ultrasound apparatus and a first grating lobe signal (115) which relates to the first push ultrasound signal toward the object;

    a shear wave detector (830) configured to transmit a first tracking ultrasound signal (610) to an area of the object where the first shear wave has propagated and to receive a first reflection signal which relates to the first tracking ultrasound signal from the object; and

    a controller (850) configured to measure a first shear wave parameter which indicates a shear wave characteristic of the first shear wave based on the received first reflection signal and to obtain an elastic feature of the object by using the measured first shear wave parameter characterized in that:

    the shear wave inducer (810) is configured to induce the first grating lobe signal (115) having a strength equal to the strength of the first push ultrasound signal (113); and

    the shear wave inducer (810) is configured to induce the first shear wave in the object (10) by synthesizing a first sub-shear wave (114) generated by the first push ultrasound signal (113) and a second sub-shear wave (116) generated by the first grating lobe signal (115).


     
    15. An ultrasound apparatus (100, 800) comprising:

    a shear wave inducer (810) configured to induce a first sub-shear wave (114) in an object (10) by transmitting a first push ultrasound signal (113) which is generated by a probe (110) of an ultrasound apparatus, and to induce a second sub-shear wave (116) in the object by transmitting a first grating lobe signal (115) which relates to the first push ultrasound signal toward the object, wherein the strength of the first grating lobe signal (115) is equal to the strength of the first push ultrasound signal (113);

    a shear wave detector (830) configured to transmit a first tracking ultrasound signal (610) to an area of the object where the first and second sub-shear waves have propagated, and to receive, from the object, a first reflection signal which relates to the first tracking ultrasound signal; and

    a controller (850) configured to measure a first shear wave parameter of the first sub-shear wave and to measure a second shear wave parameter of the second sub-shear wave based on the received first reflection signal, to use the measured first shear wave parameter of the first sub-shear wave and the measured second shear wave parameter of the second sub-shear wave to determine an average parameter value, and to obtain an elastic feature of the object by using the determined average parameter value.


     


    Ansprüche

    1. Verfahren zum Erhalten eines elastischen Merkmals eines Objekts (10), wobei das Verfahren umfasst:

    Induzieren (S220) einer ersten Scherwelle in dem Objekt durch Übertragen (S210) eines ersten Push-Ultraschallsignals (113), das von einer Sonde (110) einer Ultraschallvorrichtung (100) erzeugt wird, und eines ersten Gitterkeulensignals (115), das sich auf das erste Push-Ultraschallsignal in Richtung des Objekts bezieht;

    Übertragen (S230) eines ersten Tracking-Ultraschallsignals (610) zu einem Bereich des Objekts, in dem sich die erste Scherwelle ausgebreitet hat, und Empfangen (S240) eines ersten Reflexionssignals, das sich auf das erste Tracking-Ultraschallsignal bezieht, von dem Objekt;

    Messen (S250) eines ersten Scherwellenparameters, der eine Scherwellencharakteristik der ersten Scherwelle basierend auf dem ersten Reflexionssignal anzeigt; und

    Erhalten (S260) eines elastischen Merkmals des Objekts unter Verwendung des gemessenen ersten Scherwellenparameters, dadurch gekennzeichnet, dass:

    die Stärke des ersten Gitterkeulensignals (115) gleich der Stärke des ersten Push-Ultraschallsignals (113) ist; und

    der Schritt des Induzierens der ersten Scherwelle in dem Objekt (10) ferner Synthetisieren einer ersten Teilscherwelle (114), die in dem Objekt durch das erste Push-Ultraschallsignal (113) induziert wird, und einer zweiten Teilscherwelle (116), die in dem Objekt durch das erste Gitterkeulensignal (115) induziert wird.


