(19)
(11)EP 3 025 177 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.09.2020 Bulletin 2020/37

(21)Application number: 14753329.3

(22)Date of filing:  24.07.2014
(51)International Patent Classification (IPC): 
G02B 6/30(2006.01)
G02B 6/36(2006.01)
G02B 6/42(2006.01)
(86)International application number:
PCT/NL2014/050510
(87)International publication number:
WO 2015/012694 (29.01.2015 Gazette  2015/04)

(54)

OPTICAL SUBASSEMBLY, OPTICAL SYSTEM AND METHOD

OPTISCHE BAUGRUPPE, OPTISCHES SYSTEM UND VERFAHREN

SOUS-ENSEMBLE OPTIQUE, SYSTÈME OPTIQUE ET PROCÉDÉ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 24.07.2013 EP 13177770

(43)Date of publication of application:
01.06.2016 Bulletin 2016/22

(73)Proprietor: EFFECT Photonics B.V.
5617 BC Eindhoven (NL)

(72)Inventor:
  • MUSK, Robert William
    Devon TQ7 4PL (GB)

(74)Representative: Nederlandsch Octrooibureau 
P.O. Box 29720
2502 LS The Hague
2502 LS The Hague (NL)


(56)References cited: : 
EP-B1- 1 442 326
US-A1- 2009 110 354
US-A1- 2002 196 998
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of the invention



    [0001] The invention relates to an optical subassembly comprising a carrier substrate, a photonic integrated circuit (PIC) comprising a first optical waveguide having a first longitudinal central axis, the PIC being arranged on the carrier substrate, an external optical system comprising a second optical waveguide having a second longitudinal central axis, a component for supporting the external optical system on the carrier substrate and maintaining alignment of the first longitudinal central axis of the first optical waveguide and the second longitudinal central axis of the second optical waveguide with respect to each other. The optical subassembly according to the invention provides significantly reduced misalignment between the first longitudinal central axis and the second longitudinal central axis during production, curing, aging and lifetime of the optical subassembly according to the invention. The invention also relates to an optical system comprising an optical subassembly according to the invention and a method of fabricating an optical subassembly according to the invention.

    Background of the invention



    [0002] As the complexity of photonic integrated circuits (PICs) increases, the physical size and the number of electrical connections, among others, also increase significantly. Unlike electrical integrated circuits, PICs comprising at least one optical waveguide require one or more optical interfaces in order to get photons in or out of the PIC, i.e. to enable optical communication between said at least one optical waveguide and an external optical system such as an optical fiber.

    [0003] Regarding packaging of an optical subassembly that comprises a PIC and an external optical system, the optical interfaces between the PIC and the external optical system present several constraints.

    [0004] A first exemplary constraint is the use of a lens or an optical coupling system to maximise the coupling efficiency between the PIC and the external optical system.

    [0005] A second exemplary constraint is that it is absolutely essential to fixate the external optical system, e.g. an optical fiber, at the point of highest coupling efficiency from the PIC to the external optical system, i.e. to align and maintain alignment of the first longitudinal central axis of the first optical waveguide of the PIC and the second longitudinal central axis of the second optical waveguide of the external optical system.

    [0006] A third exemplary constraint is that a method of aligning the external optical system to the PIC and fixating the external optical system to the carrier substrate must be automatable for use in high-volume low-cost applications. Furthermore, the method must use low-cost materials which are commonly available.

    [0007] Several processes are in common use to fixate an optical fiber in place to within 500nm precision to provide a stable optical interface between the PIC of an optical subassembly and the optical fiber output. These processes include the application of unfilled resins or resins filled with particulate matter to reduce shrinking of the resin upon curing. Both the unfilled and the filled resins are curable by at least one of ultraviolet (UV) light and heat. A further process includes fixation of optical fibers using metal clips or preforms, either welded or induction heated.

    [0008] Currently, all of the processes mentioned above have main disadvantages. Unfilled resins or epoxies have an inherent problem with shrinkage during curing, often 2% to 5% shrinkage of linear dimensions. A glue line between the optical fiber and the carrier substrate of the optical subassembly may be 100-150µm thick. In this case, a linear shrinkage of 2% to 5% percent may yield an alignment drift of 2µm to 7.5µm during curing. It is known that as a result of the latter significant alignment drift, coupling efficiency between the first optical waveguide of the PIC and the second optical waveguide of the optical fiber will drop at least by 5dB. This may be countered by intentionally mis-aligning the fiber to account for the shrinkage induced alignment drift, but such a process is not repeatable enough for use in production environments.

