(19)
(11)EP 3 021 399 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
27.11.2019 Bulletin 2019/48

(21)Application number: 15190004.0

(22)Date of filing:  15.10.2015
(51)Int. Cl.: 
H01M 8/04858  (2016.01)
H01M 8/04089  (2016.01)
H01M 8/04537  (2016.01)
G05B 19/048  (2006.01)
H01M 8/04828  (2016.01)
H01M 8/04119  (2016.01)
H01M 8/1018  (2016.01)

(54)

FUEL CELL SYSTEM AND METHOD OF CONTROLLING FUEL CELL

BRENNSTOFFZELLENSYSTEM UND VERFAHREN ZUR STEUERUNG EINER BRENNSTOFFZELLE

SYSTÈME DE PILE À COMBUSTIBLE ET SON PROCÉDÉ DE COMMANDE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 12.11.2014 JP 2014229381

(43)Date of publication of application:
18.05.2016 Bulletin 2016/20

(73)Proprietor: Toyota Jidosha Kabushiki Kaisha
Toyota-shi, Aichi-ken 471-8571 (JP)

(72)Inventors:
  • TANO, Yutaka
    Aichi-ken, 471-8571 (JP)
  • NADA, Mitsuhiro
    Aichi-ken, 471-8571 (JP)
  • KANEKO, Tomohiko
    Aichi-ken, 471-8571 (JP)
  • OKAMOTO, Yohei
    Aichi-ken, 471-8571 (JP)

(74)Representative: J A Kemp LLP 
14 South Square Gray's Inn
London WC1R 5JJ
London WC1R 5JJ (GB)


(56)References cited: : 
US-A1- 2006 222 916
US-A1- 2012 292 990
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    CROSS-REFERENCE TO RELATED APPLICATIONS



    [0001] This application claims priority based on Japanese Patent Application No. 2014-229381 filed on November 12, 2014.

    BACKGROUND


    FIELD



    [0002] The present invention relates to fuel cells.

    RELATED ART



    [0003] In order to control power generation performed by a fuel cell, a configuration in which a plurality of ECUs are incorporated is known. Each of these ECUs determines the target ranges of various types of physical quantities so as to perform control allocated to itself (JP2006-139972).

    [0004] US 2006/222916 A discloses that a detection voltage, which is obtained by dividing the voltage of a fuel cell by resistors, is compared with a first reference voltage by a differential amplifier. The differential voltage is input to a control section. The control section performs PWM control for the circuit section according to the difference. The first reference voltage is set according to the dividing ratio of the resistors, based on the output voltage when the fuel cell generates power at the maximum power point. To determine the output voltage for maximum power generation, a characteristic curve representing a current-voltage characteristic is approximated by an approximating line within a range excluding an area in which the output voltage changes abruptly when the output current is nearly zero, and an extrapolated voltage is obtained on the extension line of the approximating line at an output current of zero. Fifty percent of the extrapolated voltage is then determined as the output voltage when the fuel cell generates power at the maximum power point. Thus, a fuel cell control system that identifies a highly precise output voltage for power generation at a maximum power point and controls power so that the maximum power point is not exceeded could be provided.

    [0005] US 2012/292990 A discloses, in a case where a load amount of a load is a predetermined value or less, a control device of an FC vehicle implements extremely low current control for performing power generation at an extremely low current below a lower limit current of an FC for normal operation. At the time of implementing the extremely low current control, upper and lower limit values of a target output voltage of the converter are set in correspondence with the extremely low current, and the output voltage of the FC is controlled to be within a range between the upper and lower limit values.

    SUMMARY



    [0006] In the conventional technology described above, sufficient consideration is not given to a case where not all the target ranges determined by the ECUs are satisfied and thus pieces of control collide with each other. Such a problem is common not only to the case where each of the ECUs performs control allocated but also to a case where these pieces of control are unified into one ECU. In view of the foregoing problem, the present invention provides a control method in a case where in the control of a fuel cell, pieces of control on various types of physical quantities collide with each other.

    Solution to Problem



    [0007] The present invention is made so as to solve the above problem, and is a fuel cell system (100) in which power generation is performed by a fuel cell (10) for use with a secondary battery (81) according to independent claim 1 and a method of controlling power generation performed by a fuel cell with a secondary battery according to independent claim 7. The preferred embodiments are as set out in the dependent claims.

    [0008] According to the present invention, there is provided a fuel cell system as defined in appended claim 1. When the first control and the second control collide with each other, it is possible to determine the control contents without performing complicated arbitration and the like. Furthermore, by prioritizing the first control over the second control, conditions which should be further avoided can be avoided.

    [0009] The power generation controller may further perform third control in which for at least one of an anode and a cathode, a stoichiometric ratio is prevented from falling below a predetermined value, and the priority instructor may instruct the power generation controller to prioritize the second control over the third control when the second control and the third control collide with each other. According to this aspect, when the second control and the third control collide with each other, it is possible to determine the control contents without performing complicated arbitration and the like.

    [0010] In the aspect described above, the fuel cell system may further include a plurality of control devices that communicate with each other, where the plurality of control devices may allocate and perform the power control, the voltage control, the current control, the second control and the instruction. According to this aspect, when the control devices allocate and perform the control, the aspect described above can be applied.

    [0011] In the present invention, the power generation controller performs, as the first control, at least two of the power control, the voltage control and the current control, and the power generation controller may include: a first control unifier that unifies values used in the first control among the upper limit value of the generated power, the lower limit value of the generated voltage and the upper limit value of the generated current into the same physical quantity; and a selector that selects, as a limitation value in the first control, a value for realizing the first control among the values after the unification. In this aspect, the first control can easily be realized.

    [0012] In the aspect described above, the power generation controller may include a second control unifier that unifies the upper limit value of the generated voltage into the physical quantity, and when a limitation value unified by the second control unifier collides with the limitation value selected by the selector, the priority instructor may determine that the first control and the second control collide with each other. According to this aspect, it can easily be determined that the first control and the second control collide with each other.

    [0013] In the aspect described above, the physical quantity may be current. In this aspect, it can easily be determined that the first control and the second control collide with each other.

    [0014] The present invention is defined by independent claim 1 and independent claim 7. The present invention can be realized in aspects such as a computer program for realizing the method according to claim 7 and a permanent storage medium that stores this computer program.

    BRIEF DESCRIPTION OF DRAWINGS



    [0015] 

    Fig. 1 is a schematic diagram showing a configuration of a fuel cell system:

    Fig. 2 is a schematic diagram showing an electrical configuration of the fuel cell system;

    Fig. 3 is a flowchart showing power generation control processing;

    Fig. 4 is a graph showing a current-voltage characteristic;

    Fig. 5 is an enlarged view of the above graph;

    Fig. 6 is a flowchart showing upper limit current value determination processing;

    Fig. 7 is a flowchart showing target current value correction processing; and

    Fig. 8 is a table for the application of priority rules.


    DESCRIPTION OF THE EMBODIMENTS



    [0016] Fig. 1 is a schematic diagram showing a configuration of a fuel cell system 100. The fuel cell system 100 includes a fuel cell 10, a controller 20, a cathode gas supply portion 30, a cathode gas discharge portion 40, an anode gas supply portion 50, an anode gas circulation discharge portion 60 and a coolant supply portion 70.

    [0017] The fuel cell 10 is a solid polymer-type fuel cell that receives the supply of hydrogen (anode gas) and air (cathode gas) serving as reaction gases to perform power generation. The fuel cell 10 has a stack structure in which a plurality of (for example, 400) cells 11 are stacked in layers. Each of the cells 11 includes a membrane electrode joint member that is a power generation member in which electrodes are arranged on both surfaces of an electrolyte membrane, and two separators that sandwich the membrane electrode joint member.

    [0018] The electrolyte membrane is formed with a solid polymer thin film that indicates satisfactory proton conductivity in a wet state. The electrode is formed of carbon. On the surface on the electrolyte membrane side of the electrode, a platinum catalyst for facilitating a power generation reaction is carried. In each of the cells 11, a manifold (not shown) for the reaction gas and the coolant is provided. The reaction gas in the manifold is supplied through a gas flow path provided in each of the cells 11 to the power generation region of each of the cells 11.

    [0019] The controller 20 includes a power generation controller 300 and a priority instructor 400. The power generation controller 300 includes a first control unifier 310, a second control unifier 320 and a selector 330. The controller 20 receives a power generation requirement from a load 200, controls, according to the requirement, the individual constituent portions of the fuel cell system 100 which will be described below and thereby realizes the power generation with the fuel cell 10.

    [0020] The cathode gas supply portion 30 includes a cathode gas pipe 31, an air compressor 32 and an opening/closing valve 34. The cathode gas pipe 31 is a pipe that is connected to the cathode side of the fuel cell 10. The air compressor 32 is connected to the fuel cell 10 through the cathode gas pipe 31, takes in outside air and supplies the compressed air to the fuel cell 10 as the cathode gas. The controller 20 drives the air compressor 32 to control the amount of air supplied to the fuel cell 10 either by associating it with power supply to the load 200 or independently of the power supply.

    [0021] The opening/closing valve 34 is provided between the air compressor 32 and the fuel cell 10, and is opened or closed according to the flow of the supplied air in the cathode gas pipe 31. Specifically, the opening/closing valve 34 is normally closed, and is opened when the air compressor 32 supplies air having a predetermined pressure to the cathode gas pipe 31.

    [0022] The cathode gas discharge portion 40 includes a cathode exhaust gas pipe 41 and a pressure adjustment valve 43. The cathode exhaust gas pipe 41 is a pipe that is connected to the cathode side of the fuel cell 10, and discharges a cathode exhaust gas to the outside of the fuel cell system 100. The pressure adjustment valve 43 adjusts the pressure (the back pressure of the fuel cell 10) of the cathode exhaust gas in the cathode exhaust gas pipe 41.

    [0023] The anode gas supply portion 50 includes an anode gas pipe 51, a hydrogen tank 52, an opening/closing valve 53, a regulator 54 and an injector 55. The hydrogen tank 52 is connected to the anode of the fuel cell 10 through the anode gas pipe 51, and supplies hydrogen filled in the tank to the fuel cell 10.

    [0024] The opening/closing valve 53, the regulator 54 and the injector 55 are provided in the anode gas pipe 51 in this order from the upstream side (that is, the side close to the hydrogen tank 52). The opening/closing valve 53 is opened or closed by an instruction from the controller 20 to control the flow of hydrogen from the hydrogen tank 52 into the upstream side of the injector 55. The regulator 54 is a pressure reduction value for adjusting the pressure of hydrogen on the upstream side of the injector 55.

    [0025] The injector 55 is an electromagnetically driven opening/closing valve in which a valve member is electromagnetically driven according to a drive period and a valve opening time set by the controller 20. The controller 20 controls the drive period and the valve opening time of the injector 55 to control the amount of hydrogen supplied to the fuel cell 10.

    [0026] The anode gas circulation discharge portion 60 includes an anode exhaust gas pipe 61, a gas-liquid separation portion 62, an anode gas circulation pipe 63, a hydrogen circulation pipe 64, an anode drain pipe 65 and a drain valve 66. The anode exhaust gas pipe 61 is a pipe that connects the outlet of the anode of the fuel cell 10 to the gas-liquid separation portion 62, and guides an anode exhaust gas containing unreacted gases (hydrogen, nitrogen and the like) which are not used in the power generation reaction to the gas-liquid separation portion 62.

    [0027] The gas-liquid separation portion 62 is connected to the anode gas circulation pipe 63 and the anode drain pipe 65. The gas-liquid separation portion 62 separates gas components and moisture contained in the anode exhaust gas, guides the gas components to the anode gas circulation pipe 63 and guides the moisture to the anode drain pipe 65.

    [0028] The anode gas circulation pipe 63 is connected to the downstream side of the injector 55 of the anode gas pipe 51. In the anode gas circulation pipe 63, the hydrogen circulation pipe 64 is provided, and through the hydrogen circulation pipe 64, the hydrogen contained in the gas components separated in the gas-liquid separation portion 62 is fed out to the anode gas pipe 51. As described above, in the fuel cell system 100, the hydrogen contained in the anode exhaust gas is circulated and is supplied again to the fuel cell 10, with the result that the efficiency of utilization of hydrogen is enhanced.

    [0029] The anode drain pipe 65 is a pipe for discharging the moisture separated in the gas-liquid separation portion 62 to the outside of the fuel cell system 100. The drain valve 66 is provided in the anode drain pipe 65, and is opened or closed according to an instruction from the controller 20. The controller 20 normally closes the drain valve 66 while the fuel cell system 100 is being operated, and opens the drain valve 66 at predetermined drain timing previously set or at timing at which an inert gas in the anode exhaust gas is discharged.

    [0030] The coolant supply portion 70 includes a coolant pipe 71, a radiator 72 and a coolant circulation pump 73. The coolant pipe 71 is a pipe that couples a coolant inlet manifold and a coolant outlet manifold provided in the fuel cell 10, and circulates the coolant for cooling the fuel cell 10. The radiator 72 is provided in the coolant pipe 71, and performs heat exchange between the coolant flowing through the coolant pipe 71 and the outside air to cool the coolant.

    [0031] The coolant circulation pump 73 is provided in the coolant pipe 71 on the downstream side (the coolant inlet side of the fuel cell 10) of the radiator 72, and feeds out the coolant cooled in the radiator 72 to the fuel cell 10.

    [0032] Fig. 2 is a schematic diagram showing an electrical configuration of the fuel cell system 100. The fuel cell system 100 includes, in addition to the controller 20 and the like described previously, a secondary battery 81, an FDC 82, a DC/AC converter 83, a BDC 85, a cell voltage measurer 91 and a current measurer 92. The controller 20 includes a fuel cell ECU 21, an FDC-ECU 22 and a power control ECU 23. The fuel cell ECU 21, the FDC-ECU 22 and the power control ECU 23 communicate with each other through buses according to a communication protocol such as a CAN.

    [0033] The cell voltage measurer 91 is connected to each of the cells 11 of the fuel cell 10, and measures the voltage (cell voltage) of each of the cells 11. The cell voltage measurer 91 transmits the results of the measurements to the fuel cell ECU 21. The current measurer 92 measures the value of a generated current by the fuel cell 10, and transmits it to the fuel cell ECU 21 and the FDC-ECU 22.

    [0034] The power control ECU 23 acquires a required power value from the load 200, and reflects it on the operation of the fuel cell 10. The fuel cell ECU 21 controls the anode gas and the cathode gas based on the required power value, the cell voltage and the generated current. Specifically, the fuel cell ECU 21 controls the operations of the opening/closing valve 53, the hydrogen circulation pipe 64, the drain valve 66 and the like to control the flow rate of the anode gas, and controls the number of revolutions of the air compressor 32 and the like to control the flow rate of the cathode gas and the like.

    [0035] The FDC 82 and the BDC 85 are DC/DC converters. The FDC 82 controls, based on control by the FDC-ECU 22, the generated current and the generated voltage by the fuel cell 10, and changes the generated voltage to supply it to the DC/AC converter 83. Furthermore, the FDC 82 measures the generated voltage to transmit it to the FDC-ECU 22. The BDC 85 controls the charging and discharging of the secondary battery 81 based on control by another ECU (not illustrated) included in the controller 20. The secondary battery 81 is formed with a lithium-ion battery, and functions as an auxiliary power supply of the fuel cell 10.

    [0036] The DC/AC converter 83 is connected to the fuel cell 10 and the load 200. The DC/AC converter 83 converts direct-current power obtained by the fuel cell 10 and the secondary battery 81 into alternating-current power, and supplies it to the load 200. Regenerative power produced in the load 200 is converted by the DC/AC converter 83 into a direct current, and is charged by the BDC 85 in the secondary battery 81.

    [0037] Fig. 3 is a flowchart showing power generation control processing. The power generation control processing is performed in a coordinated manner by the fuel cell ECU 21, the FDC-ECU 22 and the power control ECU 23, and is repeatedly performed while power is being generated by the fuel cell 10. In Fig. 3 and Figs. 6 and 7, which will be described later, each of the steps that are allocated and performed by the three ECUs are shown as a series of flowchart.

    [0038] The power control ECU 23 first determines a target power value Ptgt based on the required power from the load 200 (step S300). Then, the fuel cell ECU 21 determines a target current value Itgt based on the target power value Ptgt (step S400).

    [0039] Fig. 4 is a graph showing a current-voltage characteristic of the fuel cell 10. Specifically, this graph corresponds to a graph that is obtained by multiplying the vertical axis and the horizontal axis of a graph showing a current-voltage characteristic of one cell 11 by the number of cells 11 included in the fuel cell 10. Fig. 5 is an enlarged view of a region 5 shown in Fig. 4. Power (W) is calculated as the product of current (A) and voltage (V). In step S400, a current value at an intersection (not illustrated) between a curve (hereinafter referred to as a "characteristic curve") showing a current-voltage characteristic and V = Ptgt / I is determined as the target current value Itgt.

    [0040] Then, upper limit current value determination processing is performed (step S500). The controller 20 realizes the first control by performing the upper limit current value determination processing. Fig. 6 is a flowchart showing the upper limit current value determination processing. The power control ECU 23 first determines a first upper limit current value based on an upper limit power value Pmax (step S510). The power control ECU 23 realizes power control by performing step S510. The power control ECU 23 performs step S510 to function as the power generation controller 300 and the first control unifier 310. The upper limit power value Pmax is a variable that is determined by the power control ECU 23. For example, the determination of the upper limit power value Pmax is performed in order to protect the secondary battery 81. The secondary battery 81 may be degraded by being charged by a large amount of power or by being excessively charged.

    [0041] In step S510, a first upper limit current value Imax1 is determined by formula (4) below. In the following formulas, Pj represents an actual measured value of power, Vj represents an actual measured value of voltage and Itgtold represents an immediate target current value.









    [0042] Then, the FDC-ECU 22 determines a second upper limit current value based on a lower limit voltage value Vmin (step S520). The FDC-ECU 22 performs step S520 to realize voltage control. The FDC-ECU 22 performs step S520 to function as the power generation controller 300 and the first control unifier 310. The lower limit voltage value Vmin is a value that indicates the lower limit value of the cell voltage, and is a variable that is determined by the fuel cell ECU 21. For example, the determination of the lower limit voltage value Vmin is performed so as to protect the fuel cell 10 and prevent the power generation efficiency from being lowered. When the cell voltage is excessively low, the temperature of the fuel cell 10 may be excessively increased. When the cell voltage is excessively low, it may enter the operation region in which as the cell voltage is lowered, generated power is lowered, and thus the power generation efficiency may be lowered. In step S520, a second upper limit current value Imax2 is determined by formula (8) below. In the following formula, G1 represents a positive gain.









    [0043] Then, the FDC-ECU 22 acquires a rated current Ir as a third upper limit current value Imax3 (step S530). The FDC-ECU 22 performs step S530 to realize current control. The FDC-ECU 22 performs step S530 to function as the power generation controller 300 and the first control unifier 310. The rated current Ir is a predetermined fixed value (for example, 500 A) so as to protect individual components through which current flows, and is stored in the FDC-ECU 22.

    [0044] Then, the FDC-ECU 22 determines the minimum value of the first, second and third upper limit current values Imax1, Imax2 and Imax3 as a priority upper limit current value ImaxA (step S540). The FDC-ECU 22 performs step S540 to select the minimum value of the first, second and third upper limit current values Imax1, Imax2 and Imax3. Hence, the FDC-ECU 22 performs step S540 to function as the selector 330. The current value is controlled to be equal to or less than the priority upper limit current value ImaxA, and thus all the limitations by the first, second and third upper limit current values are satisfied. In other words, it is possible to satisfy all the following limitations: the generated power does not exceed the upper limit power value Pmax; the generated voltage does not fall below the lower limit voltage value Vmin; and the generated power does not exceed the rated current Ir.

    [0045] Then, the fuel cell ECU 21 determines a non-priority upper limit current value ImaxB based on a stoichiometric ratio (step S550), and completes the upper limit current value determination processing. The fuel cell ECU 21 performs step S550 to realize third control. The fuel cell ECU 21 performs step S550 to function as the power generation controller 300. The non-priority upper limit current value ImaxB is a variable that is determined by the fuel cell ECU 21. As the generated current is increased, the flow rates necessary for the anode gas and the cathode gas are increased. However, there are upper limits of the flow rates for the anode gas and the cathode gas. Hence, when the generated current is excessively increased, the stoichiometric ratio falls below a normal range. In step S550, in order to avoid such a situation, the upper limit value of the generated current is determined so as to prevent the stoichiometric ratio from being excessively decreased. The upper limit value is indicated as a current value Is in Fig. 5.

    [0046] Then, as shown in Fig. 3, the FDC-ECU 22 determines a lower limit current value Imin based on an upper limit voltage value Vmax (step S600). The FDC-ECU 22 performs step S600 to realize second control. The FDC-ECU 22 performs step S600 to function as the power generation controller 300 and the second control unifier 320. Specifically, the lower limit current value Imin is determined by formula (12) below. The upper limit voltage value Vmax is a variable that is determined by the fuel cell ECU 21, and for example, a value for suppressing the degradation of the cells 11 is adopted. In the following formula, G2 represents a positive gain. G2 may be same as or different from G1.









    [0047] Then, the FDC-ECU 22 performs target current value correction processing (step S700). Fig. 7 is a flowchart showing the target current value correction processing. Whether the target current value Itgt is equal to or less than the non-priority upper limit current value ImaxB is determined (step S710). When the target current value Itgt exceeds the non-priority upper limit current value ImaxB (no in step S710), a correction is made such that the target current value Itgt coincides with the non-priority upper limit current value ImaxB (step S720). On the other hand, when the target current value Itgt is equal to or less than the non-priority upper limit current value ImaxB (yes in step S710), step S720 is skipped.

    [0048] Then, whether the target current value Itgt is equal to or more than the lower limit current value Imin is determined (step S730). In other words, whether or not the second control collides with the third control is determined. When the target current value Itgt is less than the lower limit current value Imin (no in step S730), it is determined that the second control collides with the third control. Hence, when the target current value Itgt is less than the lower limit current value Imin (no in step S730), a correction is made such that the target current value Itgt becomes equal to the lower limit current value Imin (step S740). On the other hand, when the target current value Itgt is equal to or more than the lower limit current value Imin (yes in step S730), step S740 is skipped.

    [0049] Then, whether the target current value Itgt is equal to or less than the priority upper limit current value ImaxA is determined (step S750). In other words, whether or not the first control collides with the second control is determined. When the target current value Itgt exceeds the priority upper limit current value ImaxA (no in step S750), it is determined that the first control collides with the second control. Hence, when the target current value Itgt exceeds the priority upper limit current value ImaxA (no in step S750), a correction is made such that the target current value Itgt coincides with the priority upper limit current value ImaxA (step S760), and the target current value correction processing is completed. On the other hand, when the target current value Itgt is equal to or less than the priority upper limit current value ImaxA (yes in step S750), step S760 is skipped, and the target current value correction processing is completed.

    [0050] Finally, as shown in Fig. 3, the FDC-ECU 22 controls the FDC 82 such that the generated current is made close to the target current value Itgt (step S800). In other words, the target current value Itgt in the stage of step S800 and the voltage value corresponding to the target current value Itgt are adopted as the operation point of the fuel cell 10. The FDC-ECU 22 performs S800 to function as the power generation controller 300. That step S760 is performed corresponds to that the power generation controller 300 functioned by the performance of step S800 is instructed to prioritize the first control over the second control. In other words, the FDC-ECU 22 functions as the priority instructor 400 by the performance of step S760. When step S760 is not performed, the performance of step S740 corresponds to the instruction of prioritizing the second control over the third control with respect to the power generation controller 300 functioned by the performance of step S800. In other words, when step S760 is not performed, the FDC-ECU 22 functions as the priority instructor 400 by the performance of step S740.

    [0051] In the power generation control processing described above, it is possible to determine the control contents without performing complicated arbitration and the like for the limitations of the generated power, the generated voltage and the generated current. The determination can be easily performed as described above because the limitation values (the upper limit value and the lower limit value) are unified into currents and are compared and that furthermore, when the limitation values collide with each other, priority rules are applied. The priority rules mean the contents realized by the target current value correction processing (Fig. 7). Specifically, the highest priority is that the current value does not exceed the priority upper limit current value ImaxA (steps S750 and S760), the second highest priority is that the current value does not fall below the lower limit current value Imin (steps S730 and S740), and subsequent to these two conditions is that the current value does not exceed the non-priority upper limit current value ImaxB (steps S710 and S720).

    [0052] For example, it is assumed that a current value Ip at an intersection between the characteristic curve and V = Pmax / I (Figs. 4 and 5) coincides with the priority upper limit current value ImaxA, that a current value Ivmax at an intersection between the characteristic curve and V = Vmax coincides with the lower limit current value Imin and that the current value Ip is more than the lower limit current value Imin. In this case, control is performed such that the generated current falls within a range equal to or more than the current vale Ivmax and equal to or less than the current value Ip, and thus it is possible to perform control such that all the requirements of the priority upper limit current value ImaxA, the non-priority upper limit current value ImaxB and the lower limit current value Imin are satisfied. For example, when the target current value Itgt (hereinafter referred to as an "initial target current value" based on the target power value Ptgt falls within a range equal to or more than the current value Ivmax and equal to or less than the current value Ip, the initial current target value is determined to be the target current value Itgt without being processed, with the result that all the requirements are satisfied and that the required power value is also satisfied. On the other hand, when the initial target current value is less than the current value Ivmax, a correction is made such that the target current value Itgt coincides with the current value Ivmax whereas when the initial target current value exceeds the current value Ip, a correction is made such that the target current value Itgt coincides with the current value Ip, with the result that all the requirements are satisfied. In other words, in such a case, since the pieces of control do not collide with each other, the priority rules described above are not applied. Hence, a description of in which case the priority rules are applied will be given.

    [0053] Fig. 8 shows a table for illustrating the applications of the priority rules. The minimum value, the intermediate value and the maximum value show a magnitude relationship between the priority upper limit current value ImaxA, the non-priority upper limit current value ImaxB and the lower limit current value Imin determined in the power generation control processing, and 6 ways of (a) to (f) shown in Fig. 8 can be considered. It is noted that the intermediate value is not limited to the average value of the minimum value and the maximum value, and means a value that falls within a range equal to or more than the minimum value and equal to or less than the maximum value.

    [0054] The lower limit value and the upper limit value shown in Fig. 8 indicate a range that can be obtained as the target current value Itgt in step S800. The "applied priority rule" shown in Fig. 8 indicates the priority rule that is applied when the lower limit value and the upper limit value are determined from the magnitude relationship described above.

    [0055] Fig. 8(a) is applicable to the case illustrated both in Figs. 4 and 5. In this case, since as described previously, it is sufficient that the target current value Itgt is set equal to or more than the lower limit current value Imin and equal to or less than the priority upper limit current value ImaxA, no priority rule is applicable.

    [0056] Even in the case of Fig. 8(b), it is sufficient that the target current value Itgt is set equal to or more than the lower limit current value Imin and equal to or less than the non-priority upper limit current value ImaxB, no priority rule is applicable.

    [0057] In the case of Fig. 8(c), since the lower limit current value Imin is higher than the non-priority upper limit current value ImaxB, these two requirements cannot be satisfied and collide with each other. Hence, the requirement in which the target current value Itgt is set equal to or less than the non-priority upper limit current value ImaxB has a lower priority than the requirement in which the target current value Itgt is set equal to or more than the lower limit current value Imin, and is thus ignored. Consequently, the target current value Itgt is set equal to or more than the lower limit current value Imin and equal to or less than the priority upper limit current value ImaxA.

    [0058] In the case of Figs. 8(d) and (e), since the priority upper limit current value ImaxA is lower than the lower limit current value Imin, these two requirements cannot be satisfied and collide with each other. Hence, the requirement in which the target current value Itgt is set equal to or more than the lower limit current value Imin has a lower priority than the requirement in which the target current value Itgt is set equal to or less than the priority upper limit current value ImaxA, and is thus ignored. However, the target current value Itgt is made to coincide with the priority upper limit current value ImaxA so that the target current value Itgt is as close to the lower limit current value Imin as possible. It is noted that in the case of Fig. 8(d) and (e), the requirement in which the target current value Itgt is set equal to or less than the non-priority upper limit current value ImaxB is satisfied.

    [0059] In the case of Fig. 8(f), since the priority upper limit current value ImaxA is less than the lower limit current value Imin, the requirement in which the target current value Itgt is set equal to or more than the lower limit current value Imin is ignored, and the target current value Itgt is set equal to or less than the priority upper limit current value ImaxA. On the other hand, since the lower limit current value Imin is higher than the non-priority upper limit current value ImaxB, the requirement in which the target current value Itgt is set equal to or less than the non-priority upper limit current value ImaxB is ignored, and the target current value Itgt is set as high as possible. Consequently, the target current value Itgt is made to coincide with the priority upper limit current value ImaxA.

    [0060] Setting the target current value Itgt in the range equal to or more than the lower limit value and equal to or less than the upper limit value described as Figs. 8(a) to (f) is realized by performing the target current value correction processing (Fig. 7) described previously.

    [0061] In the embodiment described above, even under conditions in which it is impossible to satisfy all the requirements of the priority upper limit current value ImaxA, the non-priority upper limit current value ImaxB and the lower limit current value Imin, it is possible to perform appropriate control without degrading the responsivity.

    [0062] The allocating of the power generation control processing may be changed. The allocating of the power generation control processing refers to the allocation of which of the ECUs performs each step in the power generation control processing.

    [0063] The number of control devices that perform the steps in the power generation control processing may be changed. For example, one ECU may perform all the steps or two or four or more ECUs may perform them in a coordinated manner.

    [0064] Without consideration given to any one or two of the upper limit power value, the lower limit voltage value and the rated current value, the priority upper limit current value may be determined. Alternatively, a current value for ensuring a stoichiometric ratio equal to or more than a predetermined value may be added to the determination of the priority upper limit current value.

    [0065] The non-priority upper limit current value may not be determined. In other words, the upper limit value of the target current value may be a value that cannot ensure a stoichiometric ratio equal to or more than a predetermined value.

    [0066] In the determination of the priority upper limit current value, the non-priority upper limit current value and the lower limit current value, consideration may be given to other parameters. For example, when it is impossible to suppress an increase in the temperature of the fuel cell by cooling with the cooling water, in order to limit the generated current, the temperature of the fuel cell may be added to the determination of the non-priority upper limit current value.

    [0067] The physical quantity into which the limitation values are unified may not be current. For example, voltage or power may be used.

    [0068] The limitation values may not be unified into the same physical quantity. For example, a method of utilizing a table may be used. Specifically, a table is previously produced in which when various limitation values and the target power value are substituted, the corrected target power value is output, and is stored in the FDC-ECU 22, and thus it is not necessary to unify the physical quantities.

    [0069] When two pieces of control collide with each other, instead of ignoring the control having a lower priority, control utilizing a compromise may be performed. For example, when the priority upper limit current value ImaxA is less than the lower limit current value Imin, the target current value may be set equal to or more than ImaxA and equal to or less than Imin. In this case, weighting corresponding to the priority may be performed. In other words, the target current value may be set at a value that is closer to ImaxA having a high priority than to Imin having a low priority.

    [0070] The contents of the priority rules may be changed. For example, the lower limit current value may be most prioritized. Alternatively, the upper limit current value for ensuring a stoichiometric ratio equal to or more than a predetermined value may be prioritized over the lower limit current value.

    [0071] The various limitation values (for example, the upper limit power value and the lower limit voltage value) described as variables may be fixed values that are previously determined.

    [0072] The current value at the intersection between the curve of V = Pmax / I and the characteristic curve may be determined as the first upper limit current value.

    [0073] The current value at the intersection between V = Vmin and the characteristic curve may be determined as the second upper limit current value.

    [0074] The current value at the intersection between V = Vmax and the characteristic curve may be determined as the lower limit current value.

    [0075] The targeted fuel cell does not need to be one for an automobile, and may be mounted on another transportation device (such as a motorcycle or a train) or may be installed.

    [0076] In the embodiment described above, at least part of the function and processing realized by software may be realized by hardware. Also, at least part of the function and processing realized by hardware may be realized by software. Examples of the hardware that can be used include an integrated circuit, a discrete circuit, a circuit module obtained by combining those circuits and various types of circuits (circuitry).


    Claims

    1. A fuel cell system (100) in which power generation is performed by a fuel cell (10) for use with a secondary battery (81), comprising:

    a power generation controller (300) that is configured to perform:

    first control in which at least one control is performed of: power control (S510) for preventing generated power from exceeding an upper limit power value (Pmax) determined to protect the secondary battery (81); voltage control (S520) for preventing generated voltage from falling below a lower limit voltage value (Vmin) determined to protect the fuel cell (10) and prevent power generation efficiency from being lowered; and current control (S500) for preventing generated current from exceeding an upper limit current value (ImaxA) selected as the minimum value of current values respectively based on the upper limit power value (Pmax), based on the lower limit voltage value (Vmin), and a rated current (Ir) which is a predetermined fixed value to protect individual components through which current flows; and

    second control (S600) in which the generated voltage is prevented from exceeding an upper limit voltage value (Vmax) for suppressing degradation of cells (11) of the fuel cell (10); and

    a priority instructor (400) that is configured to instruct the power generation controller (300) to prioritize the first control (S500, S510, S520) over the second control (S600) when the first control (S500, S510, S520) and the second control (S600) collide with each other.


     
    2. The fuel cell system according to claim 1,
    wherein the power generation controller (300) is further configured to perform third control (S550) in which for at least one of an anode and a cathode of the fuel cell (10), a stoichiometric ratio is prevented from falling below a predetermined value, and
    the priority instructor (400) is configured to instruct the power generation controller (300) to prioritize the second control (S600) over the third control (S550) when the second control (S600) and the third control (S550) collide with each other.
     
    3. The fuel cell system according to claim 1 or 2, further comprising:

    a plurality of control devices (21, 22, 23) that communicate with each other,

    wherein the plurality of control devices (21, 22, 23) allocate and perform the power control, the voltage control, the current control, the second control and the instruction.


     
    4. The fuel cell system according to any one of claims 1 to 3,
    wherein the power generation controller (300) is configured to perform, as the first control, at least two of the power control, the voltage control and the current control, and
    the power generation controller (300) includes:

    a first control unifier (310) that is configured to unify values used in the first control among the upper limit value of the generated power, the lower limit value of the generated voltage and the upper limit value of the generated current into a same physical quantity; and

    a selector (330) that is configured to select, as a limitation value in the first control, a value for realizing the first control among the values after the unification.


     
    5. The fuel cell system according to claim 4,
    wherein the power generation controller (200) includes a second control unifier (320) that unifies the upper limit value of the generated voltage into the physical quantity, and
    when a limitation value unified by the second control unifier (320) collides with the limitation value selected by the selector (330), the priority instructor (400) is configured to determine that the first control and the second control collide with each other.
     
    6. The fuel cell system according to claim 4 or 5,
    wherein the physical quantity is current.
     
    7. A method of controlling power generation performed by a fuel cell with a secondary battery, the method comprising:

    performing first control in which at least one control is performed of: power control for preventing generated power from exceeding an upper power limit value (Pmax) determined to protect the secondary battery (81); voltage control for preventing generated voltage from falling below a lower voltage limit value (Vmin) determined to protect the fuel cell (10) and prevent power generation efficiency from being lowered; and current control for preventing generated current from exceeding an upper limit current value (ImaxA) selected as the minimum value of current values respectively based on the upper limit power value (Pmax), based on the lower limit voltage value (Vmin), and a rated current (Ir) which is a predetermined fixed value to protect individual components through which current flows;

    performing second control in which the generated voltage is prevented from exceeding an upper limit voltage value (Vmax) for suppressing degradation of cells (11) of the fuel cell (10); and

    prioritizing the first control over the second control when the first control and the second control collide with each other.


     
    8. The control method according to claim 7, further comprising:

    performing third control in which for at least one of an anode and a cathode, a stoichiometric ratio is prevented from falling below a predetermined value; and

    prioritizing the second control over the third control when the second control and the third control collide with each other.


     
    9. The control method according to claim 7 or 8,
    wherein a plurality of control devices that communicate with each other allocate and perform the power control, the voltage control, the current control and the second control.
     
    10. The control method according to any one of claims 7 to 9, further comprising:

    performing, as the first control, at least two of the power control, the voltage control and the current control; and

    unifying values used in the first control among the upper limit value of the generated power, the lower limit value of the generated voltage and the upper limit value of the generated current into a same physical quantity, and selecting, as a limitation value in the first control, a value for realizing the first control among the values after the unification.


     
    11. The control method according to claim 10, further comprising
    determining that the first control and the second control collide with each other, when a limitation value unified by unifying the upper limit value of the generated voltage into the physical quantity and the selected limitation value collide with each other.
     
    12. The control method according to claim 10 or 11,
    wherein the physical quantity is current.
     


    Ansprüche

    1. Brennstoffzellensystem (100), in dem Energieerzeugung durch eine Brennstoffzelle (10) zur Verwendung mit einer Sekundärbatterie (81) durchgeführt wird, umfassend:

    eine Energieerzeugungssteuerung (300), die konfiguriert ist, um Folgendes durchzuführen:

    eine erste Steuerung, in der mindestens eine Steuerung durchgeführt wird von: Energiesteuerung (S510), um zu verhindern, dass erzeugte Energie einen oberen Grenzenergiewert (Pmax) überschreitet, der bestimmt wird, um die Sekundärbatterie (81) zu schützen; Spannungssteuerung (S520), um zu verhindern, dass erzeugte Spannung unter einen unteren Grenzspannungswert (Vmin) fällt, der bestimmt wird, um die Brennstoffzelle (10) zu schützen und zu verhindern, dass Energieerzeugungseffizienz gesenkt wird; und Stromsteuerung (S500), um zu verhindern, dass erzeugter Strom einen oberen Grenzstromwert (ImaxA) überschreitet, der als Minimalwert von Stromwerten ausgewählt wird, die jeweils auf dem oberen Grenzenergiewert (Pmax) basieren, auf dem unteren Grenzspannungswert (Vmin) basieren, und ein Nennstrom (Ir), der ein vorbestimmter fester Wert ist, um individuelle Komponenten, durch die Strom fließt, zu schützen; und

    eine zweite Steuerung (S600), in der verhindert wird, dass die erzeugte Spannung einen oberen Grenzspannungswert (Vmax) zum Unterdrücken eines Abbaus von Zellen (11) der Brennstoffzellen (10) überschreitet; und

    einen Prioritätsanweiser (400), der konfiguriert ist, um die Energieerzeugungssteuerung (300) anzuweisen, die erste Steuerung (S500, S510, S520) der zweiten Steuerung (S600) vorzuziehen, wenn die erste Steuerung (S500, S510, S520) und die zweite Steuerung (S600) miteinander kollidieren.


     
    2. Brennstoffzellensystem nach Anspruch 1,
    wobei die Energieerzeugungssteuerung (300) ferner konfiguriert ist, um eine dritte Steuerung (S550) durchzuführen, in der, für mindestens eine Anode und eine Kathode der Brennstoffzelle (10), verhindert wird, dass ein stöchiometrisches Verhältnis unter einen vorbestimmten Wert fällt, und
    der Prioritätsanweiser (400) konfiguriert ist, um die Energieerzeugungssteuerung (300) anzuweisen, die zweite Steuerung (S600) der dritten Steuerung (S550) vorzuziehen, wenn die zweite Steuerung (S600) und die dritte Steuerung (S550) miteinander kollidieren.
     
    3. Brennstoffzellensystem nach Anspruch 1 oder 2, ferner umfassend:

    eine Vielzahl von Steuerungsvorrichtungen (21, 22, 23), die miteinander kommunizieren,

    wobei die Vielzahl von Steuerungsvorrichtungen (21, 22, 23) die Energiesteuerung, die Spannungssteuerung, die Stromsteuerung, die zweite Steuerung und die Anweisung zuweisen und durchführen.


     
    4. Brennstoffzellensystem nach einem der Ansprüche 1 bis 3,
    wobei die Energieerzeugungssteuerung (300) konfiguriert ist, um, als die erste Steuerung, mindestens zwei der Energiesteuerung, der Spannungssteuerung und der Stromsteuerung durchzuführen, und
    die Energieerzeugungssteuerung (300) beinhaltet:

    einen ersten Steuerungsvereiniger (310), der konfiguriert ist, um Werte, die in der ersten Steuerung unter dem oberen Grenzwert der erzeugten Energie, dem unteren Grenzwert der erzeugten Spannung und dem oberen Grenzwert des erzeugten Stroms verwendet werden, in einer gleichen physikalischen Größe zu vereinigen; und

    einen Wähler (330), der konfiguriert ist, um, als einen Begrenzungswert in der ersten Steuerung, einen Wert zum Realisieren der ersten Steuerung unter den Werten nach der Vereinigung auszuwählen.


     
    5. Brennstoffzellensystem nach Anspruch 4,
    wobei die Energieerzeugungssteuerung (200) einen zweiten Steuerungsvereiniger (320) beinhaltet, der den oberen Grenzwert der erzeugten Spannung in die physikalische Größe vereinigt, und
    wenn ein durch den zweiten Steuerungsvereiniger (320) vereinigter Begrenzungswert mit dem Begrenzungswert kollidiert, der von dem Wähler (330) ausgewählt wird, der Prioritätsanweiser (400) konfiguriert ist, um zu bestimmen, dass die erste Steuerung und die zweite Steuerung miteinander kollidieren.
     
    6. Brennstoffzellensystem nach Anspruch 4 oder 5,
    wobei die physikalische Größe Strom ist.
     
    7. Verfahren zur Steuerung von Energieerzeugung, die von einer Brennstoffzelle mit einer Sekundärbatterie durchgeführt wird, das Verfahren umfassend:

    Durchführen einer ersten Steuerung, in der mindestens eine Steuerung durchgeführt wird von:
    Energiesteuerung, um zu verhindern, dass erzeugte Energie einen oberen Energiegrenzwert (Pmax) überschreitet, der bestimmt wird, um die Sekundärbatterie (81) zu schützen; Spannungssteuerung, um zu verhindern, dass erzeugte Spannung unter einen unteren Spannungsgrenzwert (Vmin) fällt, der bestimmt wird, um die Brennstoffzelle (10) zu schützen und zu verhindern, dass Energieerzeugungseffizienz gesenkt wird; und Stromsteuerung, um zu verhindern, dass erzeugter Strom einen oberen Grenzstromwert (ImaxA) überschreitet, der als der Minimalwert von Stromwerten ausgewählt wird, die jeweils auf dem oberen Grenzenergiewert (Pmax) basieren, auf dem unteren Grenzspannungswert (Vmin) basieren, und ein Nennstrom (Ir), der ein vorbestimmter fester Wert ist, um individuelle Komponenten, durch die Strom fließt, zu schützen;

    Durchführen einer zweiten Steuerung, in der verhindert wird, dass die erzeugte Spannung einen oberen Grenzspannungswert (Vmax) zum Unterdrücken eines Abbaus von Zellen (11) der Brennstoffzellen (10) überschreitet; und

    Vorziehen der ersten Steuerung gegenüber der zweiten Steuerung, wenn die erste Steuerung und die zweite Steuerung miteinander kollidieren.


     
    8. Steuerungsverfahren nach Anspruch 7, ferner umfassend:

    Durchführen einer dritten Steuerung, in der, für mindestens eine Anode und eine Kathode, verhindert wird, dass ein stöchiometrisches Verhältnis unter einen vorbestimmten Wert fällt; und

    Vorziehen der zweiten Steuerung gegenüber der dritten Steuerung, wenn die zweite Steuerung und die dritte Steuerung miteinander kollidieren.


     
    9. Steuerungsverfahren nach Anspruch 7 oder 8,
    wobei eine Vielzahl von Steuerungsvorrichtungen, die miteinander kommunizieren, die Energiesteuerung, die Spannungssteuerung, die Stromsteuerung und die zweite Steuerung zuweisen und durchführen.
     
    10. Steuerungsverfahren nach einem der Ansprüche 7 bis 9, ferner umfassend:

    Durchführen, als die erste Steuerung, mindestens zwei der Energiesteuerung, der Spannungssteuerung und der Stromsteuerung; und

    Vereinigen von Werten, die in der ersten Steuerung unter dem oberen Grenzwert der erzeugten Energie, dem unteren Grenzwert der erzeugten Spannung und dem oberen Grenzwert des erzeugten Stroms verwendet werden, in einer gleichen physikalischen Größe, und Auswählen, als einen Begrenzungswert in der ersten Steuerung, einen Wert zum Realisieren der ersten Steuerung unter den Werten nach der Vereinigung.


     
    11. Steuerverfahren nach Anspruch 10, ferner umfassend
    Bestimmen, dass die erste Steuerung und die zweite Steuerung miteinander kollidieren, wenn ein Begrenzungswert, der durch Vereinigen des oberen Grenzwerts der erzeugten Spannung in die physikalische Größe vereinigt wird und der ausgewählte Grenzwert miteinander kollidieren.
     
    12. Steuerungsverfahren nach Anspruch 10 oder 11, wobei
    die physikalische Größe Strom ist.
     


    Revendications

    1. Système de pile à combustible (100) dans lequel une génération d'énergie est réalisée par une pile à combustible (10) destinée à une utilisation avec une batterie secondaire (81), comprenant :

    un dispositif de commande de génération d'énergie (300) qui est configuré pour réaliser :

    une première commande dans laquelle au moins une commande est effectuée de : commande d'énergie (S510) destinée à empêcher l'énergie générée de dépasser une valeur d'énergie de limite supérieure (Pmax) déterminée pour protéger la batterie secondaire (81) ; commande de tension (S520) destinée à empêcher la tension générée de tomber sous une valeur de tension de limite inférieure (Vmin) déterminée pour protéger la pile à combustible (10) et empêcher l'efficacité de génération d'énergie d'être abaissée ; et commande de courant (S500) destinée à empêcher le courant généré de dépasser une valeur de courant de limite supérieure (ImaxA) choisie comme la valeur minimale de valeurs de courant respectivement sur la base de la valeur d'énergie de limite supérieure (Pmax), sur la base de la valeur de tension de limite inférieure (Vmin), et un courant nominal (Ir) qui est une valeur fixe prédéterminée pour protéger des composants individuels à travers lesquels le courant circule ; et

    une deuxième commande (S600) dans laquelle la tension générée ne peut pas dépasser une valeur de tension de limite supérieure (Vmax) pour supprimer une dégradation de piles (11) de la pile à combustible (10) ; et

    un instructeur de priorité (400) qui est configuré pour ordonner au dispositif de génération d'énergie (300) de prioriser la première commande (S500, S510, S520) par rapport à la deuxième commande (S600) lorsque la première commande (S500, S510, S520) et la deuxième commande (S600) entrent en conflit.


     
    2. Système de pile à combustible selon la revendication 1,
    dans lequel le dispositif de génération d'énergie (300) est en outre configuré pour réaliser une troisième commande (S550) dans laquelle pour au moins l'une d'une anode et d'une cathode de la pile à combustible (10), un rapport stœchiométrique ne peut pas tomber sous une valeur prédéterminée, et
    l'instructeur de priorité (400) est configuré pour ordonner au dispositif de génération d'énergie (300) de prioriser la deuxième commande (S600) par rapport à la troisième commande (S550) lorsque la deuxième commande (S600) et la troisième commande (S550) entrent en conflit.
     
    3. Système de pile à combustible selon la revendication 1 ou 2, comprenant en outre :

    une pluralité de dispositifs de commande (21, 22, 23) qui communiquent ensemble,

    la pluralité de dispositifs de commande (21, 22, 23) attribuant et réalisant la commande d'énergie, la commande de tension, la commande de courant, la deuxième commande et l'instruction.


     
    4. Système de pile à combustible selon l'une quelconque des revendications 1 à 3,
    dans lequel le dispositif de génération d'énergie (300) est configuré pour réaliser, en tant que première commande, au moins deux de la commande d'énergie, la commande de tension et la commande de courant, et
    le dispositif de génération d'énergie (300) comprend :

    un premier unificateur de commande (310) qui est configuré pour unifier des valeurs utilisées dans la première commande parmi la valeur de limite supérieure de l'énergie générée, la valeur de limite inférieure de la tension générée et la valeur de limite supérieure du courant généré dans une même quantité physique ; et

    un sélecteur (330) qui est configuré pour sélectionner, en tant que valeur de limitation dans la première commande, une valeur destinée à réaliser la première commande parmi les valeurs après l'unification.


     
    5. Système de pile à combustible selon la revendication 4,
    dans lequel le dispositif de génération d'énergie (200) comprend un deuxième unificateur de commande (320) qui unifie la valeur de limite supérieure de la tension générée dans la quantité physique, et
    lorsqu'une valeur de limitation unifiée par le deuxième unificateur de commande (320) entre en conflit avec la valeur de limitation sélectionnée par le sélecteur (330), l'instructeur de priorité (400) est configuré pour déterminer que la première commande et la deuxième commande entrent en conflit.
     
    6. Système de pile à combustible selon la revendication 4 ou 5,
    dans lequel la quantité physique est le courant.
     
    7. Procédé de commande de génération d'énergie réalisée par une pile à combustible avec une batterie secondaire, le procédé comprenant :

    la réalisation d'une première commande dans laquelle au moins une commande est effectuée de :
    commande d'énergie (S510) destinée à empêcher l'énergie générée de dépasser une valeur d'énergie de limite supérieure (Pmax) déterminée pour protéger la batterie secondaire (81) ; commande de tension destinée à empêcher la tension générée de tomber sous une valeur de tension de limite inférieure (Vmin) déterminée pour protéger la pile à combustible (10) et empêcher l'efficacité de génération d'énergie d'être abaissée ; et commande de courant destinée à empêcher le courant généré de dépasser une valeur de courant de limite supérieure (ImaxA) choisie comme la valeur minimale de valeurs de courant respectivement sur la base de la valeur d'énergie de limite supérieure (Pmax), sur la base de la valeur de tension de limite inférieure (Vmin), et un courant nominal (Ir) qui est une valeur fixe prédéterminée pour protéger des composants individuels à travers lesquels le courant circule ;

    la réalisation d'une deuxième commande dans laquelle la tension générée ne peut pas dépasser une valeur de tension de limite supérieure (Vmax) pour supprimer une dégradation de piles (11) de la pile à combustible (10) ; et

    la priorisation de la première commande par rapport à la deuxième commande lorsque la première commande et la deuxième commande entrent en conflit.


     
    8. Procédé de commande selon la revendication 7, comprenant en outre :

    la réalisation d'une troisième commande dans laquelle pour au moins l'une d'une anode et d'une cathode, un rapport stœchiométrique ne peut pas tomber sous une valeur prédéterminée ; et

    la priorisation de la deuxième commande par rapport à la troisième commande lorsque la deuxième commande et la troisième commande entrent en conflit.


     
    9. Procédé de commande selon la revendication 7 ou 8,
    dans lequel une pluralité de dispositifs de commande qui communiquent ensemble attribuent et réalisent la commande d'énergie, la commande de tension, la commande de courant et la deuxième commande.
     
    10. Procédé de commande selon l'une quelconque des revendications 7 à 9, comprenant en outre :

    la réalisation, en tant que première commande, d'au moins deux de la commande d'énergie, la commande de tension et la commande de courant ; et

    l'unification de valeurs utilisées dans la première commande parmi la valeur de limite supérieure de l'énergie générée, la valeur de limite inférieure de la tension générée et la valeur de limite supérieure du courant généré dans une même quantité physique, et la sélection, en tant que valeur de limitation dans la première commande, d'une valeur destinée à réaliser la première commande parmi les valeurs après l'unification.


     
    11. Procédé de commande selon la revendication 10, comprenant en outre
    la détermination du fait que la première commande et la deuxième commande entrent en conflit, lorsqu'une valeur de limitation unifiée par l'unification de la valeur de limite supérieure de la tension générée dans la quantité physique et la valeur de limitation sélectionnée entrent en conflit.
     
    12. Procédé de commande selon la revendication 10 ou 11,
    dans lequel la quantité physique est le courant.
     




    Drawing



























    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description