(19)
(11)EP 3 024 154 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 13891703.4

(22)Date of filing:  21.08.2013
(51)Int. Cl.: 
H04B 7/0456  (2017.01)
H04B 7/06  (2006.01)
(86)International application number:
PCT/CN2013/081938
(87)International publication number:
WO 2015/024210 (26.02.2015 Gazette  2015/08)

(54)

METHOD, APPARATUS AND SYSTEM FOR SELECTING PRECODING MATRIX INDICATOR

VERFAHREN, VORRICHTUNG UND SYSTEM ZUR AUSWAHL EINES VORCODIERUNGSMATRIXINDIKATORS

PROCÉDÉ, APPAREIL ET SYSTÈME DE SÉLECTION D'INDICATEUR DE MATRICE DE PRÉCODAGE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
25.05.2016 Bulletin 2016/21

(73)Proprietor: Huawei Technologies Co., Ltd.
Longgang District Shenzhen, Guangdong 518129 (CN)

(72)Inventors:
  • ZHANG, Huawei
    Shenzhen Guangdong 518129 (CN)
  • ZHANG, Jinlin
    Shenzhen Guangdong 518129 (CN)

(74)Representative: Epping - Hermann - Fischer 
Patentanwaltsgesellschaft mbH Schloßschmidstraße 5
80639 München
80639 München (DE)


(56)References cited: : 
EP-A1- 2 608 437
CN-A- 102 833 033
US-A1- 2011 317 748
CN-A- 101 686 214
CN-A- 102 932 114
US-A1- 2012 120 997
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to the communications field, and in particular, to a method for selecting a precoding matrix indication, a base station and a computer program product.

    BACKGROUND



    [0002] Transmission performance of uplink SU-MIMO (Single User Multiple Input Multiple Output, single user multiple-input multiple-output) transmission may be improved by selecting a proper PMI (Precoding Matrix Indication, precoding matrix indication).

    [0003] A base station receives a sounding (sounding) signal periodically sent by a terminal. After receiving the sounding signal, the base station uses a pilot signal to parse the sounding signal to obtain a channel response, performs data processing on the obtained channel response according to a PMI selection criterion to select a proper PMI from a set of candidate PMIs, and delivers the selected PMI to the terminal through a PDCCH (Physical Downlink Control Channel, physical downlink control channel).

    [0004] In the process of implementing the foregoing solution, the prior art has at least the following problems:
    In the prior art, the PMI selection is performed based on sounding measurement. Such issues as whether a terminal supports sending of a sounding signal, a sounding measurement period, or frequency band resources affect accuracy of the PMI selection, and thereby affecting performance gain of SU-MIMO.

    [0005] US 2012/0120997 A1 discloses methods and systems for precoder selection assisted by demodulation reference signals (DM-RS). Systems and methods according to exemplary embodiments provide for using DM-RS to obtain channel state information (CSI) for precoder selection. A method includes: receiving a DM-RS in at least one subframe, determining the CSI from the DM-RS, and using the CSI to perform at least one function.

    SUMMARY



    [0006] Embodiments of the present invent provide a method for selecting a precoding matrix indication, a base station and a computer program product, which are used to solve a problem in the prior art where PMI selection is inaccurate and this inaccuracy causes deterioration of system performance.

    [0007] In order to achieve the foregoing objective, the embodiments of the present invention adopt the technical solutions as defined in the attached claims.

    [0008] While several embodiments and/or examples have been disclosed in this description, the subject matter for which protection is sought is strictly and solely limited to those embodiments and/or examples encompassed by the scope of the appended claims. Embodiments and/or examples mentioned in the description that do not fall under the scope of the claims are useful for understanding the invention.

    BRIEF DESCRIPTION OF DRAWINGS



    [0009] 

    FIG. 1 is a signaling diagram of a method for selecting a PMI according to an embodiment of the present invention;

    FIG. 2 is a signaling diagram of a method for selecting a PMI according to another embodiment of the present invention;

    FIG. 3 is a flowchart of a method for selecting a PMI according to an embodiment of the present invention;

    FIG. 4 is a flowchart of a method for selecting a PMI according to an embodiment of the present invention;

    FIG. 5 is a flowchart of a method for selecting a PMI according to another embodiment of the present invention;

    FIG. 6 is a signaling diagram of a method for selecting a PMI according to still another embodiment of the present invention;

    FIG. 7 is a structural diagram of a base station according to an embodiment of the present invention;

    FIG. 8 is a structural diagram of a terminal according to an embodiment of the present invention;

    FIG. 9 is a structural diagram of a base station according to another embodiment of the present invention; and

    FIG. 10 is a structural diagram of a terminal according to another embodiment of the present invention.


    DESCRIPTION OF EMBODIMENTS



    [0010] The following clearly and completely describes the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Apparently, the described embodiments are merely a part rather than all of the embodiments of the present invention. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts shall fall within the protection scope of the present invention.

    [0011] Currently, PMI selection is performed based on sounding measurement. Such issues as whether a terminal supports sending of a sounding signal, a sounding measurement period, or frequency band resources affect accuracy of the PMI selection, and thereby affecting performance gain of SU-MIMO. In view of this, the following embodiments provide a method for selecting a PMI without relying on a sounding signal, in which a base station can initiate the PMI selection actively when needed, without relying on a sounding signal sent by a terminal, so as to improve the accuracy of the PMI selection and further increase the performance gain of the SU-MIMO.

    [0012] For example, the base station may instruct the terminal to send uplink data after weighting the uplink data by using an identity matrix or without weighting the uplink data, which is equivalent to sending of the uplink data over a channel weighted by using the identity matrix or an unweighted channel. Then, no codebook information (a codebook other than the identity matrix codebook) that affects PMI measurement is introduced into the channel. Therefore, the base station may select a proper PMI according to a channel response obtained then and deliver the PMI to the terminal.

    [0013] The following describes the foregoing process in detail with reference to the accompanying drawings and embodiments, and some details described below are intended to make a person skilled in the art understand the technical solutions, advantages and effects of the embodiments of the present invention more clearly, rather than to limit the present invention. In addition, the method for selecting a PMI according to the embodiments of the present invention may be used in combination with an existing PMI selection method based on sounding measurement, which is not limited in the embodiments of the present invention.

    [0014] Refer to FIG. 1, which is a signaling diagram of a method for selecting a PMI according to an embodiment of the present invention. As shown in FIG. 1, the method includes the following steps:
    Step 101: A base station sends indication information to a terminal, where the indication information is used to instruct the terminal to send uplink data without weighting the uplink data or after weighting the uplink data by using an identity matrix.

    [0015] Step 102: The terminal sends, according to the foregoing indication information, the uplink data without weighting the uplink data or after weighting the uplink data by using the identity matrix.

    [0016] Step 103: The base station selects a PMI from a PMI set of the base station according to the uplink data sent by the terminal.

