(19)
(11)EP 3 009 611 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
11.12.2019 Bulletin 2019/50

(21)Application number: 15190466.1

(22)Date of filing:  19.10.2015
(51)International Patent Classification (IPC): 
F01D 11/00(2006.01)
F01D 11/02(2006.01)
F16J 15/44(2006.01)
F01D 25/04(2006.01)
F16J 15/16(2006.01)

(54)

CIRCUMFERENTIAL SEAL WITH SEAL DAMPENING ELEMENTS

UMFANGSDICHTUNG MIT DÄMPFUNGSELEMENTDICHTUNG

JOINT D'ÉTANCHÉITÉ CIRCONFÉRENTIEL AVEC DES ÉLÉMENTS D'AMORTISSEMENT


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 17.10.2014 US 201462065484 P

(43)Date of publication of application:
20.04.2016 Bulletin 2016/16

(73)Proprietor: United Technologies Corporation
Farmington, CT 06032 (US)

(72)Inventors:
  • WILSON, Ross
    South Glastonbury, CT 06073 (US)
  • MCCAFFREY, Michael G.
    Windsor, CT 06095 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
EP-A2- 2 495 398
GB-A- 2 450 213
WO-A1-2014/143284
US-A1- 2014 119 912
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] The present disclosure relates to gas turbine engine sealing systems and, more particularly, to a circumferential seals.

    [0002] Gas turbine engine components are required to operate efficiently during engine operation and flight. Components within the gas turbine engine aid in protecting operation and allow for operation at a high speed. Engine components rotating at high speeds require even sealing in order to operate efficiently and also to reduce damage to the engine. However, rotation of engine components can create vibrations which may reduce the efficiency and cause component and/or engine wear. Accordingly, there is a need to provide components which minimize and/or limit vibration for a gas turbine engine.

    [0003] WO 2014/143284 A1 discloses a hydrostatic seal and vibration damping apparatus for a gas turbine engine.

    BRIEF SUMMARY OF THE DISCLOSURE



    [0004] Disclosed and claimed herein are sealing systems and circumferential seals for gas turbine engines. One embodiment is directed to a circumferential seal for a gas turbine engine, the circumferential seal comprising: a first beam; a second beam; and a seal shoe; characterised by at least one cradle feature between the first beam and second beam including raised portions of the first beam and raised portions of the second beam, wherein the raised portions of the inner and outer beam form a channel between the first and second beams; and a beam spacer; wherein the beam spacer is an elongated element, the channel receives and secures the beam spacer along an axial depth of the circumferential seal, and the at least one cradle feature is configured to dampen at least one of beam and shoe vibration of the circumferential seal.

    [0005] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the first beam is an outer beam of the circumferential seal.

    [0006] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the second beam is an inner beam of the circumferential seal.

    [0007] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the beam spacer is configured to dampen vibratory responses of the circumferential seal between the first and second beams.

    [0008] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the circumferential seal is a non-contact seal for a bearing compartment of the gas turbine engine.

    [0009] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the circumferential seal is at least one of a full ring and segmented seal.

    [0010] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the beam spacer has at least one of a cylindrical, round, square, rectangular, and oval cross-sectional shape, and the beam spacer is configured to dampen beam and shoe response of the circumferential seal.

    [0011] In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the circumferential seal further includes a plurality of beam spacers and features to retain the beam spacer.

    [0012] Other aspects, features, and techniques will be apparent to one skilled in the relevant art in view of the following detailed description of the embodiments.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0013] The features, objects, and advantages of the present disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout and wherein:

    FIG. 1 depicts a circumferential seal for a gas turbine engine according to one or more embodiments;

    FIG. 2 depicts a cross-sectional representation of a circumferential seal system according to one or more embodiments; and

    FIG. 3 depicts a graphical representation of circumferential seal and dampening locations according to one or more embodiments.


    DETAILED DESCRIPTION OF THE DISCLOSURE


    Overview and Terminology



    [0014] One aspect of the disclosure relates to circumferential seals for a gas turbine engine, and in particular, to dampening at least one of beam and shoe response of a circumferential seal. One embodiment is directed to features of the circumferential seal providing sealing and dampening to allow for a wider range of operation for the circumferential seal. Circumferential seals as discussed herein may relate to seals for bearing compartments of gas turbine engine, and/or seals associated with rotating components of a gas turbine engine. The circumferential seal may be used in one or more compartments or systems of a gas turbine engine, such as bearing compartments, gear systems, etc.

    Exemplary Embodiments



    [0015] Referring now to the figures, FIG. 1 depicts a circumferential seal for a gas turbine engine according to one or more embodiments. According to one embodiment, circumferential seal 100 includes outer seal body 105, outer beam 110, outer seal surface 112, inner beam 115, and seal shoe 120. FIG. 1 is a representation of a circumferential seal 100 viewing the seal along its front face including an enlarged representation of a portion of the seal.

    [0016] Circumferential seal 100 may be configured as a seal for rotating component 125 wherein one or more of outer beam 110, inner beam 115, and seal shoe 120 may interoperate as a non-contacting seal. In an exemplary embodiment, circumferential seal 100 may be a non-contacting aerodynamic film-riding seal. According to one embodiment, circumferential seal 100 may be provided with a wider range of operation by including one or more features to allow for the seal to retain a beam dampening element 155. As will be discussed below, one of more features of circumferential seal 100 dampen vibration associated with beam and shoe response.

    [0017] Circumferential seal 100 may include at least one feature between a first beam and second beam configured to retain a beam spacer. By way of example, the first beam may be outer beam 110 and the second beam may be inner beam 115. The at least one feature may be configured to dampen at least one of beam and shoe vibration of the circumferential seal 100.

    [0018] According to one embodiment, cradle features 135 may be provided to retain a dampening element for circumferential seal 100. Cradle features 135 may include curved recesses 140 and 141, and raised portions 150, 151, 152 and 153. Curved recesses 140 and 141 of cradle features 135 form a channel within raised portions 150, 151, 152 and 153, the channel configured to receive a beam spacer, such as beam spacer 155, along the axial depth of the circumferential seal 100. Raised portions 150, 151, 152 and 153 of beams 110 and 115 form a channel to secure a beam spacer, such as beam spacer 155. In certain embodiments, cradle features 135 are configured to retain beam spacer 155 to dampen vibratory responses of the circumferential seal 100 between outer beam 110 and inner beam 115, such as beam and shoe response of the circumferential seal. Beam spacer 155 is an elongated element having at least one of a pin, rod, cylindrical, round, square, rectangular, round, and oval shape, wherein the beam spacer is configured to dampen beam and shoe response of the circumferential seal 100. Beam spacer 155 may have a non-uniform or uniform cross-section to allow for particular configurations including raised elements from the beam spacer 155.

    [0019] Cradle features 135 may be configured to retain a beam spacer 155. According to another embodiment, cradle features 135 and beam spacer 155 may be configured to dampen radial movement (e.g., movement in and out, to and from the engine centerline), shown as 160, of circumferential seal 100. Similarly, cradle features 135 and beam spacer 155 may be configured to dampen beam and shoe response of circumferential seal 100. According to certain embodiments, dampening of the radial movement as described herein allows for movement in the radial direction of circumferential seal 100 to reduce the vibratory response of shoes and/or beams without limiting the radial movement of seals/shoes in order to still provide an adaptive and compliant seal.

    [0020] In certain embodiments, circumferential seal 100 may include a plurality of beam spacers. Accordingly, circumferential seal 100 may include cradle features 135 in a plurality of positions of the seal, as will be described in more detail below with respect to FIG. 3.

    [0021] Circumferential seal 100 may be a full ring seal. In other embodiments, circumferential seal 100 relates to a segmented seal. Circumferential seal 100 may be a non-contact seal for a bearing compartment of the gas turbine engine

    [0022] Circumferential seal 100 is shown in FIG. 2 according to one or more embodiments.

    [0023] FIG. 2 depicts a cross-sectional representation of a circumferential seal system according to one or more embodiments. According to one embodiment, seal system 200 includes a static engine mount 205 coupled to a seal support structure 210. Engine mount 205 is configured for mounting the seal support structure 210 to a gas turbine engine mount. Engine support 205 may be a flange portion of seal support structure 210.

    [0024] Seal support structure 210 is configured to retain circumferential seal 215. Seal support 210 can include a shoulder and runner configured to retain circumferential seal 215. For example, a runner may be a lip in parallel or substantially parallel to engine support 205 and extending over a face of circumferential seal 215. The runner can extend along the outer diameter of circumferential seal 215.

    [0025] According to one embodiment, circumferential seal 215 includes at least one outer beam 220 and at least one inner beam 221. Circumferential seal 215 includes at least one seal shoe 225. Circumferential seal 215 may be configured to provide a seal for a rotating component 230. According to one embodiment, circumferential seal 215 is configured relative to axis 235 and is configured as a static (i.e., with regards to rotation) relative to rotation components rotation shown as 240.

    [0026] Outer beam 220 and inner beam 221 may include one or more features to retain a beam spacer, shown as 226, in FIG. 2. Beam spacer 226 may run the entire axial length of outer beam 220 and inner beam 221. In certain embodiments, beam spacer 226 may run a portion of the axial length of outer beam 220 and inner beam 221.

    [0027] Radial movement, shown as 255, of circumferential seal 215 can be caused by beam (e.g., outer beam 220, inner beam 221) and shoe (e.g., shoe 225) response to rotation 240 and/or vibration of a gas turbine engine relative to a static mount 210.

    [0028] FIG. 3 depicts a graphical representation of circumferential seal and dampening locations according to one or more embodiments. As discussed above, a circumferential seal (e.g., circumferential seal 100, circumferential seal 215) is provided which can include one or more cradle features and dampening elements between a first and second beam of a circumferential seal, such as the outer and inner beams of circumferential seal 100 of FIG. 1. According to another embodiment, a circumferential seal may include one or more dampening elements and features between other channels of the circumferential seal.

    [0029] FIG. 3 depicts a circumferential seal 300 according to another embodiment, indicating one or more additional or different position's and areas for beam dampening elements and features for retaining beam dampening elements (e.g., cradles features 135).

    [0030] According to one embodiment, circumferential seal 300 includes outer seal body 305, outer beam 310, inner beam 315, and seal shoe 320. FIG. 3 is a representation of a circumferential seal 300 viewing the seal along its front face. Circumferential seal 300 may be configured as a seal for rotating component 325 wherein one or more of outer beam 310, inner beam 315, and seal shoe 320 may interoperate as a non-contacting seal. According to one embodiment, circumferential seal 300 may retain a beam dampening element 335. One or more features of circumferential seal 300 dampen vibration associated with beam and shoe response including radial vibration shown as 330.

    [0031] Circumferential seal 300 may include at least one feature and/or beam dampening elements between beams other than the inner and outer beam. By way of example, potential locations for cradle features and beam dampening elements are shown in FIG. 3 by 335. Exemplary positions for beam dampening elements are shown as 3401-n and 3411-n

    [0032] While this disclosure has been particularly shown and described with references to exemplary embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the appended claims.


    Claims

    1. A circumferential seal (100) for a gas turbine engine, the circumferential seal comprising:

    a first beam (110);

    a second beam (115); and

    a seal shoe (120);

    characterised by at least one cradle feature (135) between the first beam and second beam including raised portions (150,151) of the first beam and raised portions (152,153) of the second beam, wherein the raised portions of the first and second beams (110,115) form a channel between the first and second beams; and

    a beam spacer (155);

    wherein the beam spacer is an elongated element, the channel receives and secures the beam spacer along an axial depth of the circumferential seal, and the at least one cradle feature (135) is configured to dampen at least one of beam (110,115) and seal shoe (120) vibration of the circumferential seal.


     
    2. The circumferential seal of claim 1, wherein the first beam is an outer beam of the circumferential seal.
     
    3. The circumferential seal of claim 1 or 2, wherein the second beam is an inner beam of the circumferential seal.
     
    4. The circumferential seal of any preceding claim, wherein the beam spacer is configured to dampen vibratory responses of the circumferential seal between the first and second beams.
     
    5. The circumferential seal of any preceding claim, wherein the circumferential seal is a non-contact seal for a bearing compartment of the gas turbine engine.
     
    6. The circumferential seal of any preceding claim, wherein the circumferential seal is a full ring.
     
    7. The circumferential seal of any of claims 1 to 5, wherein the circumferential seal is a segmented seal.
     
    8. The circumferential seal of any preceding claim, wherein the beam spacer has at least one of a cylindrical, round, square, rectangular, and oval cross-sectional shape.
     
    9. The circumferential seal of any preceding claim, wherein the beam spacer comprises a rod or pin.
     
    10. The circumferential seal of claim 9, wherein the beam spacer is configured to dampen beam and shoe response of the circumferential seal.
     
    11. The circumferential seal of claim 9 or 10, further comprising a plurality of beam spacers and cradle features to retain the beam spacer.
     


    Ansprüche

    1. Umfangsdichtung (100) für einen Gasturbinenmotor, wobei die Umfangsdichtung Folgendes umfasst:

    einen ersten Träger (110);

    einen zweiten Träger (115) und

    einen Dichtungsschuh (120);

    gekennzeichnet durch zumindest ein Muldenmerkmal (135) zwischen dem ersten Träger und dem zweiten Träger, das erhöhte Abschnitte (150, 151) des ersten Trägers und erhöhte Abschnitte (152, 153) des zweiten Trägers beinhaltet, wobei die erhöhten Abschnitte des ersten und zweiten Trägers (110, 115) einen Kanal zwischen dem ersten und zweiten Träger bilden; und

    einen Trägerabstandshalter (155);

    wobei der Trägerabstandshalter ein längliches Element ist, der Kanal den Trägerabstandshalter entlang einer axialen Tiefe der Umfangsdichtung aufnimmt und befestigt und das zumindest eine Muldenmerkmal (135) konfiguriert ist, um zumindest eines von der Schwingung des Trägers (110, 115) und des Dichtungsschuhs (120) der Umfangsdichtung zu dämpfen.


     
    2. Umfangsdichtung nach Anspruch 1, wobei der erste Träger ein äußerer Träger der Umfangsdichtung ist.
     
    3. Umfangsdichtung nach Anspruch 1 oder 2, wobei der zweite Träger ein innerer Träger der Umfangsdichtung ist.
     
    4. Umfangsdichtung nach einem vorhergehenden Anspruch, wobei der Trägerabstandshalter konfiguriert ist, um Schwingungsreaktionen der Umfangsdichtung zwischen dem ersten und zweiten Träger zu dämpfen.
     
    5. Umfangsdichtung nach einem vorhergehenden Anspruch, wobei die Umfangsdichtung eine kontaktlose Dichtung für eine Lagerkammer des Gasturbinenmotors ist.
     
    6. Umfangsdichtung nach einem vorhergehenden Anspruch, wobei die Umfangsdichtung ein vollständiger Ring ist.
     
    7. Umfangsdichtung nach einem der Ansprüche 1 bis 5, wobei die Umfangsdichtung eine segmentierte Dichtung ist.
     
    8. Umfangsdichtung nach einem vorhergehenden Anspruch, wobei der Trägerabstandshalter zumindest eines von einer zylindrischen, runden, quadratischen, rechteckigen und ovalen Querschnittsform aufweist.
     
    9. Umfangsdichtung nach einem vorhergehenden Anspruch, wobei der Trägerabstandshalter eine Stange oder einen Stift umfasst.
     
    10. Umfangsdichtung nach Anspruch 9, wobei der Trägerabstandshalter konfiguriert ist, um eine Reaktion des Trägers und Schuhs der Umfangsdichtung zu dämpfen.
     
    11. Umfangsdichtung nach Anspruch 9 oder 10, ferner umfassend eine Vielzahl von Trägerabstandshaltern und Muldenmerkmalen, um den Trägerabstandshalter zurückzuhalten.
     


    Revendications

    1. Joint d'étanchéité circonférentiel (100) d'un moteur à turbine à gaz, le joint d'étanchéité circonférentiel comprenant :

    une première poutre (110) ;

    une seconde poutre (115) ; et

    une semelle d'étanchéité (120) ;

    caractérisé par au moins une caractéristique de berceau (135) entre la première poutre et la seconde poutre comprenant des parties surélevées (150, 151) de la première poutre et des parties surélevées (152, 153) de la seconde poutre, dans lequel les parties surélevées des première et seconde poutres (110, 115) forment un canal entre les première et seconde poutres ;

    et une entretoise de poutre (155) ;

    dans lequel l'entretoise de poutre est un élément allongé, le canal reçoit et fixe l'entretoise de poutre le long d'une profondeur axiale du joint d'étanchéité circonférentiel, et l'au moins une caractéristique de berceau (135) est conçue pour amortir les vibrations d'au moins l'un des poutres (110, 115) et de la semelle d'étanchéité (120) du joint d'étanchéité circonférentiel.


     
    2. Joint d'étanchéité circonférentiel selon la revendication 1, dans lequel la première poutre est une poutre extérieure du joint d'étanchéité circonférentiel.
     
    3. Joint d'étanchéité circonférentiel selon la revendication 1 ou 2, dans lequel la seconde poutre est une poutre intérieure du joint d'étanchéité circonférentiel.
     
    4. Joint d'étanchéité circonférentiel selon une quelconque revendication précédente, dans lequel l'entretoise de poutre est conçue pour amortir les réponses vibratoires du joint d'étanchéité circonférentiel entre les première et seconde poutres.
     
    5. Joint d'étanchéité circonférentiel selon une quelconque revendication précédente, dans lequel le joint d'étanchéité circonférentiel est un joint d'étanchéité sans contact pour un compartiment de palier du moteur à turbine à gaz.
     
    6. Joint d'étanchéité circonférentiel selon une quelconque revendication précédente, dans lequel le joint d'étanchéité circonférentiel est un anneau complet.
     
    7. Joint d'étanchéité circonférentiel selon l'une quelconque des revendications 1 à 5, dans lequel le joint d'étanchéité circonférentiel est un joint d'étanchéité segmenté.
     
    8. Joint d'étanchéité circonférentiel selon une quelconque revendication précédente, dans lequel l'entretoise de poutre a au moins l'une d'une forme transversale cylindrique, ronde, carrée, rectangulaire et ovale.
     
    9. Joint d'étanchéité circonférentiel selon une quelconque revendication précédente, dans lequel l'entretoise de poutre comprend une tige ou une broche.
     
    10. Joint d'étanchéité circonférentiel selon la revendication 9, dans lequel l'entretoise de poutre est conçue pour amortir la réponse des poutres et de la semelle du joint d'étanchéité circonférentiel.
     
    11. Joint d'étanchéité circonférentiel selon la revendication 9 ou 10, comprenant en outre une pluralité d'entretoises de poutre et de caractéristiques de berceau pour retenir l'entretoise de poutre.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description