    [0009] Filled resins or epoxies comprise uncompressible particles, e.g. acrylate spheres having a diameter in a range of about 1µm to 5µm. Upon curing a filled resin, the liquid resin part exhibits the same linear shrinkage of 2% to 5% as in the case of unfilled resins. This shrinkage, in turn, causes the solid particulate spheres to pack tightly together. The compound shrinkage effect of a filled resin is then minimized to well below 0.5%. However, the filling particles clog automated dispensing nozzles and therefore this process is not suited for being automated in a production environment. Regarding the application of filled resins, the cost of labour is prohibitive.

    [0010] Optical fiber fixation using metal harnesses is a scalable and automatable process. However, the biggest drawback is the need for per-design micromachined metal harnesses to fit both the optical fiber and the geometry of the packaging for the optical subassembly. The requirements of per-piece parts and a specialized laser welding setup add a large cost to the overall packaging total. The bill-of-materials for this packaging method alone can be two orders of magnitude higher than the resin- or epoxy-based methods mentioned above. US2002/1996998 discloses an optical assembly which allows for passive alignment of the various elements is described. A substrate with a cut out portion and an upper surface is utilized as a mount for an optical array and an imaging assembly. The optical array, which preferably includes a plurality of optical fibers is positioned on V-grooves located on the upper surface. The imaging assembly, which preferably includes a plurality of lenses, such as GRIN lenses, is lowered at least partially into the cut-out portion. The optical fibers are optically coupled with said lenses. A waveguide, having a plurality of waveguide cores within a cladding, may further be optically coupled with the lenses, or alternatively, directly to the optical fibers. An integrated optic chip may also be affixed to the substrate or mounted on the substrate.
    US2009/110354 discloses a method of forming a microbump for micropositioning an optical element comprises providing a base substrate, providing a first optical element to be supported by the base substrate, and providing an alignment element capable of locally expanding when locally heated and adapted to support the first optical element from the base substrate. The method further comprises locally heating the alignment element to cause local expansion of the alignment element so as to create a microbump alignment element, terminating heating of the alignment element so as to fix the microbump and securing the alignment element to the base substrate, thereby supporting the first optical element from the base substrate.
    EP1442326 discloses a method of mounting an optical element in a substrate by forming a parallel sided slot in the substrate, the difference between a dimension of the optical element and the slot width at ambient temperature being a very small positive amount, producing a positive temperature differential between the substrate in the region of the slot and the optical element such that the said dimension is now no more than the slot width, inserting the optical element therein and allowing the said temperature differential to diminish and fixing the optical element to the substrate.

    Summary of the invention



    [0011] It is an object of the invention to provide an optical subassembly attaining a significantly reduced misalignment between the first longitudinal central axis of the first optical waveguide of the PIC and the second longitudinal central axis of the external optical system, e.g. an optical fiber, during production, curing, aging and lifetime of the optical subassembly according to the invention. In addition, the optical subassembly according to the invention pre-empts or at least reduces at least one of the other disadvantages mentioned above. It is also an object of the invention to provide an optical system comprising an optical subassembly according to this invention. Furthermore, it is an object of the invention to provide a method of fabricating an optical subassembly according to this invention that is repeatable enough and can be automated for use in a production environment.

    [0012] Aspects of this invention are set out in the accompanying independent and dependent claims. Combinations of features from the dependent claims may be combined with features of the independent claims as appropriate and not merely as explicitly set out in the claims.

    [0013] According to a first aspect of this invention, there is provided an optical subassembly comprising a carrier substrate, a photonic integrated circuit (PIC) comprising a first optical waveguide having a first longitudinal central axis, the PIC being arranged on the carrier substrate, an external optical system comprising a second optical waveguide having a second longitudinal central axis, a component for supporting the external optical system on the carrier substrate and maintaining alignment of the first longitudinal central axis of the first optical waveguide and the second longitudinal central axis of the second optical waveguide with respect to each other, a first layer of adhesive material being arranged between the component and the carrier substrate, and a second layer of adhesive material being arranged between the component and the external optical system, the first and second layers of adhesive material having respective first and second thicknesses, the sum of the first and second thicknesses being less than 10µm.

    [0014] In an embodiment of the optical subassembly according to the invention, the component comprises a material that is transparent for radiation for curing the first and second layers of adhesive material.

    [0015] In an embodiment of the optical subassembly according to the invention, the material of the component is transparent for at least one of blue and ultraviolet (UV) radiation.

    [0016] In an embodiment of the optical subassembly according to the invention, the material of the component is a glass-based material.

    [0017] In an embodiment of the optical subassembly according to the invention, the glass-based material is borosilicate glass.

    [0018] In an embodiment of the optical subassembly according to the invention, the component is provided with a cavity for receiving the external optical system and the second layer of adhesive material.

    [0019] In an embodiment of the optical subassembly according to the invention, the cavity is one of a slot and a bore.

    [0020] In an embodiment of the optical subassembly according to the invention, the external optical system is an optical fiber.