    [0017] Step 104: The base station delivers the selected PMI to the terminal.

    [0018] In the foregoing embodiment, the base station can deliver the indication information to the terminal when needed to actively initiate PMI selection without relying on a sounding signal sent by the terminal, so as to improve accuracy of the PMI selection and further increase performance gain of SU-MIMO. Because the uplink data is sent after being weighted by using the identity matrix or without being weighted, no codebook information (a codebook other than the identity matrix codebook) that affects PMI measurement is introduced to a channel. Therefore, the base station may select a proper PMI according to a channel response obtained then and deliver the selected PMI to the terminal, so that the terminal can send uplink data after weighting the uplink data by using a more accurate PMI, thereby increasing the performance gain of the SU-MIMO.

    [0019] In the step 101, the base station may send the indication information in a periodical or non-periodical sending manner.

    [0020] For example, in the non-periodical sending manner, the indication information may be sent to the terminal at time of a demodulation reference signal (hereinafter referred to as a DMRS moment).

    [0021] In the prior art, during every measurement period of the sounding signal, a channel is not weighted by using a PMI codebook; however, at the DMRS moment, the channel has been weighted by using a PMI codebook, that is, the channel then contains codebook information, and a base station cannot perform PMI measurement for the channel that contains the codebook information. Therefore, at the DMRS moment, if the solution in the prior art is still used, the base station cannot use the channel at the DMRS moment to perform PMI selection. In contrast, at the DMRS moment, using the method according to the foregoing embodiment can effectively solve the problem where the PMI selection cannot be performed at the DMRS moment.

    [0022] In addition, channel quality may further be taken into consideration, so as to select a moment at which the channel quality is relatively good to trigger the foregoing PMI selection process and send the indication information. For example, it is determined, according to measurement by a terminal, whether a signal to noise ratio meets a preset condition, for example, whether the signal to noise ratio is greater than a certain threshold. Of course, this is only one exemplary policy and is not intended to limit the present invention; a person skilled in the art may select another policy as required as a moment for the base station to actively initiate the PMI selection.

    [0023] For another example, in the periodical sending manner, a sending period of the indication information may be shorter than a sending period of the sounding signal of the terminal.

    [0024] In the prior art, the accuracy of the PMI selection is affected by the sounding measurement period. The longer a preset measurement period, the longer a measurement interval is and the less accurate the PMI selection is. The accuracy of the PMI selection can be further improved by setting the sending period of the indication information to a value that is less than the sounding measurement period. Certainly, taking energy consumption on a terminal side into consideration, it is also inappropriate to set the sending period of the indication information to a value that is too short; a person skilled in the art may set the sending period of the indication information as required.

    [0025] In addition, the sending period of the indication information may not be limited by the length of the sounding measurement period as well, for example, when a terminal does not support sending of a sounding signal; or, this manner may be used in combination with the existing PMI selection method based on sounding measurement, or used in combination with the non-periodically sending manner, or the like. No limitation is imposed by this embodiment of the present invention.

    [0026] In the step 103, the selecting of the PMI by the base station is a technology well known to a person skilled in the art and is not detailed herein. A detailed description is given hereinafter by using an optimal system performance goal criterion as an example in an embodiment, which, however, is not intended to limit the present invention and is not an improvement of the present invention. A person skilled in the art may use any one technology in the prior art or later-developed PMI selection algorithm to perform the selection.

    [0027] In addition, in the step 101, the indication information sent by the base station may be just an indication signaling used to instruct the terminal to send the uplink data after weighting the uplink data by using the identity matrix or without weighting the uplink data. In addition, the indication information sent by the base station may also be a PMI, where the PMI corresponds to an identity matrix codebook (namely, the identity matrix) in the PMI set of the base station and is used to instruct the terminal to send the uplink data after weighting the uplink data by using the identity matrix codebook corresponding to the PMI. In this case, in order to differentiate this PMI from the PMI selected in step 103, the PMI in step 103 is referred to as a first PMI, and the PMI sent in step 101 is referred to as a second PMI. Specifically, refer to FIG. 2, which is a signaling diagram of a method for selecting a PMI according to another embodiment of the present invention. As shown in FIG. 2, the method includes the following steps:
    Step 201: A base station sends a second PMI to a terminal, where the second PMI is a PMI corresponding to an identity matrix codebook (simply referred to as an identity codebook) in a PMI set of the base station.

    [0028] Step 202: The terminal selects an identity matrix codebook according to the second PMI to perform weighting, so as to obtain uplink data.

    [0029] For example, if a matrix of a channel is H, the identity matrix codebook selected by the terminal according to the second PMI is I, and to-be-sent uplink data is X, then uplink data Y sent after being weighted is as follows:



    [0030] Step 203: The terminal sends the uplink data to the base station.

    [0031] Step 204: The base station selects a first PMI from the PMI set of the base station according to the received uplink data.

    [0032] Step 205: The base station delivers the selected first PMI to the terminal.

    [0033] Compared with the embodiment shown in FIG. 1, this embodiment is compatible with an existing protocol and achieves a purpose of improving accuracy of the PMI selection.

    [0034] The second PMI is sent in the same manner as that described in the foregoing embodiment, which is not repeated herein.

    [0035] FIG. 3 is a flowchart of a method for selecting a PMI according to an embodiment of the present invention, which involves a base station side and includes the following steps:
    Step 301: Send indication information to a terminal, where the indication information is used to instruct the terminal to send uplink data without weighting the uplink data or after weighting the uplink data by using an identity matrix.

    [0036] A base station may send the indication information periodically or may send the indication information non-periodically. Specifically, this is the same as that described in the foregoing embodiment and not repeated herein.

    [0037] Step 302: Receive the uplink data sent by the terminal.

    [0038] Step 303: Select a first PMI from a PMI set of a base station according to the received uplink data.

    [0039] Step 304: Send the first PMI to the terminal.

    [0040] In respect of step 303, that is, a method for the base station to select the first PMI, an example is described below, which is merely an example and is not intended to limit the present invention. Specifically, referring to FIG. 4, the method includes the following steps:
    Step 3031: Perform channel estimation on the uplink data to obtain a channel response set on scheduled bandwidth.

    [0041] In an example, the channel estimation may be performed on the uplink data by using a DMRS (DeModulation Reference Signal, demodulation reference signal).

    [0042] The channel response set contains several channel matrixes H, for example, H1, H2, H3, ..., and Hm, where m indicates the number of channel matrixes and is a positive integer, and each channel matrix corresponds to one RB (Resource Block, resource block). Each channel matrix reflects channel state information on each RB.

    [0043] Step 3032: Perform data processing on each PMI in the PMI set of the base station and each channel matrix in the channel response set according to an optimal system performance goal criterion to obtain metric values, where a PMI corresponding to a maximum metric value is the selected first PMI.