     
    2. Verfahren nach Anspruch 1, wobei das erste Push-Ultraschallsignal (113) ein unfokussiertes Ultraschallsignal umfasst.
     
    3. Verfahren nach Anspruch 1, wobei die erste Scherwelle in dem Objekt (10) durch Übertragen mehrerer erster Push-Ultraschallsignale (113) und mehrerer erster Gitterkeulensignale (115), die sich jeweils auf die ersten Push-Ultraschallsignale beziehen, induziert wird, wobei beide Mehrzahlen einen gleichen Lenkwinkel (a, b) aufweisen, in Richtung des Objekts unter Verwendung mehrerer Elemente (111), die in der Sonde (110) enthalten sind.
     
    4. Verfahren nach Anspruch 1, wobei das Induzieren (S220) der ersten Scherwelle das Übertragen des ersten Push-Ultraschallsignals (113) in Richtung des Objekts (10) durch Steuern des ersten Push-Ultraschallsignals in einem ersten Lenkwinkel (a) umfasst.
     
    5. Verfahren nach Anspruch 4, ferner umfassend:

    Induzieren (S520) einer zweiten Scherwelle in dem Objekt (10) durch Übertragen (S510) eines zweiten Push-Ultraschallsignals, das in einem zweiten Lenkwinkel (b) gesteuert wird, der sich von dem ersten Lenkwinkel (a) unterscheidet, und eines zweiten Gitterkeulensignals, das sich auf das zweite Push-Ultraschallsignal in Richtung des Objekts bezieht;

    Senden (S530) eines zweiten Tracking-Ultraschallsignals (630) zu einem Bereich des Objekts, in dem sich die zweite Scherwelle ausgebreitet hat, und Empfangen (S540) eines zweiten Reflexionssignals, das sich auf das zweite Tracking-Ultraschallsignal bezieht, von dem Objekt; und

    Messen (S550) eines zweiten Scherwellenparameters, der eine Scherwellencharakteristik der zweiten Scherwelle basierend auf dem zweiten Reflexionssignal anzeigt, wobei das Erhalten (S260) des elastischen Merkmals des Objekts die Verwendung des gemessenen ersten Scherwellenparameters und des gemessenen zweiten Scherwellenparameters, um einen durchschnittlichen Parameterwert zu bestimmen (S560) und das Erhalten (S570) des elastischen Merkmals des Objekts unter Verwendung des bestimmten durchschnittlichen Parameterwertes, umfasst.


     
    6. Verfahren nach Anspruch 1, wobei das Empfangen (S240) des ersten Reflexionssignals das mehrmalige Übertragen des ersten Tracking-Ultraschallsignals (610) in einen Bereich umfasst, in dem sich die erste Scherwelle ausgebreitet hat, und das Empfangen mehrerer erster Reflexionssignale, die sich auf die mehreren Übertragungen des ersten Tracking-Ultraschallsignals (610) beziehen, von dem Objekt (10), und
    das Messen des ersten Scherwellenparameters das Messen des ersten Scherwellenparameters durch Anwenden einer Kreuzkorrelation auf die empfangenen mehreren ersten Reflexionssignale umfasst.
     
    7. Verfahren nach Anspruch 1, wobei das Erhalten (S260) des elastischen Merkmals des Objekts (10) ferner das Erzeugen eines Bildes einer Elastizität des Objekts durch Abbilden des elastischen Merkmals auf eine Schwarz-Weiß-Skala und/oder eine Farbskala umfasst.
     
    8. Verfahren nach Anspruch 1, wobei das Übertragen (S230) des ersten Tracking-Ultraschallsignals umfasst:

    Übertragen des ersten Tracking-Ultraschallsignals (610) an eine erste Position (601), in der sich die erste Scherwelle ausgebreitet hat, und Übertragen eines zweiten Tracking-Ultraschallsignals (630) an eine zweite Position (603), in der sich die erste Scherwelle ausgebreitet hat; und

    wobei das Empfangen (S240) des ersten Reflexionssignals umfasst:

    Empfangen des ersten Reflexionssignals, das sich auf das erste Tracking-Ultraschallsignal von der ersten Position bezieht, und Empfangen eines zweiten Reflexionssignals, das sich auf das zweite Tracking-Ultraschallsignal von der zweiten Position bezieht, wobei das Messen (S250) des ersten Scherwellenparameters umfasst:

    Messen einer ersten Phase der ersten Scherwelle von dem ersten Reflexionssignal und Messen einer zweiten Phase der ersten Scherwelle von dem zweiten Reflexionssignal; und

    Messen einer Ausbreitungsgeschwindigkeit (Vs) der ersten Scherwelle unter Verwendung einer Phasendifferenz (ΔΦ) zwischen der gemessenen ersten Phase und der gemessenen zweiten Phase, und unter Verwendung eines Abstands zwischen der ersten Position und der zweiten Position.