    [0021] In an embodiment of the optical subassembly according to the invention, the second layer of adhesive material is arranged at the perimeter of the optical fiber as a plurality of symmetric elongated strips that are equally spaced with respect to each other in a circumferential direction of the optical fiber.

    [0022] In an embodiment of the optical subassembly according to the invention, the adhesive material is an unfilled resin.

    [0023] According to a second aspect of this invention, there is provided an optical system comprising an optical subassembly according to this invention.

    [0024] According to a third aspect of this invention, there is provided a method of fabricating an optical subassembly comprising the steps of providing a carrier substrate, providing a photonic integrated circuit (PIC) comprising a first optical waveguide having a first longitudinal central axis, arranging the PIC on the carrier substrate, providing an external optical system comprising a second optical waveguide having a second longitudinal central axis, aligning the first longitudinal central axis of the first optical waveguide and the second longitudinal central axis of the second optical waveguide with respect to each other, providing a component for supporting the external optical system on the carrier substrate and maintaining the alignment of the first longitudinal central axis and the second longitudinal central axis, applying a first layer of adhesive material between the component and the carrier substrate and a second layer of adhesive material between the component and the external optical system, the first and second layers of adhesive material having respective first and second thicknesses, the sum of the first and second thicknesses being less than 10µm, and curing the first and second layers of adhesive material.

    [0025] In an embodiment of the method according to the invention, the method comprises a step of re-aligning the first longitudinal central axis of the first optical waveguide and the second longitudinal central axis of the second optical waveguide with respect to each other before curing the first and second layers of adhesive material.

    [0026] In an embodiment of the method according to the invention, the component is provided with a cavity for receiving the external optical system and the second layer of the adhesive material.

    [0027] In an embodiment of the method according to the invention, the cavity is arranged for wicking at least one of the first and second layers of adhesive material.

    [0028] In an embodiment of the method according to the invention, the component comprises a material that is transparent for radiation for curing the first and second layers of adhesive material.

    [0029] In an embodiment of the method according to the invention, at least one of blue or ultraviolet (UV) radiation is used for curing the first and second layers of adhesive material.

    [0030] In an embodiment of the method according to the invention, the adhesive material is an unfilled resin.

    Brief description of the drawings



    [0031] Embodiments of the present invention will be described hereinafter, by way of example only, with reference to the accompanying drawings which are schematic in nature and therefore not necessarily drawn to scale. Furthermore, like reference signs in the drawings relate to like elements. On the attached drawing sheets,
    • figure 1a shows a schematic cross-section of an exemplary embodiment of an optical subassembly according to the invention;
    • figure 1b provides a closer view of the schematic cross-section of the exemplary embodiment shown in figure 1a;
    • figure 2a shows a schematic perspective view of an exemplary embodiment of a component for supporting the optical fiber on the carrier substrate;
    • figure 2b shows a schematic cross-section of the exemplary embodiment of the component shown in figure 2a, wherein the optical fiber is arranged in a cavity;
    • figure 2c provides a schematic perspective view of an exemplary embodiment of an optical fiber that is provided with symmetric strips of the second layer of adhesive material being arranged at the perimeter of the optical fiber;
    • figure 3 shows a schematic layout of an exemplary embodiment of an optical system according to the invention comprising an optical subassembly according to the invention.

    Detailed description



    [0032] Embodiments of the present invention are described in the following with reference to the accompanying drawings.

    [0033] Figure 1a shows a schematic cross-section of an exemplary embodiment of an optical subassembly 1 according to the invention for achieving at least one of the objects mentioned above. The optical subassembly 1 comprises a carrier substrate 2, a photonic integrated circuit (PIC) 3 comprising a first optical waveguide 4 having a first longitudinal central axis, the PIC 3 being arranged on the carrier substrate 2, an external optical system 5, in this case an optical fiber, comprising a second optical waveguide 6 having a second longitudinal central axis, a component 7 for supporting the optical fiber 5 on the carrier substrate 2 and maintaining alignment of the first longitudinal central axis of the first optical waveguide 4 and the second longitudinal central axis of the second optical waveguide 6 with respect to each other.

    [0034] Figure 1b provides a closer view of the schematic cross-section of the exemplary embodiment shown in figure 1a, showing that the optical subassembly 1 further comprises a first layer 8 of adhesive material that is arranged between the component 7 and the carrier substrate 2 for mounting the component 7 on the carrier substrate 2. Furthermore, it can be seen that a second layer 9 of adhesive material is arranged between the component 7 and the optical fiber 5 for fixing the optical fiber 5 to the component 7. This is done to fix a lateral distance L between the PIC 3 and the optical fiber 5.

    [0035] The first 8 and second 9 layers of adhesive material have respective first and second thicknesses, the sum of the first and second thicknesses is less than 10µm. In this way it can be achieved that the amount of misalignment of the first longitudinal central axis of the first optical waveguide 4 of the PIC 3 and the second longitudinal central axis of the second optical waveguide 6 of the optical fiber 5 as a result of production, curing, aging and lifetime of the optical subassembly 1 according to the invention is less than 500nm even if an unfilled resin typically having 2% to 5% shrinkage of linear dimensions is used as adhesive material.