    [0044] For example, the PMI set is a PMI set defined in 3GPP TS 36.211 (The 3rd Generation Partnership Project Technology Specification 36.211, The 3rd Generation Partnership Project Technical Specification 36.211).

    [0045] The optimal system performance goal criterion includes: a received-signal power maximization criterion, a system throughout maximization criterion, or the like.

    [0046] In this embodiment, a detailed description is given by using the received-signal power maximization criterion as an example.

    [0047] The PMI set contains n PMIs: PMI1, PMI2, PMI3, ..., and PMIn, where n is a positive integer.

    [0048] According to the received-signal power maximization criterion, the data processing is performed on the PMI set and the channel response set as follows:



    [0049] Each PMI in the PMI set is multiplied by each channel matrix in the channel response set to obtain metric value matrixes, modulus values of the metric value matrixes are calculated, and the modulus values are added up to obtain a metric value corresponding to each PMI.

    [0050] The S1, S2, S3, ..., and Si are respectively a metric value 1, a metric value 2, a metric value 3, ..., and a metric value i. A comparison is made among the obtained metric values and the PMI corresponding to the maximum metric value is the selected first PMI.

    [0051] Corresponding to the method shown in FIG. 3, as shown in FIG. 5, a method for selecting a PMI according to another embodiment of the present invention involves a terminal side and includes the following steps:
    Step 501: Receive a second PMI sent by a base station, where the second PMI is a PMI corresponding to an identity matrix codebook (simply referred to as an identity codebook) in a PMI set of the base station.

    [0052] In this embodiment, indication information is a PMI, that is, the second PMI.

    [0053] As is described for the indication information in the foregoing embodiment, the second PMI is sent by the base station periodically or non-periodically. When the second PMI is sent non-periodically, the second PMI may be sent at time of a demodulation reference signal, that is, a DMRS moment. When the second PMI is sent periodically, a sending period of the second PMI may be shorter than a sending period of a sounding signal.

    [0054] Step 502: Select an identity matrix codebook corresponding to the second PMI according to the second PMI, and use the selected identity matrix codebook to weight uplink data. For example, if a matrix of a channel is H, the identity matrix codebook selected by the terminal according to the second PMI is I, and to-be-sent uplink data is X, then uplink data Y sent after being weighted is as follows:



    [0055] Step 503: Send the weighted uplink data to the base station.

    [0056] Step 504: Receive a first PMI sent by the base station, where the first PMI is selected by the base station from the PMI set of the base station according to the uplink data sent by the terminal.

    [0057] Thereby, the terminal can send the uplink data after weighting the uplink data by using the first PMI selected by the base station.

    [0058] The first PMI is selected in the same manner as exemplified in FIG. 4, which is not repeated herein.

    [0059] To make a person skilled in the art understand the technical solutions in the embodiments of the present invention more clearly, the following describes the method for selecting a PMI according to the embodiments of the present invention in detail by using a specific embodiment.

    [0060] As shown in FIG. 6, a method for selecting a PMI according to still another embodiment of the present invention includes the following steps:
    Step 601: A base station sends a PMI corresponding to an identity matrix codebook to a terminal.

    [0061] The PMI is a PMI corresponding to an identity matrix codebook in a PMI set of the base station. The base station may send the PMI periodically, or may send the PMI non-periodically.

    [0062] In addition, the PMI corresponding to the identity matrix codebook may be sent by using a PDCCH.

    [0063] Step 602: The terminal receives the PMI that is corresponding to the identity matrix codebook and sent by the base station.

    [0064] Step 603: The terminal selects, according to the PMI corresponding to the identity matrix codebook, an identity matrix codebook and weights to-be-transmitted data to obtain a weighted signal.

    [0065] Step 604: The terminal sends the weighted signal to the base station.

    [0066] Step 605: The base station performs channel estimation on the weighted signal to obtain a channel response set.

    [0067] Specifically, the channel estimation is performed on the weighted signal by using a DMRS (DeModulation Reference Signal, demodulation reference signal).

    [0068] Specifically, assume that the channel response set includes 4 channel matrixes H, namely, H1, H2, H3, and H4, and that each channel matrix H corresponds to one RB.

    [0069] Each channel matrix H indicates channel state information on each RB.

    [0070] Step 606: The base station performs data processing on each PMI in the PMI set and each channel matrix H in the channel response set according to an optimal system performance goal criterion to obtain metric values, where a PMI corresponding to a maximum metric value is a selected PMI.

    [0071] The PMI set in this embodiment of the present invention is a PMI set defined in 3GPP TS 36.211 (The 3rd Generation Partnership Project Technology Specification 36.211, The 3rd Generation Partnership Project Technical Specification 36.211).

    [0072] The optimal system performance goal criterion includes: a received-signal power maximization criterion, a system throughout maximization criterion, or the like.

    [0073] In this embodiment, a detailed description is given by using the received-signal power maximization criterion as an example:
    Assume that the PMI set includes 4 PMIs: PMI1, PMI2, PMI3, and PMI4.

    [0074] The data processing is performed on the PMI set and the channel response set according to the received-signal power maximization criterion, which is specifically as follows:









    [0075] Each PMI in the PMI set is multiplied by each channel matrix H in the channel response set to obtain metric value matrixes, modulus values of the metric value matrixes are calculated, and the modulus values are added up to obtain a metric value corresponding to each PMI.

    [0076] The S1, S2, S3, and S4 are respectively a metric value 1, a metric value 2, a metric value 3, and a metric value 4. A comparison is made among the obtained metric values. Assuming that the maximum metric value is S3, PMI3 corresponding to S3 is the selected PMI.

    [0077] Step 607: The base station sends the selected PMI to the terminal.

    [0078] Step 608: The terminal receives the selected PMI, so that the terminal uses the proper PMI to perform data transmission.

    [0079] It can been seen that, in the method for selecting a PMI according to this embodiment, a base station sends indication information to a terminal; the terminal sends, according to the indication information, uplink data without weighting the uplink data or after weighting the uplink data by using an identity matrix; the base station selects a first PMI from a PMI set of the base station according to the received uplink data and delivers the first PMI to the terminal; the terminal uses the first PMI to perform data transmission. Compared with the prior art, the base station can initiate PMI selection actively when needed, without relying on a sounding signal sent by the terminal, so as to improve accuracy of the PMI selection and further increase performance gain of SU-MIMO.