     
    9. Verfahren zum Erhalten eines elastischen Merkmals eines Objekts (10), wobei das Verfahren umfasst:

    Induzieren (S720) einer ersten Teilscherwelle (114) in dem Objekt durch Übertragen (S710) eines ersten Push-Ultraschallsignals (113), das von einer Sonde (110) einer Ultraschallvorrichtung (100) erzeugt wird, und Induzieren (S720) einer zweiten Teilscherwelle (116) in dem Objekt durch Übertragen (S710) eines ersten Gitterkeulensignals (115), das sich auf das erste Push-Ultraschallsignal in Richtung des Objekts bezieht, wobei die Stärke des ersten Gitterkeulensignals (115) gleich der Stärke des ersten Push-Ultraschallsignals (113) ist;

    Übertragen (S730) eines ersten Tracking-Ultraschallsignals (610) zu einem Bereich des Objekts, in dem sich die ersten und zweiten Teilscherwellen ausgebreitet haben, und Empfangen (S740) eines ersten Reflexionssignals, das sich auf das erste Tracking-Ultraschallsignal bezieht, von dem Objekt;

    Messen (S750) eines ersten Scherwellenparameters der ersten Teilscherwelle und eines zweiten Scherwellenparameters der zweiten Teilscherwelle basierend auf dem empfangenen ersten Reflexionssignal; und

    Verwenden des gemessenen ersten Scherwellenparameters der ersten Teilscherwelle und des gemessenen zweiten Scherwellenparameters der zweiten Teilscherwelle, um einen durchschnittlichen Parameterwert zu bestimmen (S760), und Erhalten (S770) einer elastischen Eigenschaft des Objekts unter Verwendung des bestimmten durchschnittlichen Parameterwertes.


     
    10. Verfahren nach Anspruch 9, wobei das erste Push-Ultraschallsignal (113) ein unfokussiertes Ultraschallsignal umfasst.
     
    11. Verfahren nach Anspruch 9, wobei das Messen (S750) des ersten Scherwellenparameters der ersten Teilscherwelle (114) und des zweiten Scherwellenparameters der zweiten Teilscherwelle (116) umfasst:

    Blockieren eines ersten Komponentenabschnitts des ersten Reflexionssignals, der sich auf die erste Teilscherwelle bezieht, durch Anwenden eines ersten Richtungsfilters auf das erste Reflexionssignal, und Blockieren eines zweiten Komponentenabschnitts des ersten Reflexionssignals, der sich auf die zweite Teilscherwelle bezieht, durch Anwenden eines zweiten Richtungsfilters auf das erste Reflexionssignal; und

    Messen des ersten Scherwellenparameters der ersten Teilscherwelle basierend auf einem Ergebnis der Blockierung des zweiten Komponentenabschnitts des ersten Reflexionssignals und Messen des zweiten Scherwellenparameters der zweiten Teilscherwelle basierend auf einem Ergebnis der Blockierung des ersten Komponentenabschnitts des ersten Reflexionssignals.


     
    12. Nichtflüchtiges, computerlesbares Speichermedium mit einem darauf gespeicherten Programm, das, wenn es von einem Computer einer Ultraschallvorrichtung (100, 800) nach Anspruch 14 ausgeführt wird, das Verfahren nach Anspruch 1 durchführt.
     
    13. Nichtflüchtiges, computerlesbares Speichermedium mit einem darauf gespeicherten Programm, das, wenn es von einem Computer einer Ultraschallvorrichtung (100, 800) nach Anspruch 15 ausgeführt wird, das Verfahren nach Anspruch 9 durchführt.
     