    [0036] Figure 2a shows a schematic perspective view of an exemplary embodiment of a component 7 for supporting the optical fiber 5 on the carrier substrate 2, wherein the component 7 is provided with a cavity that in this case is a slot 10 for receiving the optical fiber 5 and the second layer 9 of the adhesive material. In another embodiment the cavity 10 can be a bore.

    [0037] According to the invention, the component 7 comprises a material that is transparent for radiation in order to cure the first 8 and second 9 layers of the adhesive material. In particular, the material of the component 7 is transparent for at least one of blue and ultraviolet (UV) radiation. In this respect, glass-based materials such as borosilicate glass are very suitable for curing liquid unfilled resins or epoxies that preferably are being used as adhesive material for reasons mentioned above.

    [0038] Furthermore, a glass-based block that can be used to fabricate a glass-based pre-form bridge 7 as a component 7 according to the invention, has geometries that are selected such that the slot 10 of the glass-based pre-form bridge 7 and any separation cuts can be applied using a standard size diamond blade saw. This allows the glass-based pre-form bridge 7 to be fabricated in a waferscale process, dropping the price per glass-based pre-form bridge 7 into the cents range. In this way a low-cost solution can be provided to implement the component 7 according to the invention.

    [0039] Figure 2b shows a schematic cross-section of the exemplary embodiment of the component shown in figure 2a, wherein the optical fiber 5 is arranged in the slot 10 of the glass-based pre-form bridge 7. The skilled person will appreciate that the slot 10 has a width that is slightly wider than the outer diameter of the optical fiber 5 in order to enable capillary action by which unfilled resin will be wicked where required for fixing the optical fiber to the glass-based pre-form bridge 7.

    [0040] Figure 2c provides a schematic perspective view of an exemplary embodiment of the optical fiber 5 wherein the optical fiber 5 is provided with two symmetric elongated strips 9a, 9b of the second layer 9 of adhesive material at its perimeter. The strips 9a, 9b are equally spaced with respect to each other in a circumferential direction of the optical fiber 5. The strips 9a, 9b can be the result of wicking of the unfilled resin at the positions shown in figure 2b where the distance between the outer diameter of the optical fiber 5 and the inner walls of the slot 10 are narrowest. The arrangement of the symmetric elongated strips 9a, 9b of the second layer 9 of adhesive material shown in figure 2c allows shrinking effects to cancel each other out. As a result, alignment accuracy can further be increased. The skilled person will appreciate that according to another exemplary embodiment of the invention the number of elongated strips can be three, four or five, i.e. any suitable and practical number. The skilled person will also appreciate that the configuration of the slot 10 and the positioning of the optical fiber 5 in the slot 10 will determine the actual configuration of the elongated strips of the second layer 9 of adhesive material. Furthermore, the skilled person will appreciate that the elongated strips may be applied on the optical fiber 5 by any suitable technique.

    [0041] In addition, the skilled person will appreciate that the coplanarity and surface area of the bottom of the glass-based pre-form bridge 7 and the top of the carrier substrate 2 allow for a very thin and extremely strong adhesion, obviating the need for specialized high-strength low-precision strain relief mechanics.

    [0042] Moreover, using surface tension and wetting allows low-viscosity unfilled resins or epoxies to effectively coat the outside and inside surfaces of the glass-based pre-form bridge 7 with the optimum amount of adhesive thickness, i.e. the total thickness of the first 8 and second 9 layers of the adhesive material are less than 10µm.

    [0043] In an alternative embodiment, the glass-based pre-form bridge 7 could be positioned trough up, i.e. the glass-based pre-form bridge 7 is positioned on the carrier substrate 2 such that the slot 10 faces away from the top of the carrier substrate 2. However, this arrangement would require a this base of the glass-based pre-form bridge 7 in order to align the first longitudinal central axis of the first optical waveguide 4 of the PIC 3 and the second longitudinal central axis of the second optical waveguide 6 of the optical fiber 5.