    [0080] Corresponding to the foregoing method, as shown in FIG. 7, the present invention further provides a base station, including:
    a sending unit 71, configured to send indication information to a terminal, where:

    the indication information is used to instruct the terminal to send uplink data without weighting the uplink data or after weighting the uplink data by using an identity matrix; and

    the sending unit 71 is specifically configured to send the indication information to the terminal periodically or non-periodically; for example, in a case in which the indication information is sent non-periodically, the indication information may be sent to the terminal at time of a demodulation reference signal; for another example, in a case in which the indication information is sent periodically, a sending period of the indication information is shorter than a period for the terminal to send a sounding signal to the base station, where the sending period of the sounding signal is generally set by the base station;

    a receiving unit 72, configured to receive the uplink data sent by the terminal; and

    a selecting unit 73, configured to select a first PMI from a precoding matrix indication (PMI) set of the base station according to the uplink data received by the receiving unit.



    [0081] The sending unit 71 is further configured to send the first PMI selected by the selecting unit 73 to the terminal.

    [0082] Specifically, the indication information sent by the sending unit 71 is a second PMI, where the second PMI is a PMI corresponding to an identity matrix codebook in the PMI set of the base station; the uplink data received by the receiving unit 72 is uplink data weighted according to an identity matrix codebook corresponding to the second PMI and sent by the terminal.

    [0083] It can been seen that, in this embodiment, a base station sends indication information to a terminal; the terminal sends, according to the indication information, uplink data to the base station without weighting the uplink data or after weighting the uplink data by using an identity matrix; the base station selects a first PMI from a PMI set of the base station according to the received uplink data and delivers the first PMI to the terminal; the terminal uses the first PMI to perform data transmission. Compared with the prior art, the base station can initiate PMI selection actively when needed, without relying on a sounding signal sent by the terminal, so as to improve accuracy of the PMI selection and further increase performance gain of SU-MIMO.

    [0084] It should be noted that the receiving unit 72 may be a receiver of the base station, the sending unit 71 may be a transmitter of the base station; in addition, the receiving unit 72 and the sending unit 71 may be integrated to form a transceiver of the base station. The selecting unit 73 may be a standalone processor, or may be integrated to a certain processor of the base station for implementation. In addition, the selecting unit 73 may also be stored in a memory of the base station in a form of program code, and invoked by a certain processor of the base station to execute a function of the selecting unit. The processor described herein may be a central processing unit (Central Processing Unit, CPU), or may be a specific integrated circuit (Application Specific Integrated Circuit, ASIC), or may be disposed on one or more integrated circuits that implement this embodiment of the present invention.

    [0085] An embodiment of the present invention further provides a terminal. As shown in FIG. 8, the terminal includes:

    a receiving unit 81, configured to receive indication information sent by a base station, where

    the base station may send the indication information periodically or non-periodically; for example, the indication information received by the receiving unit 81 may be sent by the base station at time of a demodulation reference signal; for another example, a sending period of the indication information is shorter than a sending period of a sounding signal of the terminal;

    a processing unit 82, configured to obtain, according to the indication information received by the receiving unit 81, unweighted uplink data or uplink data weighted by using an identity matrix; and

    a sending unit 83, configured to send the uplink data obtained by the processing unit 82 to the base station.



    [0086] The receiving unit 81 is further configured to receive a first PMI sent by the base station, where the first PMI is selected by the base station from a PMI set of the base station according to the uplink data sent by the sending unit 83.

    [0087] The indication information received by the receiving unit 81 is a second PMI, where the second PMI is a PMI corresponding to an identity matrix codebook in the PMI set of the base station; the processing unit 82 is specifically configured to select an identity matrix codebook corresponding to the second PMI according to the second PMI, and use the identity matrix codebook corresponding to the second PMI to weight uplink data to obtain the uplink data weighted by using the identity matrix.

    [0088] It should be noted that the receiving unit 81 may be a receiver of the terminal, and the sending unit 83 may be a transmitter of the terminal; in addition, the receiving unit 81 and the sending unit 83 may be integrated to form a transceiver of the terminal. The processing unit 82 may be a standalone processor, or may be integrated in a certain processor of the terminal for implementation. In addition, the processing unit 82 may also be stored in a memory of the terminal in a form of program code, and invoked by a certain processor of the terminal to perform a function of the processing unit. The processor described herein may be a central processing unit (Central Processing Unit, CPU), or may be a specific integrated circuit (Application Specific Integrated Circuit, ASIC), or may be configured to one or more integrated circuits that implement this embodiment of the present invention.

    [0089] For the terminal according to another embodiment of the present invention, a base station sends indication information to the terminal; the terminal sends, according to the indication information, uplink data to the base station after weighting the uplink data by using an identity matrix or without weighting the uplink data; the base station selects a first PMI from a PMI set of the base station according to the received uplink data and delivers the first PMI to the terminal; the terminal uses the first PMI to perform data transmission. Compared with the prior art, the base station can initiate PMI selection actively when needed, without relying on a sounding signal sent by the terminal, so as to improve accuracy of the PMI selection and further increase performance gain of SU-MIMO.

    [0090] As shown in FIG. 9, which is a schematic structural diagram of another embodiment of a base station according to the present invention, the base station includes a receiver 91, a transmitter 92, a memory 93 and a processor 94. The receiver 91, the transmitter 92 and the memory 94 are all connected to the processor 94, for example, they can be connected to the processor 94 by using a bus. Certainly, the base station may also include common parts such as an antenna, a baseband processing part, an intermediate radio frequency processing part and an input/output apparatus, which are not limited by this embodiment of the present invention hereby.

    [0091] The receiver 91 and the transmitter 92 may be integrated to form a transceiver.

    [0092] The memory 93 is configured to store executable program code, where the program code includes a computer operation instruction, and the memory 93 may also store a PMI set of the base station and a matrix codebook corresponding to each PMI in the PMI set. The memory 93 may include a high-speed RAM memory, and may also include a non-volatile memory (non-volatile memory), for example, at least one disk memory.

    [0093] The processor 94 may be a central processing unit (Central Processing Unit, CPU), or may be a specific integrated circuit (Application Specific Integrated Circuit, ASIC), or may be disposed on one or more integrated circuits that implement this embodiment of the present invention.

    [0094] The receiver 91 is configured to receive uplink data sent by a terminal.

    [0095] The transmitter 92 is configured to send indication information to the terminal, where the indication information is used to instruct the terminal to send the uplink data without weighting the uplink data or after weighting the uplink data by using an identity matrix.

    [0096] The processor 94 is configured to select a first PMI from the PMI set of the base station according to the uplink data received by the receiver 91. The first PMI is sent to the terminal by the transmitter 92.

    [0097] It can been seen that the base station according to this embodiment sends indication information to a terminal; the terminal sends, according to the indication information, uplink data to the base station without weighting the uplink data or after weighting the uplink data by using an identity matrix; the base station selects a first PMI from a PMI set of the base station according to the received uplink data and delivers the first PMI to the terminal; the terminal uses the first PMI to perform data transmission. Compared with the prior art, the base station can initiate PMI selection actively when needed, without relying on a sounding signal sent by the terminal, so as to improve accuracy of the PMI selection and further increase performance gain of SU-MIMO.