    14. Ultraschallvorrichtung (100, 800), umfassend:

    einen Scherwelleninduktor (810), der zum Induzieren einer ersten Scherwelle in einem Objekt (10) durch Übertragen eines ersten Push-Ultraschallsignals (113), das von einer Sonde (110) der Ultraschallvorrichtung erzeugt wird, und eines ersten Gitterkeulensignals (115), das sich auf das erste Push-Ultraschallsignal in Richtung des Objekts bezieht, ausgelegt ist;

    einen Scherwellendetektor (830), der zum Übertragen eines ersten Tracking-Ultraschallsignals (610) zu einem Bereich des Objekts, in dem sich die erste Scherwelle ausgebreitet hat, und zum Empfangen eines ersten Reflexionssignals, das sich auf das erste Tracking-Ultraschallsignal bezieht, von dem Objekt, ausgelegt ist; und

    eine Steuerung (850), die zum Messen eines ersten Scherwellenparameters, der eine Scherwellencharakteristik der ersten Scherwelle basierend auf dem empfangenen ersten Reflexionssignal anzeigt, und zum Erhalten eines elastischen Merkmals des Objekts unter Verwendung des gemessenen ersten Scherwellenparameters ausgelegt ist, dadurch gekennzeichnet, dass:

    der Scherwelleninduktor (810) zum Induzieren des ersten Gitterkeulensignals (115) mit einer Stärke gleich der Stärke des ersten Push-Ultraschallsignals (113) ausgelegt ist; und

    der Scherwelleninduktor (810) zum Induzieren der ersten Scherwelle in dem Objekt (10) durch Synthetisieren einer ersten Teilscherwelle (114), die durch das erste Push-Ultraschallsignal (113) erzeugt wird, und einer zweiten Teilscherwelle (116), die durch das erste Gitterkeulensignal (115) erzeugt wird, ausgelegt ist.


     
    15. Ultraschallvorrichtung (100, 800) umfassend:

    einen Scherwelleninduktor (810), der zum Induzieren einer ersten Teilscherwelle (114) in einem Objekt (10) durch Übertragen eines ersten Push-Ultraschallsignals (113), das durch eine Sonde (110) einer Ultraschallvorrichtung erzeugt wird, und zum Induzieren einer zweiten Teilscherwelle (116) in dem Objekt durch Übertragen eines ersten Gitterkeulensignals (115), das sich auf das erste Push-Ultraschallsignal in Richtung des Objekts bezieht, ausgelegt ist, wobei die Stärke des ersten Gitterkeulensignals (115) gleich der Stärke des ersten Push-Ultraschallsignals (113) ist;

    einen Scherwellendetektor (830), der zum Übertragen eines ersten Tracking-Ultraschallsignals (610) zu einem Bereich des Objekts, in dem sich die ersten und zweiten Teilscherwellen ausgebreitet haben, und zum Empfangen eines ersten Reflexionssignals, das sich auf das erste Tracking-Ultraschallsignal bezieht, von dem Objekt, ausgelegt ist; und

    eine Steuerung (850), die zum Messen eines ersten Scherwellenparameters der ersten Teilscherwelle und zum Messen eines zweiten Scherwellenparameters der zweiten Teilscherwelle basierend auf dem empfangenen ersten Reflexionssignal ausgelegt ist, um den gemessenen ersten Scherwellenparameter der ersten Teilscherwelle und den gemessenen zweiten Scherwellenparameter der zweiten Teilscherwelle zum Bestimmen eines durchschnittlichen Parameterwertes zu verwenden und um ein elastisches Merkmal des Objekts unter Verwendung des bestimmten durchschnittlichen Parameterwertes zu erhalten.