    [0044] According to the invention, the first longitudinal central axis of the first optical waveguide 4 and the second longitudinal central axis of the second optical waveguide 6 are first so-called dry aligned, i.e. the second optical waveguide 6 is positioned with respect to the first optical waveguide 4 at the point of highest coupling efficiency from the PIC 3 to the optical fiber 5 without finally fixing the optical fiber 5 to the carrier substrate 2. Then, the glass-based pre-form bridge 7 is positioned on the carrier substrate 2 thereby receiving the optical fiber 5 in the slot 10. Next, liquid unfilled resin is applied to a side of the glass-based pre-form bridge 7 facing away from the PIC 3. As a result of the capillary action, surface tension and wetting described above, a first 8 and second 9 layer of the unfilled resin is formed to eventually fix the glass-based pre-form bridge 7 to the carrier substrate 2 and the optical fiber 5 respectively. If realignment of the first longitudinal central axis of the first optical waveguide 4 and the second longitudinal central axis of the second optical waveguide 6 is required this may be done. Finally, the first 8 and second 9 layers of the liquid unfilled resin are cured using blue or UV light. Upon curing the unfilled resin is deprived of solvent and the unfilled resin hardens to fix the glass-based pre-form bridge 7 to the carrier substrate 2 and the optical fiber 5 respectively. The total thickness of the first 8 and second 9 layers of the unfilled resin is less than 10µm. As a result, the optical subassembly 1 according to the invention allows the above described curing-induced shrinkage of the unfilled resin and the associated movement of the optical fiber 5 to be less than 500nm.

    [0045] Figure 3 shows a schematic layout of an exemplary embodiment of an optical system 12 comprising an optical subassembly 1 according to the invention. The skilled person will appreciate that many optical systems 12 according to the invention ranging from low-complexity to high-complexity systems may be envisaged. Furthermore, the skilled person will appreciate that optical systems 12 according to the invention may be used in various applications including telecommunications applications.

    [0046] Accordingly, it has been described that this invention relates to an optical subassembly 1 comprising a carrier substrate 2, a photonic integrated circuit 3 (PIC) comprising a first optical waveguide 4 having a first longitudinal central axis, the PIC being arranged on the carrier substrate, an external optical system 5 comprising a second optical waveguide 6 having a second longitudinal central axis, a component 7 for supporting the external optical system on the carrier substrate and maintaining alignment of the first and second longitudinal central axes with respect to each other, and an adhesive material 8, 9 being arranged between the component and the carrier substrate and between the component and the external optical system, the adhesive material having a total thickness of less than 10µm. The invention also relates to an optical system 12 comprising an optical subassembly 1 according to the invention and to a method of fabricating an optical subassembly 1 according to the invention.

    [0047] In particular, the invention provides a solution that is particularly suited to low-cost volume packaging efforts of optical subassemblies 1 by using an unfilled resin or epoxy which can be applied using automated methods and prevent it from shrinking using a glass-based pre-form bridge 7. By using this pre-form in effect as a method to minimize the linear thickness of the unfilled resin or epoxy layer. By reducing the total thickness of the first 8 and second 9 layers of the unfilled resin to less than 10um, even a linear shrinkage of 5% will allow to keep the curing-induced shrinkage of the unfilled resin and the associated movement of the optical fiber 5 below 500nm. In this way fiber aligment tolerances can be met by using low-cost materials. Furthermore, by using unfilled resins or epoxies it may be possible to establish an automated production method for high-volume and low-cost applications. Moreover, it may be possible to provide a piece-parts bill-of-materials that is several orders of magnitude lower than in the case of using metal harnesses.

    [0048] In the foregoing description of the drawings, the invention has been described with reference to specific embodiments thereof. It will, however, be evident that various modifications/additions and/or changes/substitutions may be made thereto without departing from the scope of the invention as summarized in the attached claims.

    [0049] In particular, combinations of specific features of various aspects of the invention may be made. An aspect of the invention may be further advantageously enhanced by adding a feature that was described in relation to another aspect of the invention.

    [0050] It is to be understood that the invention is limited by the annexed claims and its technical equivalents only. In this document and in its claims, the verb "to comprise" and its conjugations are used in their non-limiting sense to mean that items following the word are included, without excluding items not specifically mentioned. In addition, reference to an element by the indefinite article "a" or "an" does not exclude the possibility that more than one of the element is present, unless the context clearly requires that there be one and only one of the elements. The indefinite article "a" or "an" thus usually means "at least one".


    Claims

    1. An optical subassembly (1) comprising

    - a carrier substrate (2);

    - a photonic integrated circuit (3), PIC, comprising a first optical waveguide (4) having a first longitudinal central axis, said PIC (3) being arranged on the carrier substrate (2);

    - an external optical system (5) comprising a second optical waveguide (6) having a second longitudinal central axis;

    - a component (7) for supporting the external optical system (5) on the carrier substrate (2) and maintaining alignment of the first longitudinal central axis of the first optical waveguide (4) and the second longitudinal central axis of the second optical waveguide (6) with respect to each other;

    - a first layer (8) of adhesive material being arranged between said component (7) and the carrier substrate (2) configured to mount said component (7) directly on the carrier substrate (2); and

    - a second layer (9) of adhesive material being arranged between said component (7) and the second optical wave guide(5)configured to mount the second optical wave guide (5) directly to the component (7), said first (8) and second (9) layers of adhesive material having respective first and second thicknesses, the sum of said first and second thicknesses being less than 10µm.


     
    2. The optical subassembly (1) according to claim 1, wherein said component (7) comprises a material that is transparent for radiation for curing said first (8) and second (9) layers of adhesive material.
     
    3. The optical subassembly (1) according to claim 1 or 2, wherein the material of said component (7) is transparent for at least one of blue and ultraviolet, UV, radiation.
     
    4. The optical subassembly (1) according to any one of the preceding claims, wherein the material of said component (7) is a glass-based material.
     
    5. The optical subassembly (1) according to claim 4, wherein the glass-based material is borosilicate glass.
     
    6. The optical subassembly (1) according to any one of the preceding claims, wherein said component (7) is provided with a cavity (10) for receiving the external optical system (5) and the second layer (9) of adhesive material.
     
    7. The optical subassembly (1) according to any one of the preceding claims, wherein the the second optical wave guide (6) is an optical fiber.
     
    8. The optical subassembly (1) according to claim 7, wherein the second layer (9) of adhesive material is arranged at the perimeter of the optical fiber (5) as a plurality of symmetric elongated strips (9a, 9b) that are equally spaced with respect to each other in a circumferential direction of the optical fiber (5).
     
    9. The optical subassembly (1) according to any one of the preceding claims, wherein the adhesive material is an unfilled resin.
     
    10. An optical system (12) comprising an optical subassembly (1) according to any one of the preceding claims.
     
    11. A method of fabricating an optical subassembly (1) comprising

    - providing a carrier substrate (2);

    - providing a photonic integrated circuit (3), PIC, comprising a first optical waveguide (4) having a first longitudinal central axis;

    - arranging the PIC (3) on the carrier substrate (2);

    - providing an external optical system (5) comprising a second optical waveguide (6) having a second longitudinal central axis;

    - aligning the first longitudinal central axis of the first optical waveguide (4) and the second longitudinal central axis of the second optical waveguide (6) with respect to each other;

    - providing a component (7) for supporting the external optical system (5) on the carrier substrate (2) and maintaining the alignment of the first longitudinal central axis and the second longitudinal central axis;

    - applying a first layer (8) of adhesive material between said component (7) and the carrier substrate (2) and a second layer (9) of adhesive material between said component (7) and the the second optical wave guide (6), said first (8) and second (9) layers of adhesive material having respective first and second thicknesses, the sum of said first and second thicknesses being less than 10µm; and

    - curing said first (8) and second (9) layers of adhesive material.


     
    12. The method according to claim 11, comprising re-aligning the first longitudinal central axis of the first optical waveguide (4) and the second longitudinal central axis of the second optical waveguide (6) with respect to each other before curing the first (8) and second (9) layers of adhesive material.
     
    13. The method according to claim 11 or 12, wherein said component (7) is provided with a cavity (10) for receiving the external optical system (5) and the second layer (9) of the adhesive material.
     
    14. The method according to claim 13, said cavity (10) being arranged for wicking at least one of said first (8) and second (9) layers of adhesive material.
     
    15. The method according to any one of claims 11 to 14, wherein said component (7) comprises a material that is transparent for radiation for curing the first (8) and second (9) layers of adhesive material.
     


    Ansprüche

    1. Optische Baugruppe (1), umfassend

    - ein Trägersubstrat (2);

    - einen photonischen Schaltkreis (3), PIC, umfassend einen ersten Lichtwellenleiter (4) mit einer ersten Längsmittelachse, wobei der PIC (3) auf dem Trägersubstrat (2) angeordnet ist;

    - ein externes optisches System (5) mit einem zweiten Lichtwellenleiter (6) mit einer zweiten Längsmittelachse;

    - eine Komponente (7) zum Halten des externen optischen Systems (5) auf dem Trägersubstrat (2) und Aufrechterhalten der Ausrichtung der ersten Längsmittelachse des ersten Lichtwellenleiters (4) und der zweiten Längsmittelachse des zweiten Lichtwellenleiters (6) zueinander;

    - eine erste Schicht (8) aus adhäsivem Material, die zwischen der Komponente (7) und dem Trägersubstrat (2) angeordnet und konfiguriert ist, um die Komponente (7) direkt auf dem Trägersubstrat (2) anzubringen, und

    - eine zweite Schicht (9) aus adhäsivem Material, die zwischen der Komponente (7) und dem zweiten Lichtwellenleiter (5) angeordnet und konfiguriert ist, um den zweiten Lichtwellenleiter (5) direkt auf der Komponente (7) anzubringen, wobei die ersten (8) und zweiten (9) Schichten aus adhäsivem Material jeweilige erste und zweite Dicken aufweisen, wobei die Summe der ersten und zweiten Dicken kleiner als 10 µm ist.