    [0098] As shown in FIG. 10, which is a schematic structural diagram of another embodiment of a terminal according to the present invention, the terminal includes a receiver 1001, a transmitter 1002, a memory 1003 and a processor 1004. The receiver 1001, the transmitter 1002 and the memory 1003 are all connected to the processor 1004, for example, they can be connected to the processor 1004 by using a bus. Certainly, the terminal may also include common parts such as an antenna, a baseband processing part, an intermediate radio frequency processing part and an input/output apparatus, which are not limited by this embodiment of the present invention hereby.

    [0099] The receiver 1001 and the transmitter 1002 may be integrated to form a transceiver.

    [0100] The memory 1003 is configured to store executable program code and to-be-sent uplink data, where the program code includes a computer operation instruction, and the memory 1003 is also configured to store a PMI set of the terminal and a matrix codebook corresponding to each PMI in the PMI set, where the PMI set is consistent with a PMI set of a base station. The memory 1003 may include a high-speed RAM memory, and may also include a non-volatile memory (non-volatile memory), for example, at least one disk memory.

    [0101] The processor 1004 may be a central processing unit (Central Processing Unit, CPU), or may be a specific integrated circuit (Application Specific Integrated Circuit, ASIC), or may be disposed on one or more integrated circuits that implement this embodiment of the present invention.

    [0102] The receiver 1001 is configured to receive indication information sent by the base station. The indication information is used to instruct the terminal to send uplink data without weighting the uplink data or after weighting the uplink data by using an identity matrix. The receiver 1001 is also configured to receive a first PMI sent by the base station, where the first PMI is selected by the base station from the PMI set of the base station.

    [0103] The processor 1004 is configured to perform, according to the indication information received by the receiver 1001, data processing on the to-be-sent uplink data to obtain unweighted uplink data or uplink data weighted by using the identity matrix. The unweighted uplink data or the uplink data weighted by using the identity matrix is sent to the base station by the transmitter 1002.

    [0104] It can been seen that the terminal according to this embodiment receives indication information sent by a base station; the terminal sends, according to the indication information, uplink data to the base station without weighting the uplink data or after weighting the uplink data by using an identity matrix; the base station selects a first PMI from a PMI set of the base station according to the received uplink data and delivers the first PMI to the terminal; the terminal uses the first PMI to perform data transmission. Compared with the prior art, the base station can initiate PMI selection actively when needed, without relying on a sounding signal sent by the terminal, so as to improve accuracy of the PMI selection and further increase performance gain of SU-MIMO.

    [0105] The foregoing descriptions are merely specific implementation manners of the present invention, but are not intended to limit the protection scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the protection scope of the claims.


    Claims

    1. A method for selecting a precoding matrix indication, comprising:

    sending (101, 301), by a base station, indication information to a terminal, wherein the indication information is used to instruct the terminal to send uplink data without weighting the uplink data or after weighting the uplink data by using an identity matrix;

    receiving (102, 302), by the base station, uplink data from the terminal, wherein the received uplink data is unweighted uplink data or uplink data weighted by using an identity matrix;

    selecting (103, 303), by the base station, a first PMI from a precoding matrix indication, PMI, set of the base station according to the received uplink data; and

    sending (104, 304), by the base station, the first PMI to the terminal,

    characterized in that

    the step of selecting (103, 303), by the base station, the first PMI from the PMI set of the base station, comprises

    performing (3031) a channel estimation on the uplink data to obtain a channel response set on a scheduled bandwidth, the channel estimation is performed on the uplink data by using a demodulation reference signal, DMRS, wherein a channel response set contains several channel matrixes, and each channel matrix corresponds to one resource block, RB, so that each channel matrix reflects a channel state information on each RB, and

    performing (3032) data processing on each PMI in the PMI set of the base station and each channel matrix in the channel response set according to an optimal system performance goal criterion to obtain metric values, where a PMI corresponding to a maximum metric value is the selected first PMI, wherein the optimal system performance goal criterion is a received-signal power maximization criterion.


     
    2. The method according to claim 1, wherein: the indication information is a second PMI, wherein the second PMI is a PMI corresponding to an identity matrix codebook in the PMI set of the base station; and
    the reveived uplink data is uplink data that is weighted according to an identity matrix codebook corresponding to the second PMI.
     
    3. A method for selecting a precoding matrix indication, comprising:

    receiving (101), by a terminal, indication information from a base station, wherein the indication information is used to instruct the terminal to send uplink data without weighting the uplink data or after weighting the uplink data by using an identity matrix;

    sending (102), by the termianl according to the indication information, unweighted uplink data or uplink data weighted by using an identity matrix to the base station;

    selecting (103, 303), by the base station, a first precoding matrix indication, PMI, from a PMI set of the base station according to the received uplink data; and

    receiving (104), by the terminal from the base station, a first PMI that is selected by the base station from a PMI set of the base station according to the unweighted uplink data or uplink data weighted by using an identity matrix,

    characterized in that

    the selecting (103, 303), by the base station, of the first PMI from the PMI set of the base station, comprises

    performing (3031) a channel estimation on the uplink data to obtain a channel response set on a scheduled bandwidth, the channel estimation is performed on the uplink data by using a demodulation reference signal, DMRS, wherein a channel response set contains several channel matrixes, and each channel matrix corresponds to one resource block, RB, so that each channel matrix reflects a channel state information on each RB, and

    performing (3032) data processing on each PMI in the PMI set of the base station and each channel matrix in the channel response set according to an optimal system performance goal criterion to obtain metric values, where a PMI corresponding to a maximum metric value is the selected first PMI, wherein the optimal system performance goal criterion is a received-signal power maximization criterion.


     
    4. The method according to claim 3, wherein: the indication information is a second PMI, wherein the second PMI is a PMI corresponding to an identity matrix codebook in the PMI set of the base station; the sending (102), according to the indication information, unweighted uplink data or uplink data weighted by using an identity matrix to the base station comprises:

    selecting (502) an identity matrix codebook corresponding to the second PMI according to the second PMI;

    using (502) the identity matrix codebook corresponding to the second PMI to weight uplink data; and

    sending (503) the weighted uplink data to the base station.