     


    Revendications

    1. Procédé d'obtention d'une particularité élastique d'un objet (10), le procédé comprenant les étapes consistant à :

    induire (S220) une première onde de cisaillement dans l'objet en transmettant (S210) un premier signal ultrasonore de poussée (113) qui est généré par une sonde (110) d'un appareil à ultrason (100) et un premier signal de lobe secondaire (115) qui est lié au premier signal ultrasonore de poussée en direction de l'objet ;

    transmettre (S230) un premier signal ultrasonore de poursuite (610) à une zone de l'objet où la première onde de cisaillement s'est propagée, et recevoir (S240), depuis l'objet, un premier signal de réflexion qui est lié au premier signal ultrasonore de poursuite ;

    mesurer (S250) un premier paramètre d'onde de cisaillement qui indique une caractéristique d'onde de cisaillement de la première onde de cisaillement sur la base du premier signal de réflexion ; et

    obtenir (S260) une particularité élastique de l'objet en utilisant le premier paramètre d'onde de cisaillement mesuré,

    caractérisé en ce que :

    la force du premier signal de lobe secondaire (115) est égale à la force du premier signal ultrasonore de poussée (113) ; et

    l'étape consistant à induire la première onde de cisaillement dans l'objet (10) comprend en outre la synthétisation d'une première infra-onde de cisaillement (114) induite dans l'objet par le premier signal ultrasonore de poussée (113) et d'une deuxième infra-onde de cisaillement (116) induite dans l'objet par le premier signal de lobe secondaire (115).


     
    2. Procédé selon la revendication 1, dans lequel le premier signal ultrasonore de poussée (113) comprend un signal ultrasonore non focalisé.
     
    3. Procédé selon la revendication 1, dans lequel la première onde de cisaillement est induite dans l'objet (10) en transmettant une pluralité de premiers signaux ultrasonores de poussée (113) et une pluralité de premiers signaux de lobe secondaire (115) qui sont respectivement liés aux premiers signaux ultrasonores de poussée, les deux pluralités ayant un même angle de direction (a, b), en direction de l'objet en utilisant une pluralité d'éléments (111) qui sont compris dans la sonde (110).
     
    4. Procédé selon la revendication 1, dans lequel le fait d'induire (S220) la première onde de cisaillement comprend la transmission du premier signal ultrasonore de poussée (113) en direction de l'objet (10) en dirigeant le premier signal ultrasonore de poussée selon un premier angle de direction (a).
     
    5. Procédé selon la revendication 4, comprenant en outre les étapes consistant à :

    induire (S520) une deuxième onde de cisaillement dans l'objet (10) en transmettant (S510) un deuxième signal ultrasonore de poussée qui est dirigé selon un deuxième angle de direction (b) qui est différent du premier angle de direction (a) et un deuxième signal de lobe secondaire qui est lié au deuxième signal ultrasonore de poussée, en direction de l'objet ;

    transmettre (S530) un deuxième signal ultrasonore de poursuite (630) à une zone de l'objet où la deuxième onde de cisaillement s'est propagée, et recevoir (S540), depuis l'objet, un deuxième signal de réflexion qui est lié au deuxième signal ultrasonore de poursuite ; et

    mesurer (S550) un deuxième paramètre d'onde de cisaillement qui indique une caractéristique d'onde de cisaillement de la deuxième onde de cisaillement sur la base du deuxième signal de réflexion,

    dans lequel l'obtention (S260) de la particularité élastique de l'objet comprend l'utilisation du premier paramètre d'onde de cisaillement mesuré et du deuxième paramètre d'onde de cisaillement mesuré pour déterminer (S560) une valeur de paramètre moyenne et l'obtention (S570) de la particularité élastique de l'objet en utilisant la valeur de paramètre moyenne déterminée.


     
    6. Procédé selon la revendication 1, dans lequel la réception (S240) du premier signal de réflexion comprend la transmission du premier signal ultrasonore de poursuite (610) plusieurs fois à une zone où la première onde de cisaillement s'est propagée, et la réception, depuis l'objet (10), d'une pluralité de premiers signaux de réflexion qui sont liés à la pluralité de transmissions du premier signal ultrasonore de poursuite (610), et
    la mesure du premier paramètre d'onde de cisaillement comprend la mesure du premier paramètre d'onde de cisaillement en appliquant une corrélation croisée à la pluralité reçue de premiers signaux de réflexion.
     