     
    2. Optische Baugruppe (1) nach Anspruch 1, wobei die Komponente (7) ein Material umfasst, das für Strahlung zum Härten der ersten (8) und zweiten (9) Schichten aus adhäsivem Material transparent ist.
     
    3. Optische Baugruppe (1) nach Anspruch 1 oder 2, wobei das Material der Komponente (7) für mindestens eine von blauer und ultravioletter, UV, Strahlung transparent ist.
     
    4. Optische Baugruppe (1) nach einem der vorangehenden Ansprüche, wobei das Material der Komponente (7) ein glasbasiertes Material ist.
     
    5. Optische Baugruppe (1) nach Anspruch 4, wobei das glasbasierte Material Borosilikatglas ist.
     
    6. Optische Baugruppe (1) nach einem der vorangehenden Ansprüche, wobei die Komponente (7) mit einem Hohlraum (10) zur Aufnahme des externen optischen Systems (5) und der zweiten Schicht (9) aus adhäsivem Material versehen ist.
     
    7. Optische Baugruppe (1) nach einem der vorangehenden Ansprüche, wobei der zweite Lichtwellenleiter (6) eine optische Faser ist.
     
    8. Optische Baugruppe (1) nach Anspruch 7, wobei die zweite Schicht (9) aus adhäsivem Material am Rand der optischen Faser (5) als eine Vielzahl von symmetrischen länglichen Streifen (9a, 9b) angeordnet ist, die zueinander in einer Umfangsrichtung der optischen Faser (5) gleichmäßig beabstandet sind.
     
    9. Optische Baugruppe (1) nach einem der vorangehenden Ansprüche, wobei das adhäsive Material ein ungefülltes Harz ist.
     
    10. Optisches System (12) mit einer optischen Baugruppe (1) nach einem der vorangehenden Ansprüche.
     
    11. Verfahren zur Herstellung einer optischen Baugruppe (1), umfassend

    - Bereitstellen eines Trägersubstrats (2);

    - Bereitstellen eines photonischen Schaltkreises (3), PIC, umfassend einen ersten Wellenleiter (4) mit einer ersten Längsmittelachse;

    - Anordnen des PIC (3) auf dem Trägersubstrat (2);

    - Bereitstellen eines externen optischen Systems (5) mit einem zweiten Lichtwellenleiter (6) mit einer zweiten Längsmittelachse;

    - Ausrichten der ersten Längsmittelachse des ersten Lichtwellenleiters (4) und der zweiten Längsmittelachse des zweiten Lichtwellenleiters (6) zueinander;

    - Bereitstellen einer Komponente (7) zum Halten des externen optischen Systems (5) auf dem Trägersubstrat (2) und Aufrechterhalten der Ausrichtung der ersten Längsmittelachse und der zweiten Längsmittelachse;

    - Aufbringen einer ersten Schicht (8) aus adhäsivem Material zwischen der Komponente (7) und dem Trägersubstrat (2) und einer zweiten Schicht (9) aus adhäsivem Material zwischen der Komponente (7) und dem zweiten Lichtwellenleiter (6), wobei die ersten (8) und zweiten (9) Schichten aus adhäsivem Material jeweilige erste und zweite Dicken aufweisen, wobei die Summe der ersten und zweiten Dicken kleiner als 10 µm ist; und

    - Härten der ersten (8) und zweiten (9) Schichten aus adhäsivem Material.


     
    12. Verfahren nach Anspruch 11, umfassend Neuausrichten der ersten Längsmittelachse des ersten Lichtwellenleiters (4) und der zweiten Längsmittelachse des zweiten Lichtwellenleiters (6) zueinander vor Härten der ersten (8) und zweiten (9) Schichten aus adhäsivem Material.
     
    13. Verfahren nach Anspruch 11 oder 12, wobei die Komponente (7) mit einem Hohlraum (10) zur Aufnahme des externen optischen Systems (5) und der zweiten Schicht (9) aus adhäsivem Material versehen ist.
     
    14. Verfahren nach Anspruch 13, wobei der Hohlraum (10) für Saugen von mindestens einer der ersten (8) und zweiten (9) Schichten aus adhäsivem Material gestaltet ist.
     
    15. Verfahren nach einem der Ansprüche 11 bis 14, wobei die Komponente (7) ein Material umfasst, das für Strahlung zum Härten der ersten (8) und zweiten (9) Schichten aus adhäsivem Material transparent ist.
     