     
    5. A base station, comprising:

    a sending unit (71), configured to send indication information to a terminal, wherein the indication information is used to instruct the terminal to send uplink data without weighting the uplink data or after weighting the uplink data by using an identity matrix;

    a receiving unit (72), configured to receive uplink data from the terminal, wherein the received uplink data is unweighted uplink data or uplink data weighted by using an identity matrix; and

    a selecting unit (73), configured to select a first PMI from a precoding matrix indication, PMI, set of the base station according to the received uplink data received by the receiving unit (72), wherein

    the sending unit (71) is further configured to send the first PMI selected by the selecting unit (73) to the terminal,

    characterized in that

    the selecting unit (73) is configured to select the first PMI from the PMI set of the base station by

    performing a channel estimation on the uplink data to obtain a channel response set on a scheduled bandwidth, the channel estimation is performed on the uplink data by using a demodulation reference signal, DMRS, wherein a channel response set contains several channel matrixes, and each channel matrix corresponds to one resource block, RB, so that each channel matrix reflects a channel state information on each RB, and

    performing data processing on each PMI in the PMI set of the base station and each channel matrix in the channel response set according to an optimal system performance goal criterion to obtain metric values, where a PMI corresponding to a maximum metric value is the selected first PMI, wherein the optimal system performance goal criterion is a received-signal power maximization criterion.


     
    6. The base station according to claim 5, wherein: the indication information sent by the sending unit (71) is a second PMI, wherein the second PMI is a PMI corresponding to an identity matrix codebook in the PMI set of the base station; and
    the uplink data received by the receiving unit (72) is uplink data that is weighted according to an identity matrix codebook corresponding to the second PMI.
     
    7. The base station according to claim 5 or 6, wherein the sending unit (71) is configured to send the indication information to the terminal non-periodically.
     
    8. The base station according to claim 7, wherein the sending unit (71) is configured to send the indication information to the terminal at time of the demodulation reference signal.
     
    9. The base station according to claim 5 or 6, wherein the sending unit (71) is configured to send the indication information to the terminal periodically.
     
    10. The base station according to claim 9, wherein a sending period of the indication information is shorter than a sending period of a sounding signal of the terminal.
     
    11. A computer program product, comprising a computer-readable medium, wherein the computer-readable medium comprises a group of program code configured to execute the method according to any one of claims 1 to 4.
     


    Ansprüche

    1. Verfahren zum Auswählen einer Vorcodierungsmatrixanzeige, das Folgendes umfasst:

    Senden (101, 301) von Anzeigeinformationen durch eine Basisstation an ein Endgerät, wobei die Anzeigeinformationen verwendet werden, um das Endgerät anzuweisen, Uplinkdaten zu senden, ohne die Uplinkdaten zu gewichten oder nachdem die Uplinkdaten unter Verwendung einer Identitätsmatrix gewichtet wurden;

    Empfangen (102, 302) von Uplinkdaten durch die Basisstation vom Endgerät, wobei die empfangenen Uplinkdaten ungewichtete Uplinkdaten oder unter Verwendung einer Identitätsmatrix gewichtete Uplinkdaten sind;

    Auswählen (103, 303) einer ersten PMI durch die Basisstation aus einem ersten Vorcodierungsmatrixanzeige(PMI)-Satz der Basisstation gemäß den empfangenen Uplinkdaten und

    Senden (104, 304) der ersten PMI durch die Basisstation an das Endgerät,

    dadurch gekennzeichnet, dass

    der Schritt des Auswählens (103, 303) der ersten PMI durch die Basisstation aus dem PMI-Satz der Basisstation Folgendes umfasst

    Durchführen (3031) einer Kanalschätzung an den Uplinkdaten, um einen Kanalantwortsatz auf einer geplanten Bandbreite zu erhalten, wobei die Kanal schätzung an den Uplinkdaten unter Verwendung eines Demodulationsreferenzsignals, DMRS, durchgeführt wird, wobei ein Kanalantwortsatz mehrere Kanalmatrices enthält und jede Kanalmatrix einem Ressourcenblock, RB, entspricht, derart, dass jede Kanalmatrix Kanalzustandsinformationen zu jedem RB reflektiert, und

    Durchführen (3032) einer Datenverarbeitung an jeder PMI im PMI-Satz der Basisstation und jeder Kanalmatrix im Kanalantwortsatz gemäß einem optimalen Systemleistungszielkriterium, um Metrikwerte zu erhalten, wo eine PMI, die einem maximalen Metrikwert entspricht, die ausgewählte erste PMI ist, wobei das optimale Systemleistungszielkriterium ein Leistungsmaximierungskriterium für empfangene Signale ist.


     
    2. Verfahren nach Anspruch 1, wobei: die Anzeigeinformationen eine zweite PMI sind, wobei die zweite PMI eine PMI ist, die einem Identitätsmatrixcodebuch im PMI-Satz der Basisstation entspricht; und
    die empfangenen Uplinkdaten sind Uplinkdaten, die gemäß einem Identitätsmatrixcodebuch, das der zweiten PMI entspricht, gewichtet werden.
     
    3. Verfahren zum Auswählen einer Vorcodierungsmatrixanzeige, das Folgendes umfasst:

    Empfangen (101) von Anzeigeinformationen durch ein Endgerät von einer Basisstation, wobei die Anzeigeinformationen verwendet werden, um das Endgerät anzuweisen, Uplinkdaten zu senden, ohne die Uplinkdaten zu gewichten oder nachdem die Uplinkdaten unter Verwendung einer Identitätsmatrix gewichtet wurden;

    Senden (102) von ungewichteten Uplinkdaten oder Uplinkdaten, die unter Verwendung einer Identitätsmatrix gewichtet wurden, durch das Endgerät gemäß den Anzeigeinformationen an die Basisstation;

    Auswählen (103, 303) einer ersten Vorcodierungsmatrixanzeige, PMI, durch die Basisstation aus einem ersten PMI-Satz der Basisstation gemäß den empfangenen Uplinkdaten und

    Empfangen (104) einer ersten PMI, die von der Basisstation gemäß den ungewichteten Uplinkdaten oder Uplinkdaten, die unter Verwendung einer Identitätsmatrix gewichtet wurden, aus einem PMI-Satz der Basisstation ausgewählt werden, durch das Endgerät von der Basisstation,

    dadurch gekennzeichnet, dass

    das Auswählen (103, 303) der ersten PMI durch die Basisstation aus dem PMI-Satz der Basisstation Folgendes umfasst

    Durchführen (3031) einer Kanalschätzung an den Uplinkdaten, um einen Kanalantwortsatz auf einer geplanten Bandbreite zu erhalten, wobei die Kanal schätzung an den Uplinkdaten unter Verwendung eines Demodulationsreferenzsignals, DMRS, durchgeführt wird, wobei ein Kanalantwortsatz mehrere Kanalmatrices enthält und jede Kanalmatrix einem Ressourcenblock, RB, entspricht, derart, dass jede Kanalmatrix Kanalzustandsinformationen zu jedem RB reflektiert, und

    Durchführen (3032) einer Datenverarbeitung an jeder PMI im PMI-Satz der Basisstation und jeder Kanalmatrix im Kanalantwortsatz gemäß einem optimalen Systemleistungszielkriterium, um Metrikwerte zu erhalten, wo eine PMI, die einem maximalen Metrikwert entspricht, die ausgewählte erste PMI ist, wobei das optimale Systemleistungszielkriterium ein Leistungsmaximierungskriterium für empfangene Signale ist.


