(19)
(11)EP 3 017 077 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
27.11.2019 Bulletin 2019/48

(21)Application number: 14735854.3

(22)Date of filing:  30.06.2014
(51)Int. Cl.: 
C23C 14/00  (2006.01)
C23C 14/34  (2006.01)
H01J 37/32  (2006.01)
C23C 14/06  (2006.01)
C23C 14/54  (2006.01)
H01J 37/34  (2006.01)
(86)International application number:
PCT/EP2014/001780
(87)International publication number:
WO 2015/000575 (08.01.2015 Gazette  2015/01)

(54)

TARGET AGE COMPENSATION METHOD FOR PERFORMING STABLE REACTIVE SPUTTERING PROCESSES

ZIELALTERUNGSKOMPENSATIONSVERFAHREN ZUR DURCHFÜHRUNG VON STABILEN REAKTIVEN SPUTTERPROZESSEN

MÉTHODE DE COMPENSATION DE L'ÂGE D'UNE CIBLE POUR EFFECTUER DES PROCÉDÉS DE PULVÉRISATION CATHODIQUE RÉACTIVE STABLE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 03.07.2013 DE 102013011068

(43)Date of publication of application:
11.05.2016 Bulletin 2016/19

(73)Proprietor: Oerlikon Surface Solutions AG, Pfäffikon
8808 Pfäffikon SZ (CH)

(72)Inventors:
  • KURAPOV, Denis
    CH-8880 Walenstadt (CH)
  • KRASSNITZER, Siegfried
    A-6800 Feldkirch (AT)

(74)Representative: Misselhorn, Hein-Martin 
Patent- und Rechtsanwalt Donaustrasse 6
85049 Ingolstadt
85049 Ingolstadt (DE)


(56)References cited: : 
JP-A- H02 179 869
US-B1- 7 324 865
JP-A- 2005 330 571
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates to a method for performing reactive sputtering processes maintaining the deposition rate constant, or at least in a for the industrial production context acceptable range, independent on the target age.

    Technological field and state of the art



    [0002] The sputtering technique is a well-established physical vapor deposition (PVD) method, which is used for depositing thin films for a broad variety of applications. In particular, wear protective coatings for cutting tools applications can be successfully deposited by using the sputtering technology. Especially, the coating quality can be improved significantly by using high-power impulse magnetron sputtering (HIPIMS) methods.

    [0003] A fundamental part of a sputtering apparatus is the at least one sputtering target used as material source for providing the necessary deposition species for the coating growth on the substrate surface placed in the coating chamber. In the case of reactive sputtering processes the species obtained from the target react with the reactive gas present in the coating chamber for forming the film on the substrate surface to be coated. Target material from the target surface is sputtered by collision of ions (essentially ions from an ionized non-reactive gas), which are attracted to the target surface through the application of a magnetic field. Thus, the sputtering process at the target leads to erosion of the target surface and consequently to a change of the target weight.

    [0004] Particularly, strong erosion of the target surface can be observed on the areas of the target subjected to a strong magnetic field, which leads to undesirable changes in the coating plasma conditions and consequently in the coating growth on the substrate surface.

    [0005] Different methods for avoiding these undesirable changes are proposed currently by the state of the art.

    [0006] For example, the patent document WO0116394A1 proposes a method for controlling reactive sputter deposition of a compound formed from reaction between a reactive species that results from excitation of a reactive gas and a material included in a target acting as a cathode. The method comprising the steps of: establishing reactive sputter deposition at a nominal flow rate or partial pressure of the reactive gas; and stabilizing the cathode voltage at a nominal voltage by adjusting the power supplied to the cathode, wherein said normal voltage and nominal flow rate or partial pressure are determined according to an equilibrium state or steady state condition among said cathode voltage, said nominal flow rate or partial pressure of the reactive gas, and power supplied to the cathode.

    [0007] Similarly, the patent documents US5783048 A, WO00005745 and WO2013045493A1 propose different sputtering apparatuses and methods for controlling sputter deposition by adjusting the magnetic field in order to compensate the undesirable changes caused by target erosion during sputtering of the target surface.

    [0008] US5783048A discloses a sputtering apparatus for forming a thin film on a substrate, the formed film exhibiting a substantially uniform thickness. The apparatus including a target for providing target material for forming the thin film, wherein the target includes a first area. The sputtering apparatus further includes a plasma discharge to enable removal of target material from the target. In addition, a main magnet is provided for generating a main magnetic field for controlling the plasma discharge to remove the target material. Further, a compensating magnet is utilized which is positioned adjacent to the first area. The compensating magnet generates a compensating magnetic field which interacts with the main magnetic field to control the plasma discharge in the first area to form a desired erosion pattern in the first area and enable formation of a substantially uniform film thickness on the substrate.

    [0009] WO0005745A1 discloses an apparatus and a method for compensating process-related asymmetries produced in physical vapor processing of a surface, in particular, when sputtering material from a source is deposited onto a substrate for forming a film. A compensating magnet is configured and positioned to produce a compensating magnetic field to offset the effects of chamber and process-related asymmetries, particularly those that affect the distribution of plasma processing on a substrate where the plasma has been otherwise symmetrically produced.

    [0010] WO2013045493A1 proposes a method for magnetron sputtering in a sputtering apparatus, which has a cathode, a target, which is arranged on a surface of the cathode or is part of said surface of the cathode, and a magnet set arranged on a side of the cathode facing away from said surface, wherein the target is eroded at least in some areas on an eroding surface during the sputtering, and wherein a distance between the magnet set and the eroding surface of the target is adjusted during the course of the eroding in such a way that an impedance of a circuit comprising the cathode changes only by less than a predetermined value due to the eroding during the course of the eroding, which predetermined value is less than an impedance difference between the impedance for the non-eroded target and the impedance for the maximally eroded target at an unadjusted distance.

    [0011] JP 2005 0571 A discloses a magnetron sputtering apparatus having a time dependency control setting device for the mixing ratio of the reaction gases.

    [0012] However, coating different kind of substrates for different applications in the industrial production context involves additional difficulties which are not easy to overcome by using the current technologies provided by the state of the art.

    [0013] For attaining the necessary reproducibility, operating efficiency and for ensuring product quality in the industrial production context it is essential to operate all coating batches at stable conditions (especially same conditions as possible), but in this context the targets must be operated for a very long time for performing several batches. It leads not only to coating conditions instabilities caused by the art and/or form of the erosion at the target surface, but also caused by a considerably reduction of the target mass resulted by the prolonged erosion of the target after several batches, which in the context of the present invention will be called target age. The target age leads in turn to undesirable changes in the sputtering characteristic of the target and in the film deposition rate, particularly by accomplishing reactive sputtering processes, as it is shown in the figures 1 and 2. For most of the coating applications, and particularly in the industrial production context are these changes unacceptable.

    [0014] Figure 1 shows the variation of the source (target) voltage in volts and current density in amperes per square centimeter in relation to the target weight in grams obtained by reactive sputtering of one aluminum chromium target in an argon-nitrogen atmosphere by applying a constant power density at target of about 1kW/cm2 and maintaining nitrogen partial pressure constant at a value of 0.27Pa. Also the substrate temperature was maintained constant during sputtering for all attempts. A magnetic field was generated by using permanent magnets arranged behind the target in order to increase the probability of detention of electrons in the area in front of the target. The used target was a disk-shaped target having constant diameter 0150mm and variable thickness which was reducing during sputtering causing thus reduction of the target weight. The element composition of the used target was 60 at.-% Al and 40 at.-% Cr.

    [0015] Figure 2 shows the measured coating thickness in µm of the films deposited on the surface of flat samples in relation to the weight in grams of the target used for the film deposition. Each film was deposited by reactive sputtering of one AlCr-target in an argon-nitrogen atmosphere. The films were deposited by using the same coating configuration and under same coating conditions as those used for accomplishing the experiments displayed in figure 1. In order to be able to analyze the relation between deposition rate and target weight, each film was deposited on the corresponding samples during 117 minutes under same coating conditions regarding power density at the target, reactive partial pressure, substrate temperature. Only the target weight was different by accomplishing the deposition of each film.

    Objective of the present invention



    [0016] It is an objective of the present invention to provide a simple method for coating different kind of substrates for different applications in an industrial production context, which overcome the difficulties caused by the loss of mass of the targets produced during reactive sputtering. In particular, it is an objective of the present invention to provide an uncomplicated method for performing reactive sputtering processes maintaining the deposition rate constant, or at least in a for the industrial production context acceptable range, independent on the target age. Furthermore, it is an objective of the present invention to provide a sputtering apparatus for coating substrates in the industrial production context by using reactive sputtering techniques and applying the method according to the present invention.

    Description of the present invention



    [0017] The aforementioned objective is achieved by the present invention by providing a method according to claim 1, and an apparatus according to claim 10, for adjusting the partial pressure of the reactive gas depending on the target age in order to obtain constant deposition rate by reactive sputtering coating processes.

    [0018] Surprisingly, the inventors found that it is possible to maintain the sputtering characteristic at target as well as the deposition rate almost constant or more exactly in an acceptable range of variation, if the reactive gas partial pressure is adjusted depending on the target weight and at the same time the sputtering power density at the target is maintained constant during the reactive sputtering coating process.

    [0019] In the context of the present invention, an acceptable range of variation for the industrial production context is:- particularly about +/- 10% or less for the sputtering characteristic (in particular regarding target voltage and target current density),- particularly about +/-15% or less for the deposition rate, in relation to a corresponding target value defined for each parameter (namely target voltage, target current density and deposition rate). These target values are preferably defined at coating conditions attained by using targets in as-manufactured condition for performing the coating process.

    [0020] In the context of the present invention, the as-manufactured condition will be also called in new condition. Of course, an in-new-condition target should exhibit the highest target weight because it has still not been used for performing coating processes or at least not for a long time.

    [0021] Preferably, an acceptable range of variation in the context of the present invention for the sputtering characteristic is about +/- 7% or less, and for the deposition rate about +/-10% or less. Even more preferably, an acceptable range of variation in the context of the present invention for the sputtering characteristic is about +/- 5% or less, and for the deposition rate about +/- 7% or less.

    [0022] Particularly very good results were obtained by applying the method according to the present invention for maintaining almost constant sputtering characteristic at target as well as deposition rate when the sputtering target was operated by using HIPIMS techniques.

    Experimental example of the application of a method according to the invention:



    [0023] In order to be able to compare the results obtained within this experimental example with those displayed in the figures 1 and 2, same coating configuration and conditions excepting the reactive gas partial pressure were used. The target used for performing this experimental example was also a disk-shaped aluminum-chromium-containing target (AlCr-target) manufactured by using powder metallurgical techniques, having a constant diameter of Ø150mm and variable target thickness depending on the target age. Likewise, the element composition in atomic percentage of the used targets was 60 at.-% Al and 40 at.-% Cr. For performing the coating processes a vacuum sputtering apparatus comprising a coating chamber with possibility of reactive HIPIMS film deposition, manufactured by the company Oerlikon Balzers, was used. Several sputtering deposition runs (coating runs) were carried out. In the same way as described before, for this experimental example a magnetic field was generated by using permanent magnets arranged behind the target in order to increase the probability of detention of electrons in the area in front of the target during coating process. No changes in the arrangement of the permanent magnets were made from process to process, but of course, by effect of the changes in the target thickness which is getting thinner during each coating run, the target surface is getting closer to the permanent magnets and consequently the magnetic field strength on the target surface changes depending on the target thickness. Nitrogen was used as reactive gas. The AlCr-targets were sputtered in the interior of the coating chamber by using HIPIMS techniques in a reactive argon-nitrogen atmosphere. Before starting each coating run, cleaned uncoated flat substrate samples (amongst others high speed steel and cemented carbide samples) were arranged in a rotating sample holder, which was in turn arranged in the interior of the coating chamber. AlCrN-films were respectively deposited onto the corresponding surface of the samples to be coated during each coating run. The sputtering power density at the target (cathode) was kept constant at a main value of about 1.0 kW/cm2 for all coating runs. Also the substrate temperature was maintained constant at a value of about 450°C for all coating runs. Target weight was measured before and after each coating run. The used AlCr-target had a weight in-new condition (before performing the first coating run) of about 830 g. The reduction of the target weight after each coating run was confirmed as expected. The targets were used until to attain a weight of about 570 g. The lowest target weight for accomplishing a coating run was essentially defined by the lowest target thickness at which the mechanical stability of the target is not jeopardized. During each coating run the target characteristic was monitored by measuring voltage and current density at target. At the beginning of each coating run the nitrogen partial pressure was adjusted as quick as possible (in less than 5 minutes) in order to maintain the sputtering characteristic at the target as constant as possible. It means particularly in the context of the present invention that the reactive partial pressure was adjusted in order to maintain the voltage and current density values at target in an acceptable variation range. After that, the nitrogen partial pressure was maintained constant until complete the total effective coating time for forming a film onto the surface of the samples to be coated during each coating run. The total effective coating time for each coating run was 117 minutes. The thickness of the deposited AlCrN-films was measured after each coating run. The overall variation range of the nitrogen partial pressure within this experimental example, which was determined taking into account each nitrogen partial value adjusted at the beginning of each coating run, was from 0.27 Pa to 0.19 Pa.

    [0024] The average values of voltage and current density at the target measured during each coating run as well as the film thickness measured after each coating run in relation to the average weight that the target had during each run are shown in the figures 3 and 4, respectively.

    [0025] Thus, it is demonstrated that by using the method according to the present invention it is possible to maintain the sputtering characteristic at target as well as the film deposition rate almost constant or in an acceptable variation range for the industrial production context independent on the target age.

    [0026] The present invention provides a method for performing a coating process involving sputtering techniques in which at least one target is sputtered in an atmosphere comprising at least one reactive gas and sputtering characteristic values and/or coating rate are maintained within predefined target values as possible, the method comprising following step:- maintaining a deviation of the sputtering characteristic and/or of the coating rate values from the target values within an acceptable deviation range for the industrial production context by adjusting the reactive gas partial pressure preactive_gas depending on the target weight wtarget.

    [0027] In one embodiment of a method according to the present invention the target is operated as cathode by supplying power in such a manner that the power density at the target is maintained constant during sputtering of the target.

    [0028] In the method according to the present invention the reactive gas partial pressure preactive_gas is adjusted depending on the target weight wtarget according to a correlation preactive_gas vs. wtarget previously determined under corresponding coating conditions.

    [0029] The correlation preactive_gas vs. wtarget is determined before performing the coating process preferably by using a method comprising at least following steps:a) Providing a coating apparatus and further necessary elements as well as at least one target, preferably an in-new-condition target, of the same type required for accomplishing coating processes under same coating conditions like the above mentioned sputtering coating process having the deviation of the sputtering characteristic and/or of the coating rate values from the target values within an acceptable deviation range for the industrial production context.

    b) Measuring the target weight before accomplishing a first coating process for obtaining wtarget.

    c) Accomplishing the first coating process i for depositing a first film f by maintaining all coating parameters, excepting the reactive gas partial pressure, which is varied at the beginning of the first coating process until adjusting a reactive gas partial pressure value preactive_gas at which the predefined target values regarding sputtering characteristic, and maintaining afterwards the reactive gas partial pressure value preactive_gas constant until a first time t is completed.

    d) Measuring the target weight after accomplishing the first coating process for obtaining a second value of target weight wtarget, preferably measuring also the thickness of the first film f deposited during the first coating process.

    e) Repeating the steps b, c and d for conducting a second coating process or more coating processes.

    f) Finding the correlation preactive_gas vs. wtarget by using the measured values of preactive_gas and wtarget obtained in the above mentioned steps.



    [0030] Preferably, the number of coating processes to be accomplished for determining the correlation preactive_gas vs. wtarget is chosen taking the target thickness into account.

    [0031] Preferably, the reactive gas partial pressure preactive_gas is adjusted automatically.

    [0032] Preferably, the at least one target comprises at least one element from Ti, Al, Si, Zr, Hf, V, Nb, Ta, Mn, Fe, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd.

    [0033] Preferably, the at least one reactive gas is nitrogen or oxygen or a carbon-containing gas or a mixture containing at least two thereof.

    [0034] Preferably, the coating atmosphere comprises at least one inert gas, which is preferably argon or neon or krypton or a mixture containing at least two thereof.

    [0035] Preferably, the sputtering techniques involve magnetron sputtering techniques and/or magnetron sputtering ion plating techniques and/or HIPIMS techniques.

    [0036] The present disclosure presents also a substrate coated with a coating comprising at least one film produced by a coating process performed according to a method according to the present invention.

    [0037] Preferably, the coated substrate is a tool, particularly a cutting or a forming tool.

    [0038] Similarly, the coated substrate can be a component, particularly an engine component, or a turbine component, or an automobile component, or a decorative component, or a medical instrument, etc.

    [0039] Furthermore, the present invention discloses an apparatus for accomplishing a coating process according to a method according to the present invention.

    [0040] The apparatus comprises a device for measuring target weight wtarget automatically.

    [0041] Preferably, the apparatus comprises a device for adjusting the reactive gas partial pressure automatically.

    [0042] A method according to the present invention can be used in general for performing a coating process by using sputtering techniques in which sputtering characteristic values and coating rate are maintained within predefined target values as possible, the coating process being performed in a coating chamber of a sputtering apparatus, the process involving the use of at least one target comprising at least one metal element, the target being operated as cathode by supplying power to the target from a power supply in such a manner that the power density at the target is maintained constant during sputtering of the target in an atmosphere containing at least one reactive gas and at least one inert gas, the inert gas being at least partially ionized, so that the target surface is sputtered at least by effect of collision of the inert gas electrically positive charged ions with the target, the target having an initial target weight wtarget_initial before starting sputtering, the sputtering of the target surface resulting in a reduction of the target weight from the initial target weight wtarget_initial to a reduced target weight wtarget_reduced < wtarget_initial, which in turn causes a deviation of the sputtering characteristic and/or of the coating rate values from the target values, the method comprising the step consisting in:
    • maintaining the deviation of the sputtering characteristic and/or of the coating rate values from the target values within an acceptable deviation range for the industrial production context independent on the target weight by adjusting the reactive gas partial pressure preactive_gas depending on the target weight wtarget, preferably according to correlation preactive_gas vs. wtarget previously determined under corresponding coating conditions.



    Claims

    1. Method for performing a coating process involving sputtering techniques in which at least one target is sputtered in an atmosphere comprising at least one reactive gas and coating rate is maintained within predefined target values, the method characterized in that a deviation of the coating rate values is maintained within a predefined deviation range for the industrial production context by adjusting the reactive gas partial pressure preactive_gas at a value depending on the target weight wtarget, wherein the value is chosen according to a correlation preactive_gas vs. wtarget previously determined under corresponding coating conditions.
     
    2. Method according to claim 1, characterized in that the target being operated as cathode by supplying power in such a manner that the power density at the target is maintained constant during sputtering of the target.
     
    3. Method according to any of the preceding claims, characterized in that the correlation preactive_gas vs. wtarget is determined before performing the coating process by using a method comprising at least following steps:

    a) Providing a coating apparatus and further necessary elements as well as at least one target, preferably an in-new-condition target, of the same type required for accomplishing a coating process in compliance with the coating process referred to in claim 1 or 2.

    b) Measuring the target weight before accomplishing a first coating process for obtaining a first value of target weight, wtarget.

    c) Accomplishing the first coating process for depositing a first film by maintaining all coating parameters, excepting the reactive gas partial pressure, which is varied at the beginning of the first coating process until adjusting a reactive gas partial pressure value preactive_gas at which the predefined target values regarding sputtering characteristic are attained, and maintaining afterwards this reactive gas partial pressure value preactive_gas constant until a first time is completed.

    d) Measuring the target weight after accomplishing the first coating process for obtaining a second value of target weight, wtarget, preferably measuring also the thickness of the first film deposited during the first coating process.

    e) Repeating the steps b, c and d for conducting a second coating process or more coating processes.

    f) Finding the correlation preactive_gas vs. wtarget by using the measured values of preactive_gas and wtarget obtained in the above mentioned steps.


     
    4. Method according to claim 3, characterized in that the number of coating processes to be accomplished for determining the correlation preactive_gas vs. wtarget is chosen taking the target thickness into account.
     
    5. Method according to any of the preceding claims, characterized in that the at least one target comprises at least one element from Ti, Al, Si, Zr, Hf, V, Nb, Ta, Mn, Fe, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd.
     
    6. Method according to any of the preceding claims, characterized in that the at least one reactive gas is nitrogen or oxygen or a carbon-containing gas or a mixture containing at least two thereof.
     
    7. Method according to any of the preceding claims, characterized in that the atmosphere comprises at least one inert gas, which is preferably argon or neon or krypton or a mixture containing at least two thereof.
     
    8. Method according to any of the preceding claims, characterized in that the sputtering techniques involve magnetron sputtering techniques and/or magnetron sputtering ion plating techniques and/or HIPIMS techniques.
     
    9. Coating apparatus for accomplishing a coating process according to a method according to any of the preceding claims, characterized in that the coating apparatus comprises a device for measuring target weight, wtarget, automatically, wherein the coating apparatus comprises a device for adjusting the reactive gas partial pressure, and wherein the coating apparatus comprises a controller to operate the reactive gas adjustment depending on the target weight.
     
    10. Coating apparatus according to claim 9, characterized in that the device adjusts the reactive gas partial pressure automatically.
     


    Ansprüche

    1. Verfahren zur Durchführung eines Beschichtungsprozesses, der Sputtertechniken umfasst, wobei zumindest ein Target in einer Atmosphäre gesputtert wird, die zumindest ein reaktives Gas umfasst, und die Beschichtungsgeschwindigkeit innerhalb vordefinierter Targetwerte gehalten wird, wobei das Verfahren dadurch gekennzeichnet ist, dass eine Abweichung der Beschichtungsgeschwindigkeitswerte innerhalb eines vordefinierten Abweichungsbereichs für den Kontext industrieller Produktion gehalten wird, indem der reaktive Gaspartialdruck preactive_gas auf einen Wert eingestellt wird, der vom Targetgewicht wtarget abhängt, wobei der Wert gemäß einer zuvor unter entsprechenden Beschichtungsbedingungen bestimmten Korrelation preacti-ve_gas zu wtarget ausgewählt wird.
     
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Target als Kathode betrieben wird, indem Strom auf eine solche Weise zugeführt wird, dass die Stromdichte am Target während des Sputterns des Targets konstant gehalten wird.
     
    3. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Korrelation preactive_gas zu wtarget vor der Durchführung des Beschichtungsprozesses unter Verwendung eines Verfahrens bestimmt wird, das zumindest die folgenden Schritte umfasst:

    a) Bereitstellen einer Beschichtungsvorrichtung und weiterer notwendiger Elemente sowie zumindest eines Targets, bevorzugt eines Targets im Neuzustand, des gleichen Typs, der zum Vollenden eines Beschichtungsprozesses gemäß dem in Anspruch 1 oder 2 bezeichneten Beschichtungsprozess erforderlich ist.

    b) Messen des Targetgewichts, bevor ein erster Beschichtungsprozess vollendet wird, um einen ersten Wert des Targetgewichts wtarget zu erhalten.

    c) Vollenden des ersten Beschichtungsprozesses zum Abscheiden eines ersten Films durch Beibehalten aller Beschichtungsparameter mit Ausnahme des reaktiven Gas-Partialdrucks, der zu Beginn des ersten Beschichtungsprozesses variiert wird, bis ein reaktiver Gaspartialdruckwert preactive_gas eingestellt wird, bei dem die vordefinierten Targetwerte hinsichtlich der Sputtercharakteristik erreicht sind, und danach Konstanthalten dieses reaktiven Gaspartialdruckwertes preactive_gas, bis eine erste Zeit abgeschlossen ist.

    d) Messen des Targetgewichts, nachdem der erste Beschichtungsprozess vollendet wurde, um einen zweiten Wert des Targetgewichts wtarget zu erhalten, wobei bevorzugt auch die Dicke des ersten Films gemessen wird, der während des ersten Beschichtungsprozesses abgeschieden wurde.

    e) Wiederholen der Schritte b, c und d, um einen zweiten Beschichtungsprozess oder mehr Beschichtungsprozesse durchzuführen.

    f) Ermitteln der Korrelation preactive_gas zu wtarget unter Verwendung der Messwerte von preactive_gas und wtarget, die in den oben erwähnten Schritten erhalten wurden.


     
    4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Anzahl der zum Bestimmen der Korrelation preactive_gas zu wtarget zu vollendenden Beschichtungsverfahren unter Berücksichtigung der Targetdicke gewählt wird.
     
    5. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass das zumindest eine Target zumindest ein Element aus Ti, Al, Si, Zr, Hf, V, Nb, Ta, Mn, Fe, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd umfasst.
     
    6. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass das zumindest eine reaktive Gas Stickstoff oder Sauerstoff oder ein Kohlenstoff enthaltendes Gas oder ein Gemisch ist, das zumindest zwei davon enthält.
     
    7. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Atmosphäre zumindest ein Inertgas, das vorzugsweise Argon oder Neon oder Krypton ist, oder ein Gemisch ist, das zumindest zwei davon enthält.
     
    8. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Sputtertechniken Magnetron-Sputtertechniken und/oder Magnetron-Sputterionenplattiertechniken und/oder HIPIMS-Techniken umfassen.
     
    9. Beschichtungseinrichtung zum Vollenden eines Beschichtungsprozesses nach einem Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Beschichtungseinrichtung eine Vorrichtung zum automatischen Messen des Targetgewichts wtarget umfasst, wobei die Beschichtungseinrichtung eine Vorrichtung zum Einstellen des reaktiven Gas-partialdrucks umfasst, und wobei die Beschichtungseinrichtung einen Controller zum Betätigen der Einstellung des reaktiven Gases in Abhängigkeit von dem Targetgewicht umfasst.
     
    10. Beschichtungseinrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Vorrichtung den reaktiven Gaspartialdruck automatisch einstellt.
     


    Revendications

    1. Procédé pour mettre en Ĺ“uvre un processus de revêtement impliquant des techniques de pulvérisation dans lesquelles au moins une cible reçoit une pulvérisation dans une atmosphère comprenant au moins un gaz réactif et la vitesse de revêtement est maintenue à l'intérieur de valeurs cible prédéfinies,
    le procédé étant caractérisé en ce qu'une déviation des valeurs de vitesse de revêtement est maintenue à l'intérieur d'une plage de déviation prédéfinie pour le contexte de production industrielle en ajustant la pression partielle du gaz réactif pgaz_réactif à une valeur qui dépend du poids de la cible wcible, dans lequel la valeur est choisie en accord avec une corrélation pgaz_réactif/wcible auparavant déterminée sous les conditions de revêtement correspondantes.
     
    2. Procédé selon la revendication 1, caractérisé en ce que la cible est amenée à fonctionner comme une cathode en alimentant une puissance de manière telle que la densité de puissance au niveau de la cible est maintenue constante pendant la pulvérisation sur la cible.
     
    3. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la corrélation pgaz_réactif/wcible est déterminée avant d'exécuter le processus de revêtement en utilisant un procédé comprenant au moins les étapes suivantes consistant à :

    a) fournir un appareil de revêtement et d'autres éléments nécessaires ainsi qu'au moins une cible, de préférence une cible dans une condition neuve, du même type que celle requise pour accomplir un processus de revêtement en accord avec le processus de revêtement mentionné dans la revendication 1 ou 2,

    b) mesurer le poids de la cible avant d'accomplir un premier processus de revêtement pour obtenir une première valeur de poids de la cible wcible,

    c) accomplir le premier processus de revêtement pour déposer un premier film en maintenant tous les paramètres de revêtement, à l'exception de la pression partielle du gaz réactif, qui est variée au commencement du premier processus de revêtement jusqu'à ajuster une valeur de pression partielle du gaz réactif pgaz_réactif à laquelle des valeurs cible prédéfinies concernant la caractéristique de pulvérisation sont atteintes, et en maintenant ensuite cette valeur de pression partielle du gaz réactif pgaz_réactif constante jusqu'à l'achèvement d'un premier temps,

    d) mesurer le poids de la cible après avoir accompli le premier processus de revêtement pour obtenir une seconde valeur du poids de la cible wcible, et mesurer de préférence également l'épaisseur du premier film déposé pendant le premier processus de revêtement,

    e) répéter les étapes b, c et d pour mener un second processus de revêtement ou plusieurs processus de revêtement,

    f) trouver la corrélation pgaz_réactif/wcible en utilisant les valeurs mesurées de pgaz_réactif et de wcible obtenues dans les étapes mentionnées ci-dessus.


     
    4. Procédé selon la revendication 3, caractérisé en ce que le nombre de processus de revêtement à accomplir pour déterminer la corrélation pgaz_réactif/wcible est choisie en prenant en compte l'épaisseur de la cible.
     
    5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite au moins une cible comprend au moins un élément parmi Ti, Al, Si, Zr, Hf, V, Nb, Ta, Mn, Fe, Co, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd.
     
    6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit au moins un gaz réactif est de l'azote de l'oxygène ou un gaz contenant du carbone ou un mélange comprenant au moins deux de ceux-ci.
     
    7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'atmosphère comprend au moins un gaz inerte, qui est de préférence de l'argon ou du néon ou du krypton, ou un mélange contenant au moins deux de ceux-ci.
     
    8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les techniques de pulvérisation impliquent des techniques de pulvérisation par magnétron ou des techniques de placage ionique avec pulvérisation par magnétron et/ou des techniques dites HIPIMS.
     
    9. Appareil de revêtement pour accomplir un processus de revêtement d'après un procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'appareil de revêtement comprend un dispositif pour mesurer le poids d'une cible wcible, automatiquement, dans lequel l'appareil de revêtement comprend un dispositif pour ajuster la pression partielle d'un gaz réactif, et dans lequel l'appareil de revêtement comprend un contrôleur pour commander l'ajustement du gaz réactif en dépendance du poids de la cible.
     
    10. Appareil de revêtement selon la revendication 9, caractérisé en ce que le dispositif ajuste automatiquement la pression partielle du gaz réactif.
     




    Drawing















    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description