    Revendications

    1. Sous-ensemble optique (1) comprenant

    - un substrat porteur (2) ;

    - un circuit photonique intégré (3), PIC, comprenant un premier guide d'onde optique (4) ayant un premier axe central longitudinal, ledit PIC (3) étant disposé sur le substrat porteur (2) ;

    - un système optique externe (5) comprenant un second guide d'onde optique (6) ayant un second axe central longitudinal ;

    - un composant (7) pour supporter le système optique externe (5) sur le substrat porteur (2) et maintenir un alignement du premier axe central longitudinal du premier guide d'onde optique (4) et du second axe central longitudinal du second guide d'onde optique (6) l'un par rapport à l'autre ;

    - une première couche (8) de matériau adhésif qui est disposée entre ledit composant (7) et le substrat porteur (2) configurée pour monter ledit composant (7) directement sur le substrat porteur (2) ; et

    - une seconde couche (9) de matériau adhésif qui est disposée entre ledit composant (7) et le second guide d'onde optique (5) configurée pour monter le second guide d'onde optique (5) directement sur le composant (7), lesdites première (8) et seconde (9) couches de matériau adhésif ayant respectivement des première et seconde épaisseurs, la somme desdites première et seconde épaisseurs étant inférieure à 10 µm.


     
    2. Sous-ensemble optique (1) selon la revendication 1, dans lequel ledit composant (7) comprend un matériau qui est transparent vis-à-vis d'un rayonnement pour durcir lesdites première (8) et seconde (9) couches de matériau adhésif.
     
    3. Sous-ensemble optique (1) selon la revendication 1 ou 2, dans lequel le matériau dudit composant (7) est transparent vis-à-vis d'au moins l'un parmi un rayonnement bleu et ultraviolet, UV.
     
    4. Sous-ensemble optique (1) selon l'une quelconque des revendications précédentes, dans lequel le matériau dudit composant (7) est un matériau à base de verre.
     
    5. Sous-ensemble optique (1) selon la revendication 4, dans lequel le matériau à base de verre est du verre de borosilicate.
     
    6. Sous-ensemble optique (1) selon l'une quelconque des revendications précédentes, dans lequel ledit composant (7) est muni d'une cavité (10) pour recevoir le système optique externe (5) et la seconde couche (9) de matériau adhésif.
     
    7. Sous-ensemble optique (1) selon l'une quelconque des revendications précédentes, dans lequel le second guide d'onde optique (6) est une fibre optique.
     
    8. Sous-ensemble optique (1) selon la revendication 7, dans lequel la seconde couche (9) de matériau adhésif est disposée au niveau du périmètre de la fibre optique (5) sous forme d'une pluralité de bandes allongées symétriques (9a, 9b) qui sont espacées de manière égale les unes par rapport aux autres dans une direction circonférentielle de la fibre optique (5).
     
    9. Sous-ensemble optique (1) selon l'une quelconque des revendications précédentes, dans lequel le matériau adhésif est une résine non chargée.
     
    10. Système optique (12) comprenant un sous-ensemble optique (1) selon l'une quelconque des revendications précédentes.
     
    11. Procédé de fabrication d'un sous-ensemble optique (1) comprenant les étapes consistant à

    - fournir un substrat porteur (2) ;

    - fournir un circuit intégré photonique (3), PIC, comprenant un premier guide d'onde optique (4) ayant un premier axe central longitudinal ;

    - disposer le PIC (3) sur le substrat porteur (2) ;

    - fournir un système optique externe (5) comprenant un second guide d'onde optique (6) ayant un second axe central longitudinal ;

    - aligner le premier axe central longitudinal du premier guide d'onde optique (4) et le second axe central longitudinal du second guide d'onde optique (6) l'un par rapport à l'autre ;

    - fournir un composant (7) pour supporter le système optique externe (5) sur le substrat porteur (2) et maintenir l'alignement du premier axe central longitudinal et du second axe central longitudinal ;

    - appliquer une première couche (8) de matériau adhésif entre ledit composant (7) et le substrat porteur (2) et une seconde couche (9) de matériau adhésif entre ledit composant (7) et le second guide d'onde optique (6), lesdites première (8) et seconde (9) couches de matériau adhésif ayant des première et seconde épaisseurs respectives, la somme desdites première et seconde épaisseurs étant inférieures à 10 µm ; et

    - durcir lesdites première (8) et seconde (9) couches de matériau adhésif.


     
    12. Procédé selon la revendication 11, comprenant la réalignement du premier axe central longitudinal du premier guide d'onde optique (4) et du second axe central longitudinal du second guide d'onde optique (6) l'un par rapport à l'autre avant de durcir les première (8) et seconde (9) couches de matériau adhésif.
     
    13. Procédé selon la revendication 11 ou 12, dans lequel ledit composant (7) est muni d'une cavité (10) pour recevoir le système optique externe (5) et la seconde couche (9) du matériau adhésif.
     
    14. Procédé selon la revendication 13, ladite cavité (10) étant disposée pour assécher au moins une desdites première (8) et seconde (9) couches de matériau adhésif.
     
    15. Procédé selon l'une quelconque des revendications 11 à 14, dans lequel ledit composant (7) comprend un matériau qui est transparent vis-à-vis d'un rayonnement pour durcir les première (8) et seconde (9) couches de matériau adhésif.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description