     
    4. Verfahren nach Anspruch 3, wobei: die Anzeigeinformationen eine zweite PMI sind, wobei die zweite PMI eine PMI ist, die einem Identitätsmatrixcodebuch im PMI-Satz der Basisstation entspricht; das Senden (102) von ungewichteten Uplinkdaten oder Uplinkdaten, die unter Verwendung einer Identitätsmatrix gewichtet wurden, gemäß den Anzeigeinformationen an die Basisstation Folgendes umfasst:

    Auswählen (502) eines Identitätsmatrixcodebuchs, das der zweiten PMI entspricht, gemäß der zweiten PMI;

    Verwenden (502) des Identitätsmatrixcodebuchs, das der zweiten PMI entspricht, um Uplinkdaten zu gewichten; und

    Senden (503) der gewichteten Uplinkdaten an die Basisstation.


     
    5. Basisstation, die Folgendes umfasst:

    eine Sendeeinheit (71), die dazu ausgelegt ist, Anzeigeinformationen an ein Endgerät zu senden, wobei die Anzeigeinformationen verwendet werden, um das Endgerät anzuweisen, Uplinkdaten zu senden, ohne die Uplinkdaten zu gewichten oder nachdem die Uplinkdaten unter Verwendung einer Identitätsmatrix gewichtet wurden;

    eine Empfangseinheit (72), die dazu ausgelegt ist, Uplinkdaten vom Endgerät zu empfangen, wobei die empfangenen Uplinkdaten ungewichtete Uplinkdaten oder unter Verwendung einer Identitätsmatrix gewichtete Uplinkdaten sind; und

    eine Auswahleinheit (73), die dazu ausgelegt ist, gemäß den empfangenen Uplinkdaten, die von der Empfangseinheit (72) empfangen werden, eine erste PMI aus einem ersten Vorcodierungsmatrixanzeige(PMI)-Satz der Basisstation auszuwählen, wobei

    die Sendeeinheit (71) ferner dazu ausgelegt ist, die erste PMI, die von der Auswahleinheit (73) ausgewählt wird, an das Endgerät zu senden,

    dadurch gekennzeichnet, dass

    die Auswahleinheit (73) dazu ausgelegt ist, die erste PMI durch Folgendes aus dem PMI-Satz der Basisstation auszuwählen

    Durchführen einer Kanalschätzung an den Uplinkdaten, um einen Kanalantwortsatz auf einer geplanten Bandbreite zu erhalten, wobei die Kanalschätzung an den Uplinkdaten unter Verwendung eines Demodulationsreferenzsignals, DMRS, durchgeführt wird, wobei ein Kanalantwortsatz mehrere Kanalmatrices enthält und jede Kanalmatrix einem Ressourcenblock, RB, entspricht, derart, dass jede Kanalmatrix Kanalzustandsinformationen zu jedem RB reflektiert, und

    Durchführen einer Datenverarbeitung an jeder PMI im PMI-Satz der Basisstation und jeder Kanalmatrix im Kanalantwortsatz gemäß einem optimalen Systemleistungszielkriterium, um Metrikwerte zu erhalten, wo eine PMI, die einem maximalen Metrikwert entspricht, die ausgewählte erste PMI ist, wobei das optimale Systemleistungszielkriterium ein Leistungsmaximierungskriterium für empfangene Signale ist.


     
    6. Basisstation nach Anspruch 5, wobei: die Anzeigeinformationen, die von der Sendeeinheit (71) gesendet werden, eine zweite PMI sind, wobei die zweite PMI eine PMI ist, die einem Identitätsmatrixcodebuch im PMI-Satz der Basisstation entspricht; und
    die Uplinkdaten, die von der Empfangseinheit (72) empfangen werden, sind Uplinkdaten, die gemäß einem Identitätsmatrixcodebuch, das der zweiten PMI entspricht, gewichtet werden.
     
    7. Basisstation nach Anspruch 5 oder 6, wobei die Sendeeinheit (71) dazu ausgelegt ist, die Anzeigeinformationen unperiodisch an das Endgerät zu senden.
     
    8. Basisstation nach Anspruch 7, wobei die Sendeeinheit (71) dazu ausgelegt ist, die Anzeigeinformationen zur Zeit des Demodulationsreferenzsignals an das Endgerät zu senden.
     
    9. Basisstation nach Anspruch 5 oder 6, wobei die Sendeeinheit (71) dazu ausgelegt ist, die Anzeigeinformationen periodisch an das Endgerät zu senden.
     
    10. Basisstation nach Anspruch 9, wobei eine Sendeperiode der Anzeigeinformationen kürzer ist als eine Sendeperiode eines Sondierungssignals des Endgeräts.
     
    11. Computerprogrammprodukt, das ein computerlesbares Medium umfasst, wobei das computerlesbare Medium eine Gruppe von Programmcode umfasst, der dazu ausgelegt ist, das Verfahren nach einem der Ansprüche 1 bis 4 auszuführen.
     


    Revendications

    1. Procédé pour sélectionner une indication de matrice de précodage, comprenant :

    l'envoi (101, 301), par une station de base, d'informations d'indication à un terminal, dans lequel les informations d'indication sont utilisées pour donner l'instruction au terminal d'envoyer des données de liaison montante sans pondérer les données de liaison montante ou après avoir pondéré les données de liaison montante en utilisant une matrice d'identité ;

    la réception (102, 302), par la station de base, de données de liaison montante à partir du terminal, dans lequel les données de liaison montante reçues sont des données de liaison montante non pondérées ou des données de liaison montante pondérées en utilisant une matrice d'identité ;

    la sélection (103, 303), par la station de base, d'une première PMI à partir d'un ensemble indication de matrice de précodage, PMI, de la station de base selon les données de liaison montante reçues ; et

    l'envoi (104, 304), par la station de base, de la première PMI au terminal,

    caractérisé en ce que

    l'étape de sélection (103, 303), par la station de base, de la première PMI à partir de l'ensemble PMI de la station de base comprend

    la réalisation (3031) d'une estimation de canal sur les données de liaison montante pour obtenir un ensemble réponse de canal sur une largeur de bande ordonnancée, l'estimation de canal est réalisée sur les données de liaison montante en utilisant un signal de référence de démodulation, DMRS, dans lequel un ensemble réponse de canal contient plusieurs matrices de canal, et chaque matrice de canal correspond à un bloc de ressource, RB, pour que chaque matrice de canal reflète des informations d'état de canal sur chaque RB, et

    la réalisation (3032) d'un traitement de données sur chaque PMI dans l'ensemble PMI de la station de base et chaque matrice de canal dans l'ensemble réponse de canal selon un critère d'objectif de performances de système optimales pour obtenir des valeurs de mesure, où une PMI correspondant à une valeur de mesure maximum est la première PMI sélectionnée, dans lequel le critère d'objectif de performances de système optimales est un critère de maximisation de puissance de signal reçu.


