(19)
(11)EP 3 009 791 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
13.01.2021 Bulletin 2021/02

(21)Application number: 14810846.7

(22)Date of filing:  12.06.2014
(51)International Patent Classification (IPC): 
G01S 19/04(2010.01)
G01C 15/00(2006.01)
G01S 19/07(2010.01)
G01C 5/00(2006.01)
G01S 19/43(2010.01)
G01S 19/41(2010.01)
G01S 19/14(2010.01)
G01S 19/48(2010.01)
(86)International application number:
PCT/JP2014/065527
(87)International publication number:
WO 2014/200043 (18.12.2014 Gazette  2014/51)

(54)

PREPARATION SYSTEM USED IN SURVEYING WORK

VORBEREITUNGSSYSTEM FÜR VERMESSUNGSARBEITEN

SYSTÈME DE PRÉPARATION UTILISÉ DANS UN TRAVAIL DE PROSPECTION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 14.06.2013 JP 2013125120

(43)Date of publication of application:
20.04.2016 Bulletin 2016/16

(73)Proprietor: Kabushiki Kaisha Topcon
Tokyo 174-8580 (JP)

(72)Inventors:
  • KAMIZONO, Fumihiko
    Tokyo 174-8580 (JP)
  • OGAWA, Takashi
    Tokyo 174-8580 (JP)

(74)Representative: Louis Pöhlau Lohrentz 
Patentanwälte Postfach 30 55
90014 Nürnberg
90014 Nürnberg (DE)


(56)References cited: : 
JP-A- H04 175 606
JP-A- 2002 181 917
JP-A- 2007 271 627
US-A- 5 563 607
US-A1- 2005 212 697
US-B1- 7 456 943
JP-A- H09 292 224
JP-A- 2005 274 229
US-A- 5 148 179
US-A- 5 739 785
US-A1- 2013 116 908
  
  • Tomasz Lipecki: "The Modern Technologies of DGPS and RTK Corrections Transfer", GEOMATICS AND ENVIRONMENTAL ENGINEERING, 1 January 2007 (2007-01-01), pages 67-76, XP055659027, Retrieved from the Internet: URL:http://yadda.icm.edu.pl/yadda/element/ bwmeta1.element.baztech-article-AGH8-0003- 0005/c/Lipecki.pdf [retrieved on 2020-01-17]
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] This invention is related to a preparation system for surveying operation. In particular, the preparation system includes a mobile station disposed at an observation point, where a position coordinate is unknown, and a fixed station disposed at a reference point, where a position coordinate is known, and the system receives positioning data from satellites by the mobile station and the fixed station and determines the position coordinate of the observation point by correcting the received data with observation correction data sent from the fixed station.

BACKGROUND ART



[0002] Conventionally, a surveying operation system (RTK surveying method) is known. The system includes a fixed station disposed at a reference point (an observation point at which the fixed station is positioned), where the position coordinate is known, and a mobile station disposed at an observation position, where the position coordinate is unknown. The system receives positioning data from satellites at the fixed station and mobile station while moving the mobile station, and determines the position coordinate of the unknown observation point using the mobile station by correcting the received data with observation correction data sent from the fixed station (see Patent Literature 1, Patent Literature 2, for example). Patent literature 3 discloses a differential GPS positioning method in which one or more stations are designated as a reference station, and are preferably fixed at a known position or are moving with coordinates that are known functions of time. The locations of one or more other stations, known as the roving receiver stations, which also may be stationary or moving, are calculated relative to the present location of the reference station. Patent literature 4 discloses a method for determining a relative height between a base station on a tripod and a target pole including an arithmetic step to determine the horizontal relative position relationship between the the fixed station and the target pole, a detection step to detect an altitude angle of the target with respect to a reference surface, and a determination step to determine a vertical position coordinate of the target pole based on the horizontal relative position relationship and the measured altitude angle. Patent literature 5 discloses a RTK differential GPS method wherein the position of a tripod is known both by means of GPS positioning and by other reference means, and in which the position of a user is known initially only by GPS positioning. The differential GPS method provides correction of the GPS position of the user.

CITATION LIST


Patent Literature



[0003] 

Patent Literature 1: Japanese Lai-Open Patent Application 2007-309667

Patent Literature 2: Japanese Laid-Open Patent Application 2007-271429

Patent Literature 3: US Laid-Open Patent US 5 739 785 A

Patent Literature 4: US Laid-Open Patent US 7 456 943 B1

Patent Literature 5 4 : Tomasz Lipecki, "The Modern Technologies of DGPS and RTK Corrections Transfer", GEOMATICS AND ENVIRONMENTAL ENGINEERING, 1 January 2007 (2007-01-01), pages 67 - 76


SUMMARY


Technical Problem



[0004] By disposing the fixed station at an observation point where the position coordinate is known, the observation point is occupied by the fixed station. As a result, it becomes impossible to use the known reference point for another object, i.e., the known observation point is exclusively used for the fixed station only.

[0005] To overcome such a deficiency, a preparation system is known. In the preparation system, a fixed station is disposed at a reference point where the position coordinate is unknown, and the preparation system receives the positioning data from the fixed station. Before surveying an unknown observation point; the preparation system determines the position coordinate of the unknown reference point through independent positioning method based on the received positioning data and assigns the determined position coordinate as a position coordinate of a known reference point.

[0006] However, since the radio waves have fluctuations and the like, it is difficult for the preparation system to accurately determine the unknown position coordinate of the unknown reference point based on the positioning data. Therefore, the preparation system repeatedly acquires positioning data of the unknown reference point through independent positioning method and statistically processes the acquired data. The system then assigns the processed position coordinate as a position coordinate of a known reference point.

[0007] The conventional preparation system for surveying operation, however, needs to acquire the positioning data repeatedly to perform the statically processing. That is, the system takes more time to determine the position coordinate of the unknown reference point and to assign the processed position coordinate as a positioning coordinate of a known reference point.

[0008] An object of the present invention is, therefore, to provide a method for operating a preparation system for surveying operation that disposes a fixed station at a reference point where the position coordinate is unknown, determines the position coordinate of the reference point, and assigns the determined position coordinate as a known reference point.

Solution to Problem



[0009] An aspect of a preparation system for surveying operation according to the present invention is disclosed in claim 1.

Advantageous Effects



[0010] With this, the preparation system of the present invention can easily determine a position coordinate of an unknown reference point and assign the determined position coordinate as a known reference point by disposing a fixed station at the unknown reference point.

[0011] Further, the preparation system of the present invention does not need to dispose the fixed station at a known reference point. Hence, it becomes possible to dispose a mobile station at the known reference point (i.e., an observation point), thereby improving convenience of the surveying operation.

BRIEF DESCRIPTION OF DRAWINGS



[0012] 

[FIG. 1] FIG. 1 is a view for schematically showing a surveying operation system according to an example.

[FIG. 2] FIG. 2 is an explanatory view for explaining a relationship of the known reference point, the unknown reference point, and positioning data.

[FIG. 3] FIG. 3 is an explanatory view for explaining an overall idea of a preparation system for surveying operation of an example.

[FIG. 4] FIG. 4 is an explanatory view for showing a relationship of the unknown reference point, the known reference point, and positioning data.

[FIG. 5] FIG. 5 is an explanatory view for explaining an overall idea of a preparation system for surveying operation according to the present invention.

[FIG. 6] FIG. 6 is an explanatory view for explaining a variation of the preparation system for surveying operation according to the present invention.

[FIG. 7] FIG. 7 is a perspective view for showing an outlook appearance of a rotating laser device used in a preparation system for surveying operation of an example.

[FIG. 8] FIG. 8 is an explanatory view for explaining an overall idea of a preparation system for surveying operation of an example.


DESCRIPTION OF EMBODIMENTS


Example 1



[0013] FIG. 1 is a view for schematically showing a surveying operation system according to an example.

[0014] In FIG. 1, reference number 1 denotes a fixed station, and reference number 2 denotes a mobile station. As illustrated in FIGs. 1 and 2, the fixed station 1 is disposed at a reference point (known observation point) A where the position coordinate is known for RTK surveying method. The reference sign A (X1, Y1) in FIG. 2 represents a horizontal position coordinate of the known reference point A.

[0015] As illustrated in FIGs. 1 and 2, the mobile station 2 is disposed at an observation point B where the position coordinate is unknown. The reference sign B (X2, Y2) in FIG. 2 represents a horizontal position coordinate of the unknown observation point B.

[0016] The fixed station 1 is equipped with a fixed-station satellite positioning section (GPS device) 1a, a communication device 1b, and an arithmetic section 1c. The mobile station 2 is equipped with a mobile-station satellite positioning section (GPS device) 2a, a communication device 2b, and an arithmetic section 2c.

[0017] The fixed-station satellite positioning section 1a and the mobile-station satellite positioning section 2a each receives positioning data from at least four satellites Sa1 to Sa 4, as illustrated in FIG. 1. Accordingly, the fixed station 1 acquires a horizontal position coordinate A' (X1', Y1'), and the mobile station 2 acquires a horizontal position coordinate B' (X2', Y2') as positioning data, as illustrated in FIG. 2.

[0018] The arithmetic section 1c calculates correction data Δ (X1'-X1, Y1'-Y1) in accordance with the acquired horizontal position coordinate A' (X1', Y1') and the known horizontal position coordinate A (X1, Y1) of the reference point A.

[0019]  The correction data Δ is sent from the communication device 1b to the communication device 2b. The arithmetic section 2c calculates a horizontal position coordinate B (X2, Y2) of the unknown reference point B in accordance with the acquired horizontal position coordinate B' (X2', Y2') and the calculated correction data Δ (X1'-X1, Y1'-Y1).

[0020] The equation to calculate the data Δ is as follows:



[0021] That is, the arithmetic section 2c determines a horizontal relative position relationship of the mobile station 2 with respect to the fixed station 1 based on the positioning data of the known reference point A and the positioning data of the unknown observation point B, and further determines the horizontal position coordinate of the unknown observation point B based on the determined horizontal relative position relationship and the horizontal position coordinate of the known reference point A in real time.

[0022] If the fixed station 1 is disposed at the known reference point A, the known reference point A is occupied by the fixed station until the RTK surveying operation is completed. That is, it becomes impossible to use the known reference point A for any other object.

[0023] To overcome such a deficiency, a preparation system illustrated in FIG. 3 is used to prepare for determining the horizontal position coordinate of the unknown observation point B using the mobile station 2. The preparation system determines a horizontal position coordinate of an unknown reference point A" by disposing the fixed station 1 at the unknown reference point A" and the mobile station 2 at a known observation point B", and assigns the determined horizontal position coordinate as a known reference point A.

[0024]  As illustrated in FIG. 4, in the preparation system the fixed station 1 acquires the horizontal position coordinate A' (X1', Y1') of the unknown reference point A" as the positioning data using the fixed-station satellite positioning section 1a. The arithmetic section 1c then sets the acquired horizontal position coordinate A' (X1', Y1') of the unknown reference point A" as an initial location data.

[0025] By referring observation correction data sent from the fixed station 1, the mobile station 2 acquires the horizontal position coordinate B' (X2', Y2') of the known observation point B" using the mobile-station satellite positioning section 2a.

[0026] The horizontal position coordinate B' (X2', Y2') of the mobile station 2 and the horizontal position coordinate B" (X2", Y2") of the known observation point B" are then sent to the fixed station 1 by the communication device 2b.

[0027] Based on the acquired horizontal position coordinate A' (X1', Y1'), which is used as the initial location data, and the horizontal position coordinate B' (X2', Y2'), which is used as the positioning data, as well as the horizontal position coordinate B" (X2", Y2") of the known observation point B" sent from the mobile station 2; the arithmetic section 1c determines the horizontal position coordinate A" (X1", Y1") of the unknown reference point A" using the following equation:



[0028] That is, the arithmetic section 1c executes an arithmetic step of determining the horizontal position coordinate A" (X1", Y1") of the unknown reference point A" based on the positioning data sent from the mobile station 2, the positioning data acquired by the fixed station 1, and the known position coordinate B" (X2", Y2") of the observation point B". Further, the arithmetic section 1c executes an assigning step for assigning the determined reference point A" as the horizontal position coordinate A" (X1", Y1") of the known reference point A.

[0029] In other words, the arithmetic section 1c of the fixed station 1 determines a horizontal relative position relationship of the unknown reference point A" with respect to the known observation point B" based on the initial location data and the positioning data acquired by the mobile station 2. The arithmetic section 1c then determines the horizontal position coordinate (X1", Y1") of the unknown reference point A", at which the fixed station 1 is disposed, based on the determined horizontal relative position relationship and the horizontal position coordinate B" (X2", Y2") of the known observation point B", and assigns the determined horizontal position coordinate (X1", Y1") as the position coordinate of the known reference point A.



[0030] In Example 1, the preparation system can assign the unknown reference point A" as the known reference point A without acquiring positioning data of the unknown reference point A" through independent positioning method and performing statically processing to assign the unknown reference point A" as the known reference point A. As a result, the preparation system according to Example 1 can easily perform a preparation for surveying operation.

[0031] Here, the calculation to determine the reference point A may be carried out by the arithmetic section 2c of the mobile station 2, and the mobile station 2 sets (sends) the determined position coordinate to the fixed station 1.

[0032] Note in Example 1, the altitude data as a part of the positioning data is also acquired and input to the arithmetic section 1c.

Embodiment of the invention



[0033] In Example 1, the altitude data is calculated in accordance with the positioning data sent from the satellites and input to the arithmetic section 1c. However, the survey operation may need an accurate altitude data. Therefore, the preparation system of the Embodiment of the invention is configured to automatically determine accurate vertical position coordinates.

[0034] A fixed station 1 of the Embodiment of the invention is configured with an electronic level device (surveying device). As illustrated in FIG. 5, the electronic level device irradiates a laser beam P to form a horizontal reference surface S. The electronic level device includes a fixed-station satellite positioning section 1a, a communication device 1b, and an arithmetic section 1c.

[0035] A target 2d to measure an altitude (height) is attached on a pole 2e of a mobile station 2 at a reference height Z2" from the ground at the known observation point B". The altitude data of the reference height Z2" is sent to the communication device 1b by a communication device 2b of the mobile station 2.

[0036] The electronic level device irradiates a laser beam P to the target 2d to form the horizontal reference surface S and receives a reflected laser beam P' reflected by the target 2d so as to determine a relative height LZ of the electronic level device with respect to the target 2d of the mobile station 2.

[0037] Based on the relative height LZ and the reference height Z2", the arithmetic section 1c calculates a height Z1" at the unknown reference point A" and assigns the calculated height as a vertical position coordinate Z1 of the known reference point A.

[0038] The equation to calculate the height Z1 is as follows:



[0039] As described, in the Embodiment of the invention, the arithmetic section 1c determines the vertical position coordinate Z1" of the unknown reference point A" and assigns the determined vertical position coordinate as the vertical position coordinate Z1 of the known reference point A based on the relative height LZ and the reference height Z2".

[0040] On the other hand, the arithmetic section 1c can detect an altitude angle α of the target 2d with respect to the horizontal reference surface S, determine a difference (X1 '-X2', Y1'-Y2') between the unknown reference point A" and the known observation point B" in the horizontal direction, and then determine a horizontal distance L from the fixed station 1 to the mobile station 2, as illustrated in FIG. 6. Accordingly, the arithmetic section 1c can determine the relative height LZ based on the horizontal distance L and the altitude angle α.

[0041] Consequently, the arithmetic section 1c can determine the vertical position coordinate Z1" of the unknown reference point A", at which the fixed station 1 is disposed, and assign the determined vertical position coordinate Z1" as the vertical position coordinate Z1 of the known reference point A.

[0042] Note that in a preferable Embodiment of the invention, the electronic level device is used for the fixed station 1 as the laser surveying device. However, as long as the fixed station can determine the height of the target 2d, it should not be limited thereto. A laser level device or a total station may be used as the laser surveying device instead of the electronic level device.

Example 2



[0043]  As illustrated in FIG. 7, a preparation system of Example 2 adopts a rotating laser device as a surveying device of the fixed station 1. The rotating laser device includes a satellite positioning section 1a, a communication device 1b, and an arithmetic section 1c.

[0044] As illustrated in FIG. 8, a mobile station 2 of Example 2 includes a satellite positioning section 2a, a communication device 2b, an arithmetic section 2c, and a target 2d.

[0045] The rotating laser device rotates and irradiates a fan-shaped laser beam P tilted against a horizontal reference surface S. Here, the rotating laser device irradiates a fan-shaped laser beam P having an N-shape. For the rotating laser device, a known configuration (for instance, JP2007-271627 A) is applicable.

[0046] The arithmetic section 1c determines a relative height LZ of the fixed station 1 with respect to the mobile station 2 based on positioning data acquired by the mobile-station satellite positioning section 2a and positioning data acquired by the fixed-station satellite positioning section 1a.

[0047] Further, the arithmetic section 1c determines an altitude data Z1" at an unknown reference point A" based on the determined relative height LZ and an altitude angle α of a target 2d with respect to the horizontal reference surface S.

[0048] Note that a method to calculate the relative height LZ is the same as that described above.

CROSS-REFERENCE TO RELATED APPLICATION



[0049] The present application is based on and claims priority from Japanese Patent Application No. 2013-125120, filed on June 14, 2013.


Claims

1. A method for operating a preparation system for surveying operation as RTK surveying operation, the preparation system comprising:

a mobile station (2) disposed at an observation point (B") where a position coordinate is known, the mobile station being a target rod, wherein the mobile station (2) includes at least a mobile-station satellite positioning section (2a) that receives positioning data from the satellites (Sal to Sa4),
the mobile station (2) includes a target (2s) to measure a height being attached on a pole (2e) of the mobile station (2) at a reference height (Z2") from the ground at the known observation point (B"); and

a fixed station (1) disposed at a reference point (A") where a position coordinate is unknown, the fixed station (1) is a surveying device having a satellite positioning section (1a), and the surveying device is any one of an electronic level device, a laser level device, and a total station to form a reference surface (S),

the surveying operation receiving positioning data from satellites (Sal to Sa4) by the mobile station (2) and the fixed station (1) and determining the position coordinate of the unknown reference point (A") based on the positioning data of the mobile station (2),

the system performs:

an arithmetic step to determine the position coordinate (X1", Y1") of the unknown reference point (A") based on the positioning data received by the mobile station (2) from satellites (Sal to Sa4), positioning data received by the fixed station (1) from satellites (Sal to Sa4), and a position coordinate (X2", Y2") of the known observation point (B"), and

an assigning step to assign the unknown reference point (A") whose position coordinate (X1", Y1") is determined as a known reference point (A),

and wherein the fixed station (1) includes at least:
an arithmetic section

setting the positioning data received by the fixed-station satellite positioning section (1a) as an initial positioning data,

determining a horizontal relative position relationship between the unknown reference point (A") and the known observation point (B") based on the initial positioning data and the positioning data received by the mobile-station satellite positioning section (2a),

determining a horizontal position coordinate of the unknown reference point (A") based on the determined horizontal relative position relationship and a horizontal position coordinate (X2", Y2") of the known observation point (B"), and

assigning the determined horizontal position coordinate (X1", Y1") as a horizontal position coordinate of the known reference point (A),
and wherein the fixed station (1) executes:

an arithmetic step to determine the horizontal relative position relationship between the unknown reference point (A") and the known observation point (B"),

a detection step to detect an altitude angle (α) of the target (2d) with respect to a reference surface (S), and

a determination step to determine a vertical position coordinate (Z1") of the fixed station (1) based on the determined horizontal relative position relationship and the measured altitude angle (α).


 


Ansprüche

1. Verfahren zum Betreiben eines Vorbereitungssystems für einen Vermessungsbetrieb als einen RTK-Vermessungsbetrieb, wobei das Vorbereitungssystem umfasst:

eine mobile Station (2), die an einem Beobachtungspunkt (B") angeordnet ist, von dem eine Positionskoordinate bekannt ist, wobei die mobile Station ein Target-Stab ist, wobei die mobile Station (2) wenigstens einen Satellitenpositionierungsabschnitt (2a) der mobilen Station, der von den Satelliten (Sal bis Sa4) Positionierungsdaten empfängt, umfasst,

wobei die mobile Station (2) ein Target (2s) zum Messen einer Höhe umfasst, das an einer Stange (2e) der mobilen Station (2) auf einer Referenzhöhe (Z2") über dem Boden bei dem bekannten Beobachtungspunkt (B") befestigt ist; und

eine feststehende Station (1), die an einem Referenzpunkt (A") angeordnet ist, von dem eine Positionskoordinate unbekannt ist, wobei die feststehende Station (1) eine Vermessungsvorrichtung ist, die einen Satellitenpositionierungsabschnitt (1a) aufweist, und wobei die Vermessungsvorrichtung eine elektronische Nivelliervorrichtung, eine Lasernivelliervorrichtung oder eine Gesamtstation zum Bilden einer Referenzfläche (S) ist,

wobei der Vermessungsbetrieb Positionierungsdaten von Satelliten (Sal bis Sa4) durch die mobile Station (2) und die feststehende Station (1) empfängt und die Positionskoordinate des unbekannten Referenzpunkts (A") auf der Basis der Positionierungsdaten der mobilen Station (2) ermittelt,

wobei das System ausführt:

einen arithmetischen Schritt zum Ermitteln der Positionskoordinate (X1", Y1") des unbekannten Referenzpunkts (A") auf der Basis der Positionierungsdaten, die durch die mobile Station (2) von den Satelliten (Sal bis Sa4) empfangen werden, der Positionierungsdaten, die durch die feststehende Station (1) von den Satelliten (Sa1 bis Sa4) empfangen werden, und einer Positionskoordinate (X2", Y2") des bekannten Beobachtungspunkts (B"), und

einen Zuweisungsschritt, um den unbekannten Referenzpunkt (A"), dessen Positionskoordinate (X1", Y1") ermittelt wurde, als einen bekannten Referenzpunkt (A) festzulegen,

wobei die feststehende Station (1) wenigstens umfasst:
einen arithmetischen Abschnitt,

welcher Positionierungsdaten, die durch den Satellitenpositionierungsabschnitt (1a) der feststehenden Station empfangen wurden, als anfängliche Positionierungsdaten festlegt,

welcher eine horizontale Relativpositionsbeziehung zwischen dem unbekannten Referenzpunkt (A") und dem bekannten Beobachtungspunkt (B") auf der Basis der anfänglichen Positionierungsdaten und der Positionierungsdaten, die durch den Satellitenpositionierungsabschnitt (2a) der mobilen Station empfangen wurden, ermittelt,

welcher eine horizontale Positionskoordinate des unbekannten Referenzpunkts (A") auf der Basis der ermittelten horizontalen Relativpositionsbeziehung und einer horizontalen Positionskoordinate (X2", Y2") des bekannten Beobachtungspunkts (B") ermittelt, und

welcher die ermittelte horizontale Positionskoordinate (X1", Y1") als eine horizontale Positionskoordinate des bekannten Referenzpunkts (A) zuweist,

und wobei die feststehende Station (1) ausführt:

einen arithmetischen Schritt zum Ermitteln der horizontalen Relativpositionsbeziehung zwischen dem unbekannten Bezugspunkt (A") und dem bekannten Beobachtungspunkt (B"),

einen Detektionsschritt zum Detektieren eines Höhenwinkels (α) des Targets (2d) in Bezug auf eine Referenzfläche (S), und

einen Ermittlungsschritt zum Ermitteln einer vertikalen Positionskoordinate (Z1") der feststehenden Station (1) auf der Basis der ermittelten horizontalen Relativpositionsbeziehung und des gemessenen Höhenwinkels (α).


 


Revendications

1. Une méthode de fonctionnement d'un système de préparation pour une opération d'arpentage en tant qu'opération d'arpentage RTK, le système de préparation comprenant :

une station mobile (2) disposée à un point d'observation (B") où une coordonnée de position est connue, la station mobile étant une tige cible, dans lequel la station mobile (2) comprend au moins une section de positionnement satellitaire (2a) de station mobile qui reçoit des données de positionnement depuis les satellites (Sa1 à Sa4),
la station mobile (2) comprend une cible (2s) pour mesurer une hauteur étant fixée sur un montant (2e) de la station mobile (2) à une hauteur de référence (Z2") par rapport au sol au point d'observation connu (B") ; et

une station fixe (1) disposée à un point de référence (A") où une coordonnée de position est inconnue, la station fixe (1) est un dispositif d'arpentage comportant une section de positionnement satellitaire (1a), et le dispositif d'arpentage est l'un quelconque parmi un dispositif de niveau électronique, un dispositif de niveau à laser, et une station totale pour former une surface de référence (S),

l'opération d'arpentage recevant des données de positionnement depuis les satellites (Sa1 à Sa4) par la station mobile (2) et la station fixe (1) et déterminant la coordonnée de position du point de référence inconnu (A") sur la base des données de positionnement de la station mobile (2),

le système effectue :

une étape arithmétique pour déterminer la coordonnée de position (X1", Y1") du point de référence inconnu (A") sur la base des données de positionnement reçues par la station mobile (2) depuis les satellites (Sa1 à Sa4), des données de positionnement reçues par la station fixe (1) depuis les satellites (Sa1 à Sa4), et d'une coordonnée de position (X2", Y2") du point d'observation connu (B"), et

une étape d'assignation pour assigner le point de référence inconnu (A") dont la coordonnée de position (X1", Y1") est déterminée comme étant un point de référence connu (A),

et dans lequel la station fixe (1) comprend au moins :

une section arithmétique

définissant les données de positionnement reçues par la section de positionnement satellitaire (1a) de la station fixe en tant que données de positionnement initiales,

déterminant une relation de position relative horizontale entre le point de référence inconnu (A") et le point d'observation connu (B") sur la base des données de positionnement initiales et des données de positionnement reçues par la section de positionnement satellitaire (2a) de la station mobile,

déterminant une coordonnée de position horizontale du point de référence inconnu (A") sur la base de la relation de position relative horizontale déterminée et une coordonnée de position horizontale (X2", Y2") du point d'observation connu (B"), et

assignant la coordonnée de position horizontale déterminée (X1", Y1") en tant que coordonnée de position horizontale du point de référence connu (A),

et dans lequel la station fixe (1) exécute :

une étape arithmétique pour déterminer la relation de position relative horizontale entre le point de référence inconnu (A") et le point d'observation connu (B"),

une étape de détection pour détecter un angle d'altitude (α) de la cible (2d) par rapport à une surface de référence (S), et

une étape de détermination pour déterminer une coordonnée de position verticale (Z1") de la station fixe (1) sur la base de la relation de position relative horizontale déterminée et de l'angle d'altitude mesuré (α).


 




Drawing























Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description