    7. Procédé selon la revendication 1, dans lequel l'obtention (S260) de la particularité élastique de l'objet (10) comprend en outre la génération d'une image d'une élasticité de l'objet en mappant la particularité élastique sur au moins l'une parmi une échelle de noir et blanc et une échelle de couleur.
     
    8. Procédé selon la revendication 1, dans lequel la transmission (S230) du premier signal ultrasonore de poursuite comprend :

    la transmission du premier signal ultrasonore de poursuite (610) à une première position (601) où la première onde de cisaillement s'est propagée, et la transmission d'un deuxième signal ultrasonore de poursuite (630) à une deuxième position (603) où la première onde de cisaillement s'est propagée ; et

    dans lequel la réception (S240) du premier signal de réflexion comprend :

    la réception du premier signal de réflexion qui est lié au premier signal ultrasonore de poursuite provenant de la première position et la réception d'un deuxième signal de réflexion qui est lié au deuxième signal ultrasonore de poursuite provenant de la deuxième position,

    dans lequel la mesure (S250) du premier paramètre d'onde de cisaillement comprend :

    la mesure d'une première phase de la première onde de cisaillement du premier signal de réflexion et la mesure d'une deuxième phase de la première onde de cisaillement du deuxième signal de réflexion ; et

    la mesure d'une vitesse de propagation (Vs) de la première onde de cisaillement en utilisant une différence de phase (ΔΦ) entre la première phase mesurée et la deuxième phase mesurée et en utilisant une distance entre la première position et la deuxième position.


     
    9. Procédé d'obtention d'une particularité élastique d'un objet (10), le procédé comprenant les étapes consistant à :

    induire (S720) une première infra-onde de cisaillement (114) dans l'objet en transmettant (S710) un premier signal ultrasonore de poussée (113) qui est généré par une sonde (110) d'un appareil à ultrason (100), et induire (S720) une deuxième infra-onde de cisaillement (116) dans l'objet en transmettant (S710) un premier signal de lobe secondaire (115) qui est lié au premier signal ultrasonore de poussée en direction de l'objet, dans lequel la force du premier signal de lobe secondaire (115) est égale à la force du premier signal ultrasonore de poussée (113) ;

    transmettre (S730) un premier signal ultrasonore de poursuite (610) à une zone de l'objet où les première et deuxième infra-ondes de cisaillement se sont propagées, et recevoir (S740), depuis l'objet, un premier signal de réflexion qui est lié au premier signal ultrasonore de poursuite ;

    mesurer (S750) un premier paramètre d'onde de cisaillement de la première infra-onde de cisaillement et un deuxième paramètre d'onde de cisaillement de la deuxième infra-onde de cisaillement sur la base du premier signal de réflexion reçu ; et

    utiliser le premier paramètre d'onde de cisaillement mesuré de la première infra-onde de cisaillement et le deuxième paramètre d'onde de cisaillement mesuré de la deuxième infra-onde de cisaillement pour déterminer (S760) une valeur de paramètre moyenne, et obtenir (S770) une particularité élastique de l'objet en utilisant la valeur de paramètre moyenne déterminée.


     
    10. Procédé selon la revendication 9, dans lequel le premier signal ultrasonore de poussée (113) comprend un signal ultrasonore non focalisé.
     
    11. Procédé selon la revendication 9, dans lequel la mesure (S750) du premier paramètre d'onde de cisaillement de la première infra-onde de cisaillement (114) et du deuxième paramètre d'onde de cisaillement de la deuxième infra-onde de cisaillement (116) comprend :

    le blocage d'une première partie composante du premier signal de réflexion qui est liée à la première infra-onde de cisaillement en appliquant un premier filtre directionnel au premier signal de réflexion, et le blocage d'une deuxième partie composante du premier signal de réflexion qui est liée à la deuxième infra-onde de cisaillement en appliquant un deuxième filtre directionnel au premier signal de réflexion ; et

    la mesure du premier paramètre d'onde de cisaillement de la première infra-onde de cisaillement sur la base d'un résultat du blocage de la deuxième partie composante du premier signal de réflexion, et la mesure du deuxième paramètre d'onde de cisaillement de la deuxième infra-onde de cisaillement sur la base d'un résultat du blocage de la première partie composante du premier signal de réflexion.


     
    12. Support de stockage non transitoire lisible par ordinateur sur lequel est stocké un programme, qui, lorsqu'il est exécuté par un ordinateur d'un appareil à ultrason (100, 800) selon la revendication 14, effectue le procédé selon la revendication 1.
     
    13. Support de stockage non transitoire, lisible par ordinateur, sur lequel est stocké un programme, qui, lorsqu'il est exécuté par un ordinateur d'un appareil à ultrason (100, 800) selon la revendication 15, effectue le procédé selon la revendication 9.
     
    14. Appareil à ultrason (100, 800), comprenant :

    un dispositif d'induction d'onde de cisaillement (810) configuré pour induire une première onde de cisaillement dans un objet (10) en transmettant un premier signal ultrasonore de poussée (113) qui est généré par une sonde (110) de l'appareil à ultrason et un premier signal de lobe secondaire (115) qui est lié au premier signal ultrasonore de poussée, en direction de l'objet ;

    un détecteur d'onde de cisaillement (830) configuré pour transmettre un premier signal ultrasonore de poursuite (610) à une zone de l'objet où la première onde de cisaillement s'est propagée et pour recevoir un premier signal de réflexion qui est lié au premier signal ultrasonore de poursuite provenant de l'objet ; et

    un contrôleur (850) configuré pour mesurer un premier paramètre d'onde de cisaillement qui indique une caractéristique d'onde de cisaillement de la première onde de cisaillement sur la base du premier signal de réflexion reçu et pour obtenir une particularité élastique de l'objet en utilisant le premier paramètre d'onde de cisaillement mesuré,

    caractérisé en ce que :

    le dispositif d'induction d'onde de cisaillement (810) est configuré pour induire le premier signal de lobe secondaire (115) ayant une force égale à la force du premier signal ultrasonore de poussée (113) ; et

    le dispositif d'induction d'onde de cisaillement (810) est configuré pour induire la première onde de cisaillement dans l'objet (10) en synthétisant une première infra-onde de cisaillement (114) générée par le premier signal ultrasonore de poussée (113) et une deuxième infra-onde de cisaillement (116) générée par le premier signal de lobe secondaire (115).


     
    15. Appareil à ultrason (100, 800), comprenant :

    un dispositif d'induction d'onde de cisaillement (810) configuré pour induire une première infra-onde de cisaillement (114) dans un objet (10) en transmettant un premier signal ultrasonore de poussée (113) qui est généré par une sonde (110) d'un appareil à ultrason, et pour induire une deuxième infra-onde de cisaillement (116) dans l'objet en transmettant un premier signal de lobe secondaire (115) qui est lié au premier signal ultrasonore de poussée, en direction de l'objet, dans lequel la force du premier signal de lobe secondaire (115) est égale à la force du premier signal ultrasonore de poussée (113) ;

    un détecteur d'onde de cisaillement (830) configuré pour transmettre un premier signal ultrasonore de poursuite (610) à une zone de l'objet où les première et deuxième infra-ondes de cisaillement se sont propagées, et pour recevoir, depuis l'objet, un premier signal de réflexion qui est lié au premier signal ultrasonore de poursuite ; et

    un contrôleur (850) configuré pour mesurer un premier paramètre d'onde de cisaillement de la première infra-onde de cisaillement et pour mesurer un deuxième paramètre d'onde de cisaillement de la deuxième infra-onde de cisaillement sur la base du premier signal de réflexion reçu, pour utiliser le premier paramètre d'onde de cisaillement mesuré de la première infra-onde de cisaillement et le deuxième paramètre d'onde de cisaillement mesuré de la deuxième infra-onde de cisaillement pour déterminer une valeur de paramètre moyenne, et pour obtenir une particularité élastique de l'objet en utilisant la valeur de paramètre moyenne déterminée.


     




    Drawing















    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description