     
    2. Procédé selon la revendication 1, dans lequel :

    les informations d'indication sont une seconde PMI, dans lequel la seconde PMI est une PMI correspondant à un livre de codes de matrice d'identité dans l'ensemble PMI de la station de base ; et

    les données de liaison montante reçues sont des données de liaison montante qui sont pondérées selon un livre de codes de matrice d'identité correspondant à la seconde PMI.


     
    3. Procédé pour sélectionner une indication de matrice de précodage, comprenant :

    la réception (101), par un terminal, d'informations d'indication à partir d'une station de base, dans lequel les informations d'indication sont utilisées pour donner l'instruction au terminal d'envoyer des données de liaison montante sans pondérer les données de liaison montante ou après avoir pondéré les données de liaison montante en utilisant une matrice d'identité ;

    l'envoi (102), par le terminal selon les informations d'indication, de données de liaison montante non pondérées ou de données de liaison montante pondérées en utilisant une matrice d'identité à la station de base ;

    la sélection (103, 303), par la station de base, d'une première indication de matrice de précodage, PMI, à partir d'un ensemble PMI de la station de base selon les données de liaison montante reçues ; et

    la réception (104), par le terminal, à partir de la station de base, d'une première PMI qui est sélectionnée par la station de base à partir d'un ensemble PMI de la station de base selon les données de liaison montante non pondérées ou les données de liaison montante pondérées en utilisant une matrice d'identité,

    caractérisé en ce que

    la sélection (103, 303), par la station de base, de la première PMI à partir de l'ensemble PMI de la station de base, comprend

    la réalisation (3031) d'une estimation de canal sur les données de liaison montante pour obtenir un ensemble réponse de canal sur une largeur de bande ordonnancée, l'estimation de canal est réalisée sur les données de liaison montante en utilisant un signal de référence de démodulation, DMRS, dans lequel un ensemble réponse de canal contient plusieurs matrices de canal, et chaque matrice de canal correspond à un bloc de ressource, RB, pour que chaque matrice de canal reflète des informations d'état de canal sur chaque RB, et

    la réalisation (3032) d'un traitement de données sur chaque PMI dans l'ensemble PMI de la station de base et chaque matrice de canal dans l'ensemble réponse de canal selon un critère d'objectif de performances de système optimales pour obtenir des valeurs de mesure, où une PMI correspondant à une valeur de mesure maximum est la première PMI sélectionnée, dans lequel le critère d'objectif de performances de système optimales est un critère de maximisation de puissance de signal reçu.


     
    4. Procédé selon la revendication 3, dans lequel : les informations d'indication sont une seconde PMI, dans lequel la seconde PMI est une PMI correspondant à un livre de codes de matrice d'identité dans l'ensemble PMI de la station de base ; l'envoi (102), selon les informations d'indication, de données de liaison montante non pondérées ou de données de liaison montante pondérées en utilisant une matrice d'identité à la station de base comprend :

    la sélection (502) d'un livre de codes de matrice d'identité correspondant à la seconde PMI selon la seconde PMI ;

    l'utilisation (502) du livre de codes de matrice d'identité correspondant à la seconde PMI pour pondérer des données de liaison montante ; et

    l'envoi (503) des données de liaison montante pondérées à la station de base.


     
    5. Station de base, comprenant :

    une unité d'envoi (71), configurée pour envoyer des informations d'indication à un terminal, dans laquelle les informations d'indication sont utilisées pour donner l'instruction au terminal d'envoyer des données de liaison montante sans pondérer les données de liaison montante ou après avoir pondéré les données de liaison montante en utilisant une matrice d'identité ;

    une unité de réception (72), configurée pour recevoir des données de liaison montante à partir du terminal, dans laquelle les données de liaison montante reçues sont des données de liaison montante non pondérées ou des données de liaison montante pondérées en utilisant une matrice d'identité ; et

    une unité de sélection (73), configurée pour sélectionner une première PMI à partir d'un ensemble indication de matrice de précodage, PMI, de la station de base selon les données de liaison montante reçues, reçues par l'unité de réception (72), dans laquelle l'unité d'envoi (71) est en outre configurée pour envoyer la première PMI sélectionnée par l'unité de sélection (73) au terminal,

    caractérisée en ce que

    l'unité de sélection (73) est configurée pour sélectionner la première PMI à partir de l'ensemble PMI de la station de base en

    réalisant une estimation de canal sur les données de liaison montante pour obtenir un ensemble réponse de canal sur une largeur de bande ordonnancée, l'estimation de canal est réalisée sur les données de liaison montante en utilisant un signal de référence de démodulation, DMRS, dans laquelle un ensemble réponse de canal contient plusieurs matrices de canal, et chaque matrice de canal correspond à un bloc de ressource, RB, pour que chaque matrice de canal reflète des informations d'état de canal sur chaque RB, et

    réalisant un traitement de données sur chaque PMI dans l'ensemble PMI de la station de base et chaque matrice de canal dans l'ensemble réponse de canal selon un critère d'objectif de performances de système optimales pour obtenir des valeurs de mesure, où une PMI correspondant à une valeur de mesure maximum est la première PMI sélectionnée, dans laquelle le critère d'objectif de performances de système optimales est un critère de maximisation de puissance de signal reçu.


     
    6. Station de base selon la revendication 5, dans laquelle : les informations d'indication envoyées par l'unité d'envoi (71) sont une seconde PMI, dans laquelle la seconde PMI est une PMI correspondant à un livre de codes de matrice d'identité dans l'ensemble PMI de la station de base ; et
    les données de liaison montante reçues par l'unité de réception (72) sont des données de liaison montante qui sont pondérées selon un livre de codes de matrice d'identité correspondant à la seconde PMI.
     
    7. Station de base selon la revendication 5 ou 6, dans laquelle l'unité d'envoi (71) est configurée pour envoyer les informations d'indication au terminal de façon non périodique.
     
    8. Station de base selon la revendication 7, dans laquelle l'unité d'envoi (71) est configurée pour envoyer les informations d'indication au terminal à l'instant du signal de référence de démodulation.
     
    9. Station de base selon la revendication 5 ou 6, dans laquelle l'unité d'envoi (71) est configurée pour envoyer les informations d'indication au terminal de façon périodique.
     
    10. Station de base selon la revendication 9, dans laquelle une période d'envoi des informations d'indication est plus courte qu'une période d'envoi d'un signal de sondage du terminal.
     
    11. Produit programme d'ordinateur, comprenant un support lisible par ordinateur, dans lequel le support lisible par ordinateur comprend un groupe de code de programme configuré pour exécuter le procédé selon l'une quelconque des revendications 1 à 4.
     




    Drawing
























    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description