(19)
(11)EP 3 027 951 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 14831345.5

(22)Date of filing:  23.04.2014
(51)Int. Cl.: 
F16L 53/38  (2018.01)
F16L 33/01  (2006.01)
F16L 11/127  (2006.01)
F16L 53/34  (2018.01)
F16L 25/01  (2006.01)
F16L 11/08  (2006.01)
(86)International application number:
PCT/DK2014/050109
(87)International publication number:
WO 2015/014365 (05.02.2015 Gazette  2015/05)

(54)

AN UNBONDED FLEXIBLE PIPE AND AN OFFSHORE SYSTEM COMPRISING AN UNBONDED FLEXIBLE PIPE

UNGEBUNDENE SCHLAUCHLEITUNG UND OFFSHORE-SYSTEM MIT EINER UNGEBUNDENEN SCHLAUCHLEITUNG

TUYAU SOUPLE NON LIÉ ET SYSTÈME EN MER COMPRENANT UN TUYAU SOUPLE NON LIÉ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 02.08.2013 DK 201370431

(43)Date of publication of application:
08.06.2016 Bulletin 2016/23

(73)Proprietor: National Oilwell Varco Denmark I/S
2605 Brøndby (DK)

(72)Inventor:
  • GLEJBØL, Kristian
    DK-2600 Glostrup (DK)

(74)Representative: Plougmann Vingtoft a/s 
Strandvejen 70
2900 Hellerup
2900 Hellerup (DK)


(56)References cited: : 
EP-A1- 0 479 519
EP-A1- 0 485 220
EP-A1- 2 493 262
WO-A1-99/19656
GB-A- 2 480 072
US-B1- 6 315 497
EP-A1- 0 485 220
EP-A1- 0 616 166
WO-A1-89/11616
GB-A- 2 084 284
US-A1- 2012 217 000
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The invention relates to an unbonded flexible pipe for offshore and subsea transportation of fluids, in particular fluids which solidify if subjected to a temperature drop, such as hydrocarbons, water and mixtures hereof. The invention also relates to an offshore system comprising an unbounded flexible pipe such as a riser pipe and/or a flow line.

    BACKGROUND ART



    [0002] Flexible unbonded pipes of the present type are for example described in the standard "Recommended Practice for Flexible Pipe", ANSI/API 17 B, fourth Edition, July 2008, and the standard "Specification for Unbonded Flexible Pipe", ANSI/API 17J, Third edition, July 2008. Such pipes usually comprise an innermost sealing sheath - often referred to as an internal pressure sheath, which forms a barrier against the outflow of the fluid which is conveyed in the bore of the pipe, and one or usually a plurality of armoring layers. Often the pipe further comprises an outer protection layer which provides mechanical protection of the armor layers. The outer protection layer may be a sealing layer sealing against ingress of sea water. In certain unbonded flexible pipes one or more intermediate sealing layers are arranged between armor layers.

    [0003] In general flexible pipes are expected to have a lifetime of 20 years in operation.

    [0004] The term "unbonded" means in this text that at least two of the layers including the armoring layers and polymer layers are not bonded to each other. In practice the known pipe normally comprises at least two armoring layers located outside the inner sealing sheath and optionally an armor structure located inside the inner sealing sheath normally referred to as a carcass.

    [0005] These armoring layers comprise or consist of multiple elongated armoring elements that are not bonded to each other directly or indirectly via other layers along the pipe. Thereby the pipe becomes bendable and sufficiently flexible to roll up for transportation.

    [0006] Unbonded flexible pipes are often used e.g. as riser pipes in the production of oil or other subsea applications. One of the difficulties in the production of crude oil and other fluids from reserves located in deep waters is that the crude oil normally has a temperature which is relatively high compared to the temperature of the surrounding sea water and during transportation from the reservoir to a top-site production platform or when transported in a flow line, the fluid is cooled down to a lower temperature which may increase the viscosity of the fluid or even result in more or less blocking of the pipe due to the formation of hydrates and waxes or other solidified substances.

    [0007] In order to avoid undesired cooling down of a fluid in an unbonded flexible pipe, it is well known to provide the unbonded flexible pipe with one or more thermal insulation layers. The thermal insulation of subsea pipelines is a practice which in certain situations does not provide a sufficient protection against formation of solidified substances in the fluid, such as in case of temporary production stop. As temporary production stops cannot be fully avoided, it is essential that the pipe system is designed to ensure that the pipe is not blocked by solidified substances during a temporary production stop. Removal of a blocking in a pipe can be very difficult and costly and in worst case it is not possible to remove the blocking and as a result the whole pipe must be replaced.

    [0008] Several methods of actively heating the pipe have been described in the art. These methods can be categorized in two groups, namely a group using flowing of hot fluids in selected spaces within the pipe wall and a group using electric heating.

    [0009] EP 485 220 discloses an electric heating system for subsea flexible pipelines which includes the provision of an electric unit consisting of a controlled rectifying unit, which is the source of current, an electric cable positioned in parallel with the flexible pipeline for the return of the current, and two terminal connectors which electrically isolate the double-reinforced crossed armoring, the electric current being conducted by the tensile armoring or the carcass and returning by an electric cable installed outside the flexible pipeline.

    [0010] US 7,123,826 discloses a pipe comprising a tubular member formed of a plastic material, and a plurality of electrical current conductive materials dispersed in the plastic material for increasing the electrical conductivity of the tubular layer, so that when electrical power is supplied to the conductor, the current flows through the materials to heat the pipe and the fluids.

    [0011] US 2012/0217000 discloses a system for electrical heating of risers or pipes which has at least two concentric layers of metal wires adapted to be used for low-voltage direct electric heating (LV-DEH), each pair being provided to heat a specific segment of a riser or a pipe. The system can be used for both the pipeline and the riser up to a top site structure.

    [0012] In principle the prior art systems provide suitable methods of heating the pipeline. However, there is still a need for an unbonded flexible pipe and an offshore system with such a pipe which provide both a good protection against blocking of the pipe in the event of a temporary production stop while simultaneously being simple and safe.

    DISCLOSURE OF INVENTION



    [0013] An object of the present invention is to provide an unbonded flexible pipe suitable for use as a riser or a flowline for transporting fluids from a subsea facility e.g. to a top site structure or along the seabed in a flowline, where the pipe can be subjected to electric heating in a simple and cost effective way.

    [0014] Another object of the present invention is to provide an unbonded flexible pipe suitable for use in transporting fluids from a subsea facility, where the pipe in case of a temporary production stop can be subjected to an electric heating while simultaneously having low risk of side effects due to the application of current.

    [0015] A further object of the present invention is to provide an offshore system comprising an unbonded flexible pipe and being suitable for use as a riser or a flowline for transporting fluids from a subsea facility to a production site structure, where the pipe in case of a temporary production stop can be subjected to an electric heating in a simple and cost effective way and with low risk of undesired side effects due to application of current.

    [0016] These objects have been solved by the invention as defined in the claims and described herein.

    [0017] It has been found that the invention and/or embodiments thereof have a number of additional advantages which will be clear to the skilled person from the following description.

    [0018] The unbonded flexible pipe of the invention is in particular in the form of an unbounded flexible pipe for transportation of fluids from a subsea facility to a production site structure.

    [0019] As defined in the present application the unbounded flexible pipe comprises at least a first end-fitting and preferable a second end-fitting and optionally intermediate end-fittings interconnecting sections of the pipe.

    [0020] In an embodiment the unbonded flexible pipe is suitable for transporting fluid between a top site structure and a subsea facility, where the top site structure is arranged at a relatively vertically higher position than the subsea facility. The top site structure can for example be a floating unit such as a floating platform or a vessel or a stationary unit. The top site structure will usually be arranged near the water line, such as within from about 25 m above the water line to about 100 m below the water line.

    [0021] In an embodiment the unbonded flexible pipe is suitable for transporting fluid along the seabed in a flow line from a subsea facility to a production site structure.

    [0022] The production site structure can be a top site structure as defined herein, but it can also be any other structure arranged subsea e.g. an intermediate container or another transportation pipe.

    [0023] The term "water line" means the water line at still water. Unless specifically mentioned all distances and determinations in relation to the water line are made at still water at average water level.

    [0024] The term "in radial direction" means a direction from the axis of the pipe and radially outwards.

    [0025] The terms "inside" and "outside" a layer of the pipe are used to designate the relative distance to the axis of the pipe, such that "inside a layer" means the area encircled by the layer i.e. with a shorter axial distance than the layer and "outside a layer" means the area not encircled by the layer and not contained by the layer, i.e. with a shorter axial distance than the layer.

    [0026] The term "substantially" should herein be taken to mean that ordinary product variances and tolerances are comprised.

    [0027] The term "cross-wound layers" means that the layers comprise wound elongate elements that are wound in opposite direction relatively to the longitudinal axis of the pipe where the angle to the longitudinal axis can be equal or different from each other.

    [0028] It should be emphasized that the term "comprises/comprising" when used herein is to be interpreted as an open term, i.e. it should be taken to specify the presence of specifically stated feature(s), such as element(s), unit(s), integer(s), step(s) component(s) and combination(s) thereof, but does not preclude the presence or addition of one or more other stated features.

    [0029] The term 'seabed' is generally used to demote the subsea floor.

    [0030] The unbonded flexible pipe has a length along its longitudinal center axis, and a first and a second end. The unbonded flexible pipe further comprises a first end fitting connected to the first end. Usually the unbonded flexible pipe will also comprise a second end fitting connected to the second end thereof.

    [0031] In an embodiment the first end of the pipe is the end of the pipe arranged to be remote from the subsea facility relative to the second end thereof, i.e. the fluid is arranged to flow from the second end towards the first end of the unbounded flexible pipe.

    [0032] End fittings are well known in the art and are usually required to have a high strength. Normally such end fittings are mainly of metal. The first end fitting and the second end fitting can for example be as the end fittings known in the art with the modification with respect to electrically conductive pathways and electrical insulations described herein.

    [0033] The unbonded flexible pipe comprises from inside and out an electrically conductive carcass, an electrically insulating innermost sealing sheath, at least one electrically conductive armor layer comprising at least one helically wound electrically conductive wire and an electrically insulating outer sealing sheath.

    [0034] At least the electrically conductive layers are mechanically terminated in the first end fitting and the pipe comprises electrical connections in the first end fitting arranged to apply a voltage using a main power supply over the electrically conductive layers. These electrically conductive layers are electrically interconnected at a distance along the length of the unbonded flexible pipe from the first end fitting of the unbonded flexible pipe to provide an electric circuit when the power supply is applied. The position along unbounded flexible pipe and its respective layers where the electrically conductive layers are electrically interconnected is referred to as the far position.

    [0035] The main power supply constitutes or form part of an electrical heating system.

    [0036] By applying a voltage over the electrically conductive layers a current will run through the carcass and return at least partly via the at least one electrically conductive armor layer. Thereby - do to the electrical resistance of the material of the electrically conductive layers; heat will be generated as the current passes through the material and because the electrically conductive carcass and the electrically conductive armor layer are selected such that a voltage drop Vc over the electrically conductive carcass is larger than a voltage drop Va over the electrically conductive armor layer most of the heat will be generated in the carcass and the current required to avoid solidifying of substances in the bore or to remove such solids can therefore be kept relatively low and thereby any risk of undesired side effects provided by such current is even more low.

    [0037] Thereby any fluids or any solidified fluids within the bore of the pipe can in a simple way be heated to the desired temperature e.g. in case of a temporary production stop. No additional layers or additional conductors running external to the pipe are required and the required amount of current can be kept low. Thereby an ordinary unbonded flexible pipe with metal armor layer(s) and metal carcass can in a simple way be modified to an unbonded flexible pipe of the present invention simply by providing one or more of its end fittings with the required electrical properties as described herein.

    [0038] The invention thereby provides a very simple and cost effective way of subjecting the unbonded flexible pipe to electric heating e.g. in case of a temporary production stop, thereby preventing the pipe from being blocked due to undesired cooling. Further it has been found that the risk of side effects due to the application of current can be held relatively low e.g. as described further below.

    [0039] The electrically conductive carcass has a resistance Rc and the electrically conductive armor layer has a resistance Ra. The current through the circuit comprising the main power supply, the electrically conductive carcass and the electrically conductive armor layer can be determined according to the equation:



    [0040] Wherein Vc + Va is the impressed voltage V and Vc is the voltage drop over the carcass and Va is the voltage drop over the electrically conductive armor layer.

    [0041] To ensure that the main amount of power is allocated in the carcass the electrically conductive carcass and the electrically conductive armor layer are advantageously selected such that Vc > Va. Preferably Vc > 1.5 times Va.

    [0042] Preferably Vc > 2 times Va, such as Vc > 5 times Va, such as Vc > 10 times Va.

    [0043] The electrically conductive layers are advantageously of metal. Preferably the carcass is of a material with a relatively high electrical resistance such as steel, preferably highly alloyed steel, in particular stainless steels or nickel based alloys. The structure of the carcass is advantageously as the structures known from prior art carcass structures. Advantageously the materials of the carcass and the armor layer are selected such that the carcass has a higher electrical resistance than the electrically conductive armor layer. In an embodiment the electrically conductive armor layer comprises a support conductor for reducing the electrical resistance. The support conductor is e.g. in the form of a wire or a foil of highly conductive material - e.g. cobber, applied in the whole length of the electrically conductive armor layer

    [0044] In an embodiment the first end fitting has a front end in which the electrically conductive layers are mechanically terminated and a rear end for being connected to a production site structure. The first end fitting comprises a bore extending through the front end and the rear end of the first end fitting. The rear end of the first end fitting comprises a flange for being connected to a production site structure in fluid connection with a flow path thereof. The shape and structure of such mount flange is well known to the skilled person.

    [0045] In an embodiment the rear end of the first end fitting comprises an annular wall surface defining the rear end of the bore of the first end fitting and the annular wall surface is electrically insulated from the electrically conductive carcass. Usually in prior art end fittings the inner wall surface is of metal in at least a part of the end fitting.

    [0046] In a preferred embodiment of the invention the entire annular wall surface defining the bore of the first end fitting is provided by a coating of an electrically insulating material. Thereby any risk of galvanic damage of the end fitting is highly reduced or even avoided. And depending on the electrical potential of the end fitting when a voltage is applied over the conductive layers, this electrical insulation can also protect the carcass from corrosion.

    [0047] Preferably parts of or the entire annular wall surface is electrically insulated in that it is provided by a cover of an electrical insulating material e.g. in the form of a coating.

    [0048] In an embodiment the annular wall surface is electrically insulated from the electrical conductive carcass fully or partly by being provided by the innermost sealing sheath. Preferably the innermost sealing sheath is fixed in the first end fitting, but extends beyond its fixing area to provide an electrical insulation between the carcass and the metallic parts of the first end fitting. Thereby a very high corrosion protection of the first end fitting and/or the carcass is provided.

    [0049] Due to the applied voltage any risk of galvanic corrosion of metal parts may be increased and according to the invention it has been found that the major corrosion risk provided by the voltage is in the area around the carcass at the first end fitting and beyond e.g. at the production site structure to where the unbonded flexible pipe is connected. By providing the entire annular wall surface defining the bore of the first end fitting by an electrical insulating material any risk of galvanic corrosion will be substantially reduced or even fully avoided.

    [0050] In an embodiment an annular wall section at the rear end of the first end fitting is electrically insulated from the electrically conductive carcass by comprising a rear end insulating layer, preferably in the form of an extension of the innermost sealing sheath and/or by a separate rear end electrical insulating layer.

    [0051] In an embodiment the annular wall section at the rear end of the first end fitting is electrically insulated from the electrically conductive carcass by comprising a rear end epoxy layer or rubber layer.

    [0052] When a voltage is applied over the electrically conductive layers the carcass may obtain a substantially higher or lower electric potential relative to the annular wall section of the first end fitting. This difference in electric potential could result in a high risk of damaging of the annular wall section at the rear end of the first end fitting or of the carcass due to galvanic corrosion.

    [0053] In an embodiment where the voltage is applied over the electrically conductive layers such that the carcass has a relatively high electric potential relative to the electrically conductive armor layer. Such high electric potential may without an electric power blocking result in damaging of the annular wall section at the rear end of the first end fitting. As mentioned such end fittings are usually of metal in order to have the sufficient strength. By applying a rear end electrical insulating layer on the annular wall section at the rear end of the first end fitting, such damage by galvanic corrosion can be reduced or even avoided.

    [0054] In an embodiment where the voltage is applied over the electrically conductive layers such that the carcass has a relative low electric potential, such low electric potential may without an electric power blocking result in damaging of the carcass. By applying a rear end electrical insulating layer on the annular wall section at the rear end of the first end fitting, such damage can be reduced or even avoided.

    [0055] In an embodiment of the unbonded flexible pipe an electric power blocking is arranged in the rear end of the bore of the end fitting.

    [0056] When a voltage is applied over the electrically conductive layers, the carcass will - as mentioned - usually have a relatively high electric potential or a relative low electric potential relative to metal parts of the end fitting and/or metal parts of the production site structure. Such electric potential difference may without an electric power blocking likely result in damaging of metal parts of the first end fitting and/or the production site to which the unbonded flexible pipe is connected due to galvanic corrosion. By providing an electric power blocking which reduces galvanic reaction between the carcass and the metal parts of the production site structure, such damage can be reduced or even avoided. Whereas the electrical insulation of the annular wall surface defining the bore of the first end fitting results in a reduced risk of galvanic corrosion, the electric power blocking provides an additional corrosion protection of the whole system including the production site structure to which the unbonded flexible pipe is to be connected.

    [0057] The electric power blocking can be any kind of physical and/or chemical blocking that blocks field lines from the carcass and with vector direction to the flange of the rear part and/or to the production site structure when mounted thereto.

    [0058] In an embodiment the electric power blocking is a valve, such as a ball valve or a gate valve, preferably the valve is of nonconductive material or is coated with a nonconductive material.

    [0059] In an embodiment the electric power blocking is provided by a bend e.g. a fluid trap provided by a J-bend, a U-bend or an S-bend.

    [0060] In an embodiment the electric power blocking is a sacrificial anode comprising a metal or a metal alloy which is less noble than the annular wall surface of the first end fitting, such as an anode comprising magnesium, brass, aluminum, zinc or titanium. The sacrificial anode can be any kind of sacrificial anode for the material it is supposed to protect.

    [0061] In an embodiment the sacrificial anode is applied in an annular pattern in an annular wall section at the rear end of the first end fitting. It may for example be applied in the form of a ring partly embedded in the annular wall section.

    [0062] Sacrificial anodes and offshore sacrificial anodes are well known in the art for use in cathodic protection. In the present situation the sacrificial anode has the function of blocking electric power transmission to the annular wall surface of the first end fitting and/or to any metal that the first end fitting may be connected to, thereby avoiding undesired electrolytic reactions between the carcass and any metal that the first end fitting may be connected to.

    [0063] The metal anodes are usually made of a metallic element or alloy which corrodes more easily than the metal it protects. The electrons that are removed from the sacrificial anode are conducted to the protected metal, which then becomes the cathode. This cathode is protected from oxidation because reduction (rather than corrosion) occurs on the protected metals.

    [0064] In some cases, the negative potential of magnesium can be a disadvantage: If the potential of the protected metal becomes too negative, hydrogen ions may be evolved on the carcass surface leading to hydrogen embrittlement which may damage the carcass.

    [0065] Zinc is normally a reliable material, but where the temperature is too high the zinc tends to become less negative; if this happens, current may cease to flow and the anode stops working.

    [0066] In an embodiment the sacrificial anode is a plating/electro plating anode. Typically, plating anodes and anodes are made of brass, bronze, cadmium, copper, lead, nickel, tin, or zinc. Alloys for these metal anodes include cadmium-tin, copper-tin, copper-zinc, tin-lead, tin-zinc, zinc-aluminum, zinc-magnesium, and zinc-nickel.

    [0067] In an embodiment the sacrificial anode is a mixed metal oxide (MMO) anode. An MMO anode comprises an oxide coating over an inert metal or carbon core. The oxides consist of precious metal (Ru, Ir, Pt) oxides for catalyzing an electrolysis reaction. Titanium oxides are used for inertness, electrode corrosion protection, and lower cost. The core metals are typically titanium (most common), zirconium, niobium, or tantalum.

    [0068] For a structure operating in sea water, zero potential (or "earth") is generally equal to the potential of the sea water and is herein defined as the potential of the sea water.

    [0069] As mentioned above, when a voltage is impressed over the electrically conductive layers using the main power supply, at least one of the electrically conductive layers and usually the carcass will usually have a relatively high electric potential or a relative low electric potential relative to zero.

    [0070] For example the main power supply can be connected to provide the carcass with a relatively high or relatively low potential and the electrically conductive armor layer can be connected to zero.

    [0071] In an embodiment one of the electrically conductive layers is impressed by a high potential and the other one is impressed by a low potential. For example the carcass is impressed by 100 V and the electrically conductive armor layer is impressed by -100 V using the sea water potential as zero. Thereby a voltage drop of 200 V can be provided and at the far end i.e. at the second end preferably with the second end-fitting the voltage is relatively low. This is an advantage since no or only little protection at the second end against galvanic corrosion will be desired or required.

    [0072] In an embodiment the impressed voltage by the main power supply is adjusted such that the voltage drop over the carcass relative to the voltage drop over the electrically conductive armor layer ensure that the potential at the far position at the second end of the unbounded flexible pipe is substantially zero.

    [0073] In an embodiment the electrically conductive armor layer and/or the electrically conductive armor layer is adapted to be grounded preferably at the far position of the unbonded flexible pipe.

    [0074] The main power supply can be applied as a single power supply or it can be in the form of two or more electrically cooperating and/or connected sub-power supplies. In an embodiment the main power supply is a dual power supply wherein one sub-power supply is connected over one of the electrically conductive layers and zero and it adds a high potential to said one of the electrically conductive layers and another sub-power supply is connected over the other one of the electrically conductive layers and zero and it adds a low potential to said other one of the electrically conductive layers.

    [0075] In an embodiment the risk of galvanic corrosion of metal parts is at least partly alleviated by applying a support power supply in the electric circuit at a distance from the main power supply. Such support power supply is advantageously applied at the far position of the unbounded flexible pipe, preferably at the second end of the unbounded flexible pipe for example in the second end-fitting.

    [0076] The support power supply advantageously impresses an electrical potential difference between the electrically conductive layers at the second end of the unbounded flexible pipe such that the impressed electrical potential at the second end of each of the respective electrically conductive layers is negative where the electrical potential impressed by the main power supply at the first end of the unbounded flexible pipe to each of said respective electrically conductive layers is positive and positive where the electrical potential impressed by the main power supply at the first end of the unbounded flexible pipe to each of said respective electrically conductive layers is negative.

    [0077] The circuit is advantageously formed by the carcass at the first end of the pipe (C1), the carcass at the second end of the pipe (C2), the electrically conductive armor layer at the second end of the pipe (A2) and the electrically conductive armor layer at the first end of the pipe (A1), where an electrical potential difference between C1 and A1 is impressed by the main power supply and an electrical potential difference between C2 and A2 is impressed by the support power supply. In an embodiment the electrical potential of C1 and A2 is positive and the electrical potential of A1 and C2 is negative. In an alternative embodiment the electrical potential of C1 and A2 is negative and the electrical potential of A1 and C2 is positive.

    [0078] In an embodiment where alternating power supplies are used the power supplies are synchronizes such that when A1 and C2 is negative C1 and A2 will be positive and when A1 and C2 is positive C1 and A2 will be negative
    In an embodiment two or more support power supplies are provided in the circuit.

    [0079] Preferably at least one of the electrical connections for connecting to the main power supply is arranged in the first end fitting. In an embodiment both of the electrical connections are arranged in the first end fitting.

    [0080] In an embodiment both of the electrical connections for connecting to the main power supply are arranged in the first end fitting such that a high electric potential is impressed at the carcass and a low electric potential is impressed at the electrically conductive armor layer by the main power supply. Advantageously the electrically conductive armor layer is grounded at a distance from the first end fitting, such as in or near the second end fitting.

    [0081] In order to provide a relatively long section of the unbonded flexible pipe with a heating function (i.e. with the electric circuit provided by the electrically conductive layers and one or more power supplies) it is generally desired that the electrically conductive carcass is electrically connected with the electrically conductive armor layer at a distance of at least about 5 m, such as at least about 10 m, such as at least about 30 m along the length of the unbonded flexible pipe from the first end fitting. In some situations it will be sufficient to have the heating function in only a length section of the unbonded flexible pipe, such as an uppermost length section, whereas in other situations the unbonded flexible pipe advantageously has the heating function in its entire length.

    [0082] In an embodiment the unbonded flexible pipe comprises a second end fitting connected to its second end. Advantageously the electrically conductive carcass is electrically connected with the electrically conductive armor layer in the second end fitting optionally via a support power supply as described above. The interconnection between the carcass and the electrically conductive armor layer can be provided by a simple conductive connection in the second end fitting.

    [0083] In an embodiment the interconnection between the carcass and the electrically conductive armor layer can be provided by a short circuiting arrangement e.g. by having only a very thin insulation between the carcass and the electrically conductive armor layer in the second end-fitting or by having an on-off switch in the second end-fitting. In the same way an on-off switch between the main power supply and the respective electrically conductive layer or layers can be arranged in the first end-fitting.

    [0084] Preferably at least the electrically conductive layers are mechanically terminated in the second end fitting and an electrical connection is provided between the electrically conductive carcass and the electrically conductive armor layer.

    [0085] In an embodiment the electrical connections arranged to apply a voltage over the electrically conductive layers are arranged to be connected to a main power supply in the form of an electric heating system for impressing the voltage over the electrically conductive layers in the first end fitting.

    [0086] In an embodiment the electrical connections arranged to apply a voltage over the electrically conductive layers are arranged for application of an alternating voltage.

    [0087] The electrically conductive armor layer is in an embodiment adapted to be grounded for example in its first end thereby reducing the electric field generated from the electrically conductive armor layer since its electric potential will be held relatively close to the electric potential of the surrounding water when the unbounded flexible pipe is in use. In an embodiment the electrically conductive armor layer has a relatively low electrical resistance compared to the carcass, meaning that most of the effect will be allocated to the carcass and the major voltage drop will be applied over the carcass along its length. Simultaneously most of the heat will be generated in the carcass. To reduce the resistance of the electrically conductive armor layer, this armor layer may e.g. comprise threads or coatings of copper or other highly conducting material e.g. as described above.

    [0088] In an embodiment the electrical connections arranged to apply a voltage over the electrically conductive layers are arranged for application of direct voltage (DC).

    [0089] In an embodiment where the electrically conductive armor layer is adapted to be grounded, the grounding is applied to the electrically conductive armor layer via the first end fitting.

    [0090] In an embodiment the electrical connections arranged to apply a voltage over the electrically conductive layers comprise a single voltage conductor electrically connected to the carcass, and the electrically conductive armor layer is grounded such that the AC or DC return current is guided through the earth and/or through the electrically conductive armor layer.

    [0091] Different approaches for supplying power to the pipe can be pursued. If a constant power level is required to the pipe, the pipe can be feed a simple ac current. For this purpose the coupling to the grid can be accomplished using a simple impedance matching transformer. If the same power supply is to be used for different pipes, or if the power level for the pipe is to be regulated, it has proved advantageous to rectify the current and feed it to the pipe using a PWM regulation.

    [0092] It has proven advantageous to monitor the shift of temperature during heating. Attempt to measure the temperature directly on the carcass of the pipe has shown not to be optimal, much better results is found by measuring the temperature in the pipe annulus. As the heat generated in the pipe bore only diffuses slowly towards the annulus, there is a latency between heat input and heat detection. In this situation it is sometimes advantageous to heat the pipe for a shorter period of time and wait until the heat reaches the thermal detection system before next heat pulse is initiated. Heating according to this scheme typically involves a frequency of about 0.05 to about 1 heat pulse per minute with a duty time of from about 20 % to about 80 % such as about 50%. An additional advantage of the pulsed heating scheme is that generated heat can diffuse along the length of the pipe, hereby effectively preventing the formation of hotspots.

    [0093] In an embodiment the pulsed power may be pulsing between a high power level and a low power level wherein the low power level can be from about 90 % of the high power level to zero, such as from about 50 % to about 10 % of the high power level. In an embodiment the pulsing frequency is from about 30 to about 360 high power pulses per minute.

    [0094] In an embodiment the unbonded flexible pipe comprises two or more pipe length sections which are mechanically and electrically connected via respective intermediate end fittings.

    [0095] Advantageously each pipe length section comprises from inside and out an electrically conductive carcass length section, an electrically insulating innermost sealing sheath length section, at least one armor layer length section comprising a length section of the at least one helically wound electrically conductive wire and an electrically insulating outer sealing sheath length section, wherein the respective length sections of the conductive layers are electrically interconnected to provide the electric circuit.

    [0096] In an embodiment one or more of the length sections of layers are mechanically terminated in the respective intermediate end fittings.

    [0097] Advantageously at least the carcass length sections are not electrically terminated in two or more of the intermediate end fittings.

    [0098] In an embodiment at least the carcass length sections are not terminated in two or more of the intermediate end fittings. In this embodiment the carcass is not mechanically terminated in two interconnected intermediate end fittings but extends through these intermediate end fittings while other layers of the respective sections of the pipe which are radially outside the carcass may be mechanically terminated in these intermediate end fittings.

    [0099] In an embodiment the carcass length sections and the innermost sealing sheath length sections are not terminated in two or more of the intermediate end fittings. Preferably the carcass length sections and the innermost sealing sheath length sections are not terminated in any of the intermediate end fittings.

    [0100] The unbonded flexible pipe can comprise any other layers which are usual for unbonded flexible pipes, such as additional armor layers, additional sealing layers or gas barrier layers or similar.

    [0101] In an embodiment the unbonded flexible pipe in at least a length section thereof comprises one or more thermal insulation layers. The thermal insulation layer can be any kind of thermal insulation layer advantageously applied between the innermost sealing sheath and the electrically conductive armor layer.

    [0102] The unbonded flexible pipe advantageously comprises a plurality of armor layers e.g. as described in "Recommended Practice for Flexible Pipe", ANSI/API 17 B, fourth Edition, July 2008, and the standard "Specification for Unbonded Flexible Pipe", ANSI/API 17J, Third edition, July 2008.

    [0103] Advantageously the unbonded flexible pipe comprises at least a pair of cross wound tensile armor layers, each comprising a plurality of helically wound elongate armor elements preferably of metal. In an embodiment one or both of the tensile armor layers are electrically conductive armor layers where the major part or all of the elongate armor elements are electrically conductive.

    [0104] Even where the voltage is applied over the one or more helically wound armor layers a magnetic field can be avoided to be generated in the bore of the pipe because the electric conducting layers can be arranged coaxially to prevent generation of such magnetic field.

    [0105] In an embodiment the unbonded flexible pipe comprises a pressure armor layer comprising at least one helically wound elongate armor element preferably of metal.

    [0106] In an embodiment the voltage is applied over the carcass and a combined electrical pathway is provided by the tensile armor layers and the pressure armor.

    [0107] In an embodiment the sensor of the unbonded flexible pipe is an optical fiber. Such temperature sensors are well known to the skilled person. The temperature sensor is preferably connected to the heating system for controlling the voltage applied over the electrically conductive layers.

    [0108] The offshore system of the invention comprises a production site structure - e.g. a top site structure or a subsea site structure - and an unbonded flexible pipe suitable for transporting fluids from a subsea facility to the production site structure. The unbonded flexible pipe has a length along a longitudinal center axis, and a first and a second end, and a first end fitting connected to the first end. The unbonded flexible pipe is connected to the production site structure via the first end fitting. The unbonded flexible pipe comprises from inside and out an electrically conductive carcass, an electrically insulating innermost sealing sheath, at least one electrically conductive armor layer comprising at least one helically would electrically conductive wire and an electrically insulating outer sealing sheath. At least the electrically conductive layers are mechanically terminated in the first end fitting. The pipe comprises electrical connections connected to a main power supply for impressing a voltage over the electrically conductive layers. The electrically conductive layers are electrically connected at a distance along the length of the unbonded flexible pipe from the first end fitting of the unbonded flexible pipe to provide an electric circuit.

    [0109] The unbonded flexible pipe is advantageously as described above. Preferably the unbonded flexible pipe is a riser pipe, a flow line or a combined riser-flowline.

    [0110] The first end fitting can advantageously be as described above.

    [0111] In an embodiment the first end fitting comprises a bore extending through a front end in which the electrically conductive layers are mechanically terminated, and through the rear end of the first end fitting, the rear end of the first end fitting comprises the flange and the flange is connected to the production site structure in fluid connection with a flow path thereof.

    [0112] The flow path of the production site structure is a flow path into which fluids is pumped from the subsea facility, via the unbonded flexible pipe and into the production site structure. The diameter or cross sectional area of the production site structure flow path is preferably corresponding to the diameter or cross sectional area of the bore of the unbonded flexible pipe. The bore of the unbonded flexible pipe is surrounded by and defined by the innermost sealing sheath.

    [0113] In an embodiment the rear end of the first end fitting comprises an annular wall surface defining the rear end of the bore of the first end fitting, wherein the entire annular wall surface defining the rear end of the bore of the first end fitting is provided by a coating of an electrically insulating material.

    [0114] In an embodiment the flow path of the production site structure comprises an inflow flow path section surrounded and defined by an inflow flow path wall surface which in at least a length section is electrically insulated.

    [0115] In an embodiment the inflow flow path wall surface is electrically insulated in a length section immediately adjacent to the first end fitting. The insulated length section can have any length; however for providing a good corrosion protection the insulated length section preferably has a length of about 5 cm, such as at least about 10 cm, such as at least about 50 cm.

    [0116] In an embodiment the electrically insulated length section of the inflow flow path wall surface is electrically insulated by comprising an extension of the innermost sealing sheath of the unbonded flexible pipe. Thereby the innermost sealing sheath and an extension thereof can protect both the annular wall of the rear end of the first end fitting and the inflow flow path wall surface against galvanic corrosion.

    [0117] In an embodiment the system further comprises an main power supply in the form of a heating system for applying the voltage. The heating system can be any kind of system suitable for applying a voltage over the electrical connections to the electrically conductive layers in the first end fitting. The heating system can e.g. be as described above.

    [0118] In an embodiment the main power supply is electrically connected to at least one of the electrical connections to the electrically conductive layers in the first end fitting, at least one of the electrical connections is preferably an electrical connection to the carcass.

    [0119] In an embodiment the main power supply is electrically connected to both of the electrical connections to the electrically conductive layers in the first end fitting.

    [0120] In an embodiment the main power supply is arranged for application of an alternating voltage. Advantageously the electrically conductive armor layer is grounded, e.g. as described above.

    [0121] In an embodiment the main power supply is arranged for application of a direct voltage. The system advantageously comprises a grounding preferably applied to the electrically conductive armor layer via the first end fitting.

    [0122] In an embodiment the system comprises a grounding of the electrically conductive armor layer at a position between the first end fitting and the second end fitting.

    [0123] In an embodiment the main power supply comprises a single voltage conductor electrically connected to the carcass, and the electrically conductive armor layer being grounded such that the AC or DC return current is guided through the earth and/or through the electrically conductive armor layer.

    [0124] The main power supply may advantageously be as described above.

    [0125] In an embodiment the system of the invention comprises a support power supply arranged in the circuit as described above.

    [0126] In an embodiment the inflow flow path comprises an inflow path section comprising an electric power blocking. The power blocking provides an extra protection against corrosion of metal parts of the production site system. The power blocking is advantageously as described above.

    [0127] In an embodiment the surfaces in the inflow path section are electrically insulated and preferably the inflow flow path simultaneously comprises an electric power blocking in its inflow path section. Advantageously the surfaces in the inflow path section are electrically insulated in the inflow path length section from the first end fitting and at least to the power blocking.

    [0128] In an embodiment the electric power blocking is arranged in the inflow path section at a distance from the first end fitting up to about 1 m, such as up to about 0.5 m, such as up to about 30 cm.

    [0129] In an embodiment the electric power blocking is a valve, such as a ball valve or a gate valve, preferably the valve is of nonconductive material or is coated with a nonconductive material.

    [0130] In an embodiment the electric power blocking is a sacrificial anode comprising a metal or a metal alloy which is less noble than the annular wall surface of the first end fitting, such as an anode comprising magnesium, brass, aluminum, zinc or titanium. The sacrificial anode is advantageously as described above.

    [0131] In an embodiment the sacrificial anode is applied in an annular pattern in an annular wall section at the rear end of the first end fitting.

    [0132] In an embodiment the electric power blocking is at least one bend of the inflow path section, preferably the at least one bend comprises a bend with a bending degree of at least about 90 degrees. Advantageously the electric power blocking comprises two or more bends.

    [0133] All features of the invention including ranges and preferred ranges can be combined in various ways within the scope of the invention, unless there are specific reasons not to combine such features.

    DESCRIPTION OF DRAWINGS



    [0134] The invention will be explained more fully below in connection with a preferred embodiment and with reference to the drawings in which:

    FIG. 1 is a schematic side view of an offshore system comprising an unbonded flexible pipe and a top site structure.

    FIG. 2 is a schematic side view of another offshore system comprising an unbonded flexible pipe and a top site structure.

    FIG. 3 is a schematic side view of an unbonded flexible pipe where the individually layers of the unbonded flexible pipe are shown.

    FIG. 4 is a schematic cross-sectional side view of an unbonded flexible pipe comprising an intermediate end fitting.

    FIG. 5 is a schematic cross-sectional side view of an unbonded flexible pipe comprising a carcass and an armor layer and a first end fitting with electrical connections for applying a voltage over the carcass and the armor layers.

    FIG. 6 is a schematic cross-sectional side view of another unbonded flexible pipe comprising a carcass and an armor layer and a first end fitting with electrical connections for applying a voltage over the carcass and the armor layers.

    FIG. 7 is a schematic cross-sectional side view of a part of an offshore system comprising an unbonded flexible pipe connected to a production site structure.

    FIG. 8 is a schematic cross-sectional side view of a part of another offshore system comprising an unbonded flexible pipe connected to a production site structure.

    FIG. 9 is a schematic side view of an embodiment of the unbounded flexible pipe of the invention connected to a main power supply.

    FIG. 10 is a schematic side view of an embodiment of the unbounded flexible pipe of the invention connected to a main power supply and a support power supply.

    FIG. 11 is a schematic illustration of a voltage diagram of an embodiment of the offshore system of the invention.



    [0135] The offshore system of FIG. 1 which is an embodiment of the invention comprises an unbonded flexible pipe 1 and a top site structure 2. The unbonded flexible pipe is arranged for transportation of fluids from a not shown subsea facility to the top site structure 2 which is arranged at the sea surface 9. The top site structure 2 is advantageously a vessel or a platform or an intermediate structure with fluid connection to a vessel or a platform. The unbonded flexible pipe has a first end 3, and a not shown first end fitting connected to the first end 3. The unbonded flexible pipe 1 comprises from inside and out a number of not shown layers comprising an electrically conductive carcass, an electrically insulating innermost sealing sheath, an electrically conductive armor layer comprising a helically wound electrically conductive wire and an electrically insulating outer sealing sheath. The layers of the unbonded flexible pipe 1 are mechanically terminated in the first end fitting and the pipe comprises not shown electrical connections arranged to apply a voltage over the electrically conductive layers which electrically conductive layers are electrically connected at a distance along the length of the unbonded flexible pipe from the first end fitting of the unbonded flexible pipe to provide an electric circuit. The unbonded flexible pipe 1 comprises three pipe length sections 1a, 1b, 1c mechanically interconnected with respective intermediate end fittings 5a, 5b, which intermediate end fittings 5a, 5b advantageously also provide electric interconnections. Preferably the electrically conductive layers are electrically connected in the pipe length section 1c farther from the first end fitting such as in a not shown second end fitting terminating a second end of the unbonded flexible pipe 1.

    [0136] The embodiment of the offshore system shown in FIG. 2 comprises an unbonded flexible pipe 11 and a top site structure 12a. The unbonded flexible pipe 11 is arranged for transportation of fluids from a subsea facility 16 to the top site structure 12a from where the fluids are transported via a top site pipe 4 e.g. a rigid or a flexible jumper, to a vessel 12b floating at the sea surface 19. The unbonded flexible pipe has a first end 13, and a not shown first end fitting connected to the first end 13. The unbonded flexible pipe 11 comprises from inside and out a number of not shown layers comprising an electrically conductive carcass, an electrically insulating innermost sealing sheath, an electrically conductive armor layer comprising a helically wound electrically conductive wire and an electrically insulating outer sealing sheath. The layers of the unbonded flexible pipe 11 are mechanically terminated in the first end fitting and the pipe comprises not shown electrical connections arranged to apply a voltage over the electrically conductive layers which electrically conductive layers are electrically connected at a distance along the length of the unbonded flexible pipe from the first end fitting of the unbonded flexible pipe to provide an electric circuit. The unbonded flexible pipe 11 comprises three pipe length sections 11a, 11b, 11c mechanically interconnected with respective intermediate end fittings 15a, 15b, which intermediate end fittings 15a, 15b advantageously also provide electric interconnections. Preferably the electrically conductive layers are electrically connected in the pipe length section 11c farther from the first end fitting such as in a not shown second end fitting connecting the unbonded flexible pipe 11 to the subsea facility 16.

    [0137] The unbonded flexible pipe shown in FIG. 3 comprises an innermost sealing sheath 25, e.g. of high density poly ethylene (HDPE), cross linked polyethylene (PEX), Polyvinyldifluorid (PVDF) or polyamide (PA). The innermost sealing sheath 25 is electrically insulating and further has the purpose of preventing outflow of the fluid transferred in the bore of the pipe, indicated by the arrow. Inside the innermost sealing sheath 25 the pipe comprises an electrically conductive carcass 26 which further serves the purpose of reinforcing the pipe against collapse. The carcass 26 is not liquid tight.

    [0138] On the outer side of the innermost sealing sheath 25, the flexible pipe comprises a pressure armor layer 23, which is e.g. of helically wound armor element(s) of metal or composite material or combinations, which is wound with an angle to the axis of the pipe of about 65 degrees or more e. g. about 85 degrees. The pressure armor layer 23 is not liquid tight.

    [0139] Outside the pressure armor layer 23, the pipe comprises two cross wound tensile armor layers 22a, 22b wound from elongate armor elements of metal or composite material or combinations. The elongate armor elements on the innermost tensile armor layer 22a are advantageously wound with a winding degree of about 55 degrees or less to the axis of the pipe in a first winding direction and the outermost tensile armor layer 22b is advantageously wound with a winding degree of about 60 degrees or less, such as between about 20 and about 55 degrees to the axis of the pipe in a second winding direction, which is the opposite direction to the first winding direction. The two armor layers with such opposite winding directions are normally referred to as being cross wound. The pipe further comprises an outer sealing sheath 21 protecting the armor layer mechanically and against ingress of sea water and further provides an electrical insulation. At least one of the pressure armor 23 or the tensile armor layers comprising at least one helically wound electrically conductive wire 22a, 22b. As indicated with the reference number 24, the unbonded flexible pipe preferably comprises anti-friction layers between armor layers 23, 22a, 22b. The anti-friction layers are usually not liquid tight and may for example be in the form of a wound film. In an embodiment the unbonded flexible pipe comprises not shown electrical insulation layer(s) between two or more of the armor layers 23, 22a, 22b.

    [0140] In the embodiment shown in FIG.4 the unbonded flexible pipe comprising an intermediate end fitting between a first and a second length section 31a, 31b of the unbonded flexible pipe in which only some of the layers of the unbonded flexible pipe are terminated. The first and a second length section 31a, 31b of the unbonded flexible pipe comprise a number of not terminated layers 36 comprising from inside and out electrically conductive carcass, an electrically insulating innermost sealing sheath and a pressure armor layer. The first and the second length section 31a, 31b of the unbonded flexible pipe comprise each a number of terminated layers comprising from inside and out a pair of cross wound electrically conductive tensile armor layers and an electrically insulating outer sealing sheath 34a, 34b. An electrical insulation intermediate sheