(19)
(11)EP 3 014 189 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
22.07.2020 Bulletin 2020/30

(21)Application number: 14739256.7

(22)Date of filing:  26.06.2014
(51)International Patent Classification (IPC): 
F24D 3/12(2006.01)
F28D 20/00(2006.01)
F24H 7/04(2006.01)
(86)International application number:
PCT/NL2014/050422
(87)International publication number:
WO 2014/209121 (31.12.2014 Gazette  2014/53)

(54)

WALL PART, HEAT BUFFER AND ENERGY EXCHANGE SYSTEM

WANDTEIL, WÄRMEPUFFER UND ENERGIEAUSTAUSCHSYSTEM

PARTIE DE PAROI, TAMPON THERMIQUE ET SYSTÈME D'ÉCHANGE D'ÉNERGIE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 28.06.2013 NL 2011061

(43)Date of publication of application:
04.05.2016 Bulletin 2016/18

(73)Proprietor: Ecovat IP B.V.
5405 NB Uden (NL)

(72)Inventor:
  • DE GROOT, Adrianus Wilhelmus
    NL-5405 NB Uden (NL)

(74)Representative: van Essen, Peter Augustinus et al
Van Essen Patent B.V. Agro Business Park 50
6708 PW Wageningen
6708 PW Wageningen (NL)


(56)References cited: : 
WO-A1-94/28319
DE-A1- 2 846 348
DE-U1-202006 005 592
DE-A1- 2 136 137
DE-U1- 29 518 313
JP-A- S61 228 230
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of the invention



    [0001] The present invention relates to an energy exchange system.

    Background of the invention



    [0002] Energy exchange systems are per se known. Their general principle is to store heat and cold at the moment that there is a surplus and to utilize this heat at times of demand, particularly seasonal storage from summer to winter. This usually involves solar heat and thermal heat generated in particular with heat pumps which are controlled with their own current from their own PV panels which is stored underground, wherein a liquid such as water and/or glycol is used to provide heat capacity, cold capacity or a combination of the two.

    [0003] WO94/28319 according to its abstract describes A thermal storage device that comprises a thermal storage medium and a coupling arrangement for permitting thermal transfer between the medium and a thermal source at a location separate from that of the bulk of the medium, so as to change the temperature of the medium, the coupling arrangement being arranged to permit releasable coupling between the medium and the source.

    [0004] Document DE202006005592U discloses an energy exchange system, comprising:
    1. a. an underground heat buffer for holding a medium for storing energy, comprising a wall, wherein the wall comprises
      • a liquid throughflow circuit, and
      • one or more hydraulic couplings accessible from the outer side of the wall for discharge and supply of liquid to the liquid throughflow circuit,
      • the heat buffer also comprises a floor and/or cover part for closing the enclosed space on an upper and/or underside; said energy exchange system further comprising:
    2. b. a hydraulic heat exchange system connected to the liquid throughflow circuit, the hydraulic heat exchange system comprising at least:
      1. i) a heat absorbing device for absorbing heat such as solar heat; relinquishing this heat to a liquid; carrying the liquid to which the heat has been relinquished to the liquid throughflow circuit; and at least
      2. ii) a heat generating device for receiving liquid carried through the liquid throughflow circuit; generating heat, such as a heating system in a building.


    [0005] The known systems do of course meet a certain demand but they also have diverse drawbacks, particularly in respect of a low efficiency or a limited degree of storage capacity, scalability or applicability in an existing built-up area.

    Summary of the invention



    [0006] It is an object of the present invention to obviate at least some of the above stated drawbacks or to provide a usable alternative to the prior art.

    [0007] The invention provides for this purpose an energy exchange system according to claim 1.

    [0008] According to the invention, a wall part for forming a heat buffer comprises a substantially plate-like body, at least one liquid throughflow circuit incorporated in the body, one or more hydraulic couplings accessible from the outer side of the wall part for discharge and supply of liquid to the liquid throughflow circuit and configured for coupling to hydraulic couplings of a similar wall part.

    [0009] In an embodiment at least some of the wall parts will be coupled and connected by means of the so-called Tichelmann connection principle, whereby uniform pressure losses and attendant energy-saving use of the pumps for circulating the liquid can be achieved.

    [0010] The energy exchange system according to the present invention provides the option of forming, by means of coupling to similar or identical wall parts, an assembly of optionally hydraulically coupled or connected parts, and thus forming a heat buffer with a storage capacity of any desired size. The wall part can for this purpose be for instance substantially plate-like, rectangular, trapezium-shaped or optionally curved. The liquid throughflow circuit is configured to form part of or to form a heat exchanger. An assembly of wall parts according to the present invention is for this purpose brought into contact with a medium with a suitable heat capacity, which can in particular be groundwater. For this specific purpose the wall parts are then placed under the ground, for instance in the groundwater.

    [0011] The wall part of the energy exchange system according to the invention can be a latticework for holding a hose or tube and can also be provided with such a hose or tube intended for placing in a recess which is provided for the purpose in the ground and which is then poured full of for instance concrete. (Nets with) conduit registers cast into a (thus prefab) concrete element can however also be applied. Such elements can be embedded directly in the ground or also in still liquid concrete.

    [0012] The parts can take an insulated form, wherein the liquid throughflow circuit can have been or be formed by a hose or tube cast into the concrete or a conduit register arranged on the wall part.

    [0013] Such prefab parts in particular can be provided with a seal for sealing a contact surface of the two wall parts in liquid-tight and preferably thermally sealed manner in the situation where they are coupled to a similar wall part.

    [0014] The mechanical coupling is preferably configured to couple similar devices with their walls at an angle to each other. An endless assembly, particularly a polygon, which encloses the medium can in this way be formed by mutually connecting wall parts according to the present invention. The wall parts can have for instance a trapezium-shaped cross-section for this purpose.

    [0015] In an embodiment a first wall part can be coupled to a similar second wall part by means of a mechanical coupling, for instance comprising at least one protrusion and one hook, wherein the protrusion is provided on the first wall part and the hook is provided on the second wall part. It is of course possible to envisage a plurality of protrusions and hooks, wherein it is also possible for a wall part to be equipped with both protrusions and hooks for the purpose of connecting one adjacent wall part.

    [0016] For the purpose of installing an underground buffer it is recommended that the protrusion and the hook are placed such that the second wall part can be coupled substantially in vertical direction to the first wall part. Wall parts can in this way be placed in the ground and connected to each other one by one.

    [0017] The wall parts of the energy exchange system according to the present invention preferably have a width of between one and four metres, a height of between ten and twenty-five metres and a thickness of between zero and one and a half metres.

    [0018] The energy exchange system comprises a heat buffer comprising at least two wall parts as described above, and in particular wherein the mechanically coupled devices are connected such that they enclose a space. They also comprise a floor and/or cover part for closing the enclosed space on an upper and/or underside. A desired volume of the heat buffer lies between 15 and 25,000 m3 and can even rise to 60,000 m3. The aim according to the present invention is the largest possible tank so that, with a relatively small difference in temperature, the highest possible energetic storage capacity, and therefore the highest possible efficiency, can be obtained.

    [0019] In order to obtain an exceptionally high efficiency the heat buffer can comprise a plurality of preferably connected groups of coupled wall parts arranged around each other. An exemplary configuration comprises for instance concentric circles or polygons, although a zigzag or meandering form can also be envisaged. The heat buffer is filled with a medium for storing energy, for which purpose groundwater or other liquid can for instance be chosen.

    [0020] The heat buffer of the energy exchange system can also comprise a plurality of preferably connected groups of coupled wall parts arranged one above another, wherein a thermal barrier, for instance formed by a partition or otherwise substantially horizontally extending element such as a floor part, is arranged in each case between the wall parts arranged one above another in order to make use in this way of the natural stratification of water layers due to the temperature differences. The groups arranged around or above each other, thus form their own compartments, can be used to store volumes of the medium with different temperature, wherein it is possible to draw each time from the compartment with the temperature most suitable for that moment.

    [0021] The efficiency of the heat buffer can be increased considerably when it is surrounded by an extra outer wall. Such an outer wall can be arranged in the ground prior to placing of the heat buffer. A technique suitable for the purpose is the per se known cutter soil mixing. A space is cleared here in the ground, for instance by means of drilling or milling, which space is filled with a material, such as cement, which is curable optionally in combination with moisture present in the ground.

    [0022] In a preferred embodiment of the present invention the outer wall is placed at a distance from the heat buffer (to be formed), so that a cavity results. This cavity can be left empty or be filled with an insulating material of choice which, just as the content of the buffer, can be water.

    [0023] Such a buffer can be manufactured by placing a cavity in the above described manner, subsequently positioning the wall parts and then fixing these in their positions. Use can be made for this fixing of a clamping means of controllable size, for instance a bag which is placed between the outer wall and the wall parts and is then filled, for instance with a cement.

    [0024] In a preferred embodiment of the present invention the energy exchange system comprises a control system for controlling the liquid flow between the heat exchange system, the heat absorbing device and the heat generating device. Such a control system controls the heat supply and discharge to and from the heat buffer.

    [0025] The control system according to the present invention is characterized in a preferred embodiment in that the control system is configured to receive a temperature forecast for the relevant location, wherein the control system is configured to store energy in or generate energy from the tank on the basis of the received temperature forecast.

    [0026] The temperature forecast can be obtained from a meteorological institute, via an RSS feed or in other per se known manner. The energy exchange system according to the present invention is still more particularly characterized in that the control system is configured to store energy in or generate it from the heat buffer on the basis of the temperatures measured in the past and the temperatures expected in the future, wherein each measuring point in the past and each measuring point in the future is weighted with its own weighting factor. The quantity of energy from the buffer to be generated or absorbed is determined on the basis of such a weighting factor for the purpose of bringing a building to and/or keeping it at a determined temperature. In a further embodiment the energy from the building is used to charge the buffer and carry cold from the buffer to the building. Because the tank is divided into different temperature levels created by the natural stratification of the water in the tank, the correct level of charging and discharging can be determined by means of control engineering.

    [0027] In a further embodiment of the present invention measuring points in the past are weighted with a lower factor than measuring points in the future. In yet another embodiment the control system is configured to adjust the control on the basis of the difference between the temperature forecast and an actually measured temperature, such as that in a connected building and/or the buffer tank.

    Brief description of the drawings



    [0028] The invention will now be elucidated with reference to the following figures. Herein:
    • Figures 1a,b show a sectional view of a wall part according to the present invention;
    • Figure 1c shows the protrusion and hook construction of figures 1a and 1b in detail;
    • Figure 2 shows a top view of a buffer according to the present invention;
    • Figures 3a-c show schematic views of the hydraulic system of an energy storage system according to the present invention;
    • Figure 4 shows an example of a weighting of measuring points in a system according to the present invention;
    • Figure 5 shows a user interface of software for adjusting the control system according to the present invention; and
    • figure 6 shows a cross-section of a heat buffer according to the present invention provided with an outer wall.

    Description of preferred embodiments



    [0029] Figure la shows a sectional view 1 of a wall part 2 according to an embodiment of the present invention, comprising a substantially plate-like body 3 with a liquid throughflow circuit 4 incorporated in the body, and four hydraulic couplings 5, 6, 7, 8 accessible from the outer side of wall part 2 for discharge and supply of liquid to the liquid throughflow circuit 4 and configured for coupling to hydraulic couplings of a similar device. Also visible is a mechanical coupling 9, 10 provided on the wall part and comprising a protrusion 10 and a hook 9 for coupling wall part 2 to at least one similar wall part. Finally shown is a seal 12 for liquid-tight sealing of a contact surface of the two wall parts in the situation where they are coupled to a similar wall part. Figure 1b shows a top view of an alternative embodiment 2A. Shown in protrusion 10A is a seal 11, and it can be clearly seen that the cross-section of this embodiment is a trapezium-shaped cross-section. It can also be seen that protrusions 10A and the associated hooks can be located on the outer side of a wall part as well as on an end surface. Figure 1c shows the protrusion and hook construction of figures 1a and 1b in detail.

    [0030] Figure 2 shows a top view 13 of a buffer according to an embodiment of the present invention, consisting of a plurality of preferably connected groups 14, 15, 16 of coupled wall parts 2 arranged around each other.

    [0031] Figures 3a, b, c show schematic views 17, 18, 19 of the mutual hydraulic coupling of wall parts 20 according to an embodiment of the present invention in accordance with the Tichelmann principle.

    [0032] Figure 4 shows an example of a weighting of measuring points in a system according to an embodiment of the present invention, which adheres to the general guidelines according to the ISSO publication 29 pursuant to the Building Decree 2012, including amendments dated 17 April 2012. The guidelines provided in the ISSO are based on the knowledge gathered from a literature search and experiments. The static and dynamic heat flows of installations have been simulated using computer models. The results of the simulation models have been verified by field measurements, which have contributed toward the final form of these models. For practical use a manual calculation method has been derived with which an installation can be designed in reliable manner on the basis of the building characteristics and comfort requirements. The calculation method consists of eight steps.
    1. 1. determining the heat loss through outer walls;
    2. 2. determining heat losses to adjacent buildings;
    3. 3. determining the heat loss through the roof;
    4. 4. determining the heat loss through the floor;
    5. 5. determining infiltration or ventilation losses;
    6. 6. determining the stationary heat losses;
    7. 7. determining the heating-up surcharge;
    8. 8. determining the total capacity to be installed.


    [0033] The calculations of internal heat production and solar irradiation are taken into account here. Determining the capacity to be supplied from the tank consists of the eight steps listed above; six for determining the stationary heat demand, one for the heating-up surcharge and one for the capacity to be finally determined and supplied from the tank at a determined point in time. This capacity is determined every 30 minutes by calculating step 1 to 8 with addition or subtraction of information on the internal heat production and solar irradiation received from the building. An adaptive temperature limit value can in this way be provided in accordance with figure 5.

    [0034] Figure 5 shows a user interface of software for adjusting the control system according to the present invention.

    [0035] Figure 6 shows an embodiment 31 wherein an outer wall 33 is arranged around wall parts 32 for the purpose of thus forming a cavity 34. Wall parts 32 are held in place by clamping elements formed by bags 35 and 36, which are shown both before (35A, 36A) being filled with a filler such as cement and after being filled with this filler.

    [0036] The above stated figures are purely illustrative and in no way limit the scope of protection of the present invention as laid down in the following claims.


    Claims

    1. Energy exchange system, comprising:

    a. an underground heat buffer (13) for holding a medium for storing energy, comprising coupled wall parts, wherein

    - each wall part (2) comprises

    ∘ a substantially plate-like body (3);

    ∘ a liquid throughflow circuit (4) incorporated in or on the plate-like body (3), and

    ∘ one or more hydraulic couplings (5, 6, 7, 8) accessible from the outer side of the wall part (2) for discharge and supply of liquid to the liquid throughflow circuit (4) and configured for coupling to hydraulic couplings (5, 6, 7, 8) of a further wall part (2), and

    ∘ is coupled at a mutual angle about a substantially vertical axis to a similar wall part, and wherein;

    - the coupled wall parts are connected such that they enclose one space for contacting said medium;

    - the heat buffer also comprises a floor and/or cover part for closing the enclosed space on an upper and/or underside;

    said energy exchange system further comprising:

    b. a hydraulic heat exchange system connected to the liquid throughflow circuit (4) of at least one of the wall parts (2) of the heat buffer (13), the hydraulic heat exchange system comprising at least:

    i) a heat absorbing device for

    1. absorbing heat such as solar heat;

    2. relinquishing this heat to a liquid;

    3. carrying the liquid to which the heat has been relinquished to the liquid throughflow circuit (4); and at least

    ii) a heat generating device for

    1. receiving liquid carried through the liquid throughflow circuit (4);

    2. generating heat, such as a heating system in a building.


     
    2. Energy exchange system as claimed in claim 1, comprising a plurality of buildings and a plurality of heat generating devices placed in the plurality of buildings.
     
    3. Energy exchange system as claimed in claim 1 or 2, comprising a control system for controlling the liquid flow between the heat exchange system, the heat absorbing device and the heat generating device.
     
    4. Energy exchange system as claimed in claim 3, wherein

    - the control system is configured to receive a temperature forecast; and

    - wherein the control system is configured to store energy in or generate energy from the tank on the basis of the received temperature forecast.


     
    5. Energy exchange system as claimed in claim 3 or 4, wherein the control system is configured to store energy in or generate it from the heat buffer on the basis of the temperatures measured in the past and the temperatures expected in the future, wherein each measuring point in the past and each measuring point in the future is weighted with its own weighting factor.
     
    6. Energy exchange system as claimed in claim 5, wherein measuring points in the past are weighted with a lower factor than measuring points in the future.
     
    7. Energy exchange system according to any one of the preceding claims, comprising a plurality of preferably connected groups of coupled wall parts arranged one above another, wherein a thermal insulation is arranged in each case between the wall parts arranged one above another.
     
    8. Energy exchange system according to any one of the preceding claims, wherein the heat buffer has a volume of between 15 and 60,000 m3 and in particular between 15 and 25,000 m3.
     
    9. Energy exchange system according to any one of the preceding claims, filled with a medium for storing energy, in particular with groundwater.
     
    10. Energy exchange system according to any one of the preceding claims, wherein the wall parts has an insulated form, wherein the liquid throughflow circuit comprise a conduit register arranged on the wall part.
     
    11. Energy exchange system according to any one of the preceding claims, wherein the heat buffer comprises an outer wall surrounding said wall parts.
     
    12. A method for providing an energy exchange system according to claim 11, wherein said method comprises a step of arranging said outer wall in the ground prior to placing of the further heat buffer, in an embodiment a space is cleared in the ground, for instance by means of drilling or milling, which space is filled with a material, such as cement, which is curable.
     
    13. Energy exchange system according to any one of the preceding claims 1-11, wherein the heat buffer comprises a plurality of connected groups of coupled wall parts arranged one above another, wherein a thermal barrier, for instance formed by a partition or otherwise substantially horizontally extending element such as a floor part, is arranged in each case between the wall parts arranged one above another in order to make use in this way of the natural stratification of water layers due to the temperature differences.
     


    Ansprüche

    1. Energieaustauschsystem, dass umfasst:

    a. ein unterirdische Wärmepuffer (13) zum Aufnehmen eines Mediums zum Speichern von Energie, dass gekoppelte Wandteile umfasst, wobei,

    - jedes Wandteile (2) umfasst:

    ∘ einen im wesentlichen plattenartigen Körper (3);

    ∘ einen im oder auf dem plattenartigen Körper eingebauten Flüssigkeitsdurchflusskreislauf (4), und

    ∘ eine oder mehrere hydraulische Kupplungen (5, 6, 7, 9), die von der Außenseite des Wandteils (2) zum Ablassen und Zuführen von Flüssigkeit zum Flüssigkeitsdurchflusskreislauf (4) zugänglich sind und zum Koppeln von hydraulische Kupplungen eines weiteres Wandteils (2) konfiguriert sind; und

    ∘ in einem gegenseitigen Winkel um eine im wesentlichen vertikale Achse mit einem ähnlichen Wandteil gekoppelt ist; und wobei

    - die Wandteilen so verbunden sind, dass sie einen Raum einschließen zum Kontakt mit dem Medium;

    - der Wärmepuffer umfasst auch einen Boden und / oder ein Abdeckungsteil zum Verschließen des geschlossenen Raums auf einer oberen und / oder Unterseite;

    dass Energieaustauschsystem umfasst weiterhin:

    b. ein hydraulisches Wärmeaustauschsystem, das mit dem Flüssigkeitsdurchflusskreislauf (4) von mindestens einem der Wandteile des Wärmepuffers verbunden ist, das hydraulisches Wärmeaustauschsystem umfasst zumindest:

    i. Eine Wärmeabsorptionsvorrichtung zum

    1. Absorbieren von Wärme wie Sonnenwärme;

    2. abgeben diese Wärme an eine Flüssigkeit;

    3. tragen des Flüssigkeits, an die die Wärme abgegeben wurde, in den Flüssigkeitsdurchflusskreislauf (4); und mindestens

    ii. eine Wärmeerzeugungsvorrichtung zum

    1. Aufnehmen von Flüssigkeit, die durch das Flüssigkeitsdurchflusssystem getragen wird; 2. Erzeugung von Wärme, z. B. eines Heizsystems in einem Gebäude.


     
    2. Energieaustauschsystem nach Anspruch 1, umfassend mehreren Gebäuden und mehrere Wärmeerzeugungsvorrichtungen, die in die mehreren Gebäuden angeordnet sind.
     
    3. Energieaustauschsystem nach Anspruch 1 oder 2, umfassend ein Steuersystem zum Steuern des Flüssigkeitsstroms zwischen dem Wärmeaustauschsystem, der Wärmeabsorptionsvorrichtung und der Wärmeerzeugungsvorrichtung.
     
    4. Energieaustauschsystem nach Anspruch 3, wobei

    - das Steuersystem konfiguriert ist, um eine Temperaturvorhersage zu empfangen; und

    - wobei das Steuersystem konfiguriert ist, um Energie in dem Tank auf der Basis der empfangenen Temperaturprognose zu speichern oder Energie aus dem Tank zu erzeugen.


     
    5. Energieaustauschsystem nach Anspruch 3 oder 4, wobei das Steuersystem konfiguriert ist, um Energie in dem Wärmepuffer auf der Basis der in der Vergangenheit gemessenen Temperaturen und der in der Zukunft erwarteten Temperaturen zu speichern oder aus diesem zu erzeugen, wobei jeder Messpunkt in der Vergangenheit und jeder Messpunkt in der Zukunft mit einem eigenen Gewichtungsfaktor gewichtet wird.
     
    6. Energieaustauschsystem nach Anspruch 5, wobei Messpunkte in der Vergangenheit mit einem niedrigeren Faktor als Messpunkte in der Zukunft gewichtet werden.
     
    7. Energieaustauschsystem nach einem der vorangehenden Ansprüche, umfassend mehrere vorzugsweise verbundene Gruppen gekoppelter Wandteile, die übereinander angeordnet sind, wobei jeweils eine Wärmedämmung zwischen den übereinander angeordneten Wandteilen angeordnet ist.
     
    8. Energieaustauschsystem nach einem der vorangehenden Ansprüche, wobei der Wärmepuffer ein Volumen zwischen 15 und 60.000 m3 und insbesondere zwischen 15 und 25.000 m3 aufweist.
     
    9. Energieaustauschsystem nach einem der vorangehenden Ansprüche, gefüllt mit einem Medium zum Speichern von Energie, insbesondere mit Grundwasser.
     
    10. Energieaustauschsystem nach einem der vorangehenden Ansprüche, wobei die Wandteile eine isolierte Form haben, wobei der Flüssigkeitsdurchflusskreislauf ein Leitungsregister umfasst, das an dem Wandteil angeordnet ist.
     
    11. Energieaustauschsystem nach einem der vorangehenden Ansprüche, wobei der Wärmepuffer eine Außenwand umfasst, die die Wandteile umgibt.
     
    12. Verfahren zum Bereitstellen eines Energieaustauschsystems nach Anspruche 11, wobei das Verfahren einen Schritt umfasst des Anordnens der Außenwand im Boden vor dem Platzieren des weiteren Wärmepuffers, in einer Ausführungsform wird ein Raum im Boden Freigemacht, beispielsweise durch Bohren oder Fräsen, wobei dieser Raum mit einem Material gefüllt wird, wie Zement, der Aushärtet.
     
    13. Energieaustauschsystem nach einem der vorangehenden Ansprüche 1-11, wobei der Wärmepuffer mehrere miteinander verbundene Gruppen gekoppelter Wandteile umfasst, die übereinander angeordnet sind, wobei jeweils zwischen den übereinander angeordnete Wandteilen eine Wärmesperre angeordnet ist, die beispielsweise durch eine Trennwand oder ein sonst im wesentlichen horizontal verlaufendes Element wie ein Bodenteil gebildet ist, um auf diese Weise die natürliche Schichtung von Wasserschichten aufgrund der Temperaturunterschiede zu nutzen.
     


    Revendications

    1. Système d'échange d'énergie comprenant:

    a. un tampon thermique souterrain (13) pour tenir un support de stockage d'énergie, comprenant des parties de paroi couplées, dans lequel:

    - chaque des parties de paroi (2) comprend

    ∘ un corps sensiblement en forme de plaque (3);

    ∘ un circuit d'écoulement de liquide incorporé dans ou sur le corps en forme de plaque, et

    ∘ un ou plusieurs accouplements hydrauliques (5, 6, 7, 8) accessibles depuis le côté extérieur de la partie de paroi (2) pour le décharge et l'alimentation de liquide du circuit d'écoulement de liquide (4) et configurés pour être accouplés à des accouplements hydrauliques (5, 6, 7, 8) d'un partie de paroi (2) similaire; et

    ∘ est couplé selon un angle mutuel autour d'un axe sensiblement vertical à une partie de paroi similaire; et dans lequel

    - les parties de parois sont connectés de manière à entourer un espace pour contacter ledit milieu;

    - le tampon thermique comprend également une partie de plancher et / ou une partie de couvercle pour fermer l'espace clos sur une face supérieure et / ou inférieure.

    ledit système d'échange d'énergie comprenant en outre:

    b. un système d'échange de chaleur hydraulique connecté au circuit d'écoulement de liquide (4) d'au moins une des parties de paroi (2) du tampon thermique (13), ledit système d'échange de chaleur hydraulique comprenant au moins:

    i. un dispositif absorbant la chaleur pour

    1. absorber la chaleur telle que la chaleur solaire;

    2. abandonner cette chaleur à un liquide;

    3. porter le liquide auquel la chaleur a été absorbé vers le circuit d'écoulement de liquide (4); et au moins

    ii. Un dispositif générateur de chaleur pour

    1. recevoir du liquide transporté à travers le système d'écoulement de liquide;

    2. générer de la chaleur, comme un système de chauffage dans un bâtiment.


     
    2. Système d'échange d'énergie selon la revendication 1, comprenant une pluralité de bâtiments et une pluralité de dispositifs de génération de chaleur placés dans cettes pluralités de bâtiments.
     
    3. Système d'échange d'énergie selon la revendication 1 ou 2, comprenant un système de commande pour commander le flux de liquide entre le système d'échange de chaleur, le dispositif d'absorption de chaleur et le dispositif de génération de chaleur.
     
    4. Système d'échange d'énergie selon la revendication 3, dans lequel

    - le système de commande est configuré pour recevoir une prévision de température; et

    - dans lequel le système de commande est configuré pour stocker de l'énergie dans le réservoir ou générer de l'énergie à partir du réservoir sur la base des prévisions de température reçues.


     
    5. Système d'échange d'énergie selon la revendication 3 ou 4, dans lequel le système de commande est configuré pour stocker ou générer de l'énergie à partir du tampon thermique sur la base des températures mesurées dans le passé et des températures attendues dans le futur, dans lequel chaque point de mesure dans le passé et chaque point de mesure dans le futur est pondéré avec son propre facteur de pondération.
     
    6. Système d'échange d'énergie selon la revendication 5, dans lequel les points de mesure passés sont pondérés avec un facteur inférieur à ceux de mesure futur
     
    7. Système d'échange d'énergie selon l'une quelconque des revendications précédentes, comprenant une pluralité de groupes de préférence connectés de parties de parois couplées, disposées les unes au-dessus des autres, dans lequel une isolation thermique est disposée dans chaque cas entre les parties de parois disposées les unes au-dessus des autres.
     
    8. Système d'échange d'énergie selon l'une quelconque des revendications précédentes, dans lequel le tampon thermique a un volume compris entre 15 et 60 000 m3 et en particulier entre 15 et 25 000 m3.
     
    9. Système d'échange d'énergie selon l'une quelconque des revendications précédentes, rempli d'un milieu de stockage d'énergie, en particulier d'eau souterraine.
     
    10. Système d'échange d'énergie selon l'une quelconque des revendications précédentes, dans lequel les parties de paroi ont une forme isolée, dans laquelle le circuit d'écoulement de liquide comprend un registre de conduit disposé sur la partie de paroi.
     
    11. Système d'échange d'énergie selon l'une quelconque des revendications précédentes, dans lequel le tampon thermique comprend une paroi extérieure entourant lesdites parties de paroi.
     
    12. Procédé pour fournir un système d'échange d'énergie selon la revendication 11, dans lequel ledit procédé comprend une étape d'arranger ladite paroi extérieur dans le sol avant de placer l'autre tampon thermique, dans un mode de réalisation un espace est dégagé dans le sol, par exemple par des moyens de perçage ou de fraisage, dont l'espace est rempli d'un matériau, tel que du ciment, qui est curable.
     
    13. Système d'échange d'énergie selon l'une quelconque des revendications précédentes 1-11, dans lequel le tampon thermique comprend une pluralité de groupes connectés de parties de paroi couplées, disposées les unes au-dessus des autres, dans lequel une barrière thermique, par exemple formée par une cloison ou autre élément s'étendant sensiblement horizontalement tel qu'une partie de plancher, est disposée dans chaque cas entre les parties de paroi disposés les uns au-dessus des autres afin d'utiliser de cette manière la stratification naturelle des couches d'eau due aux différences de température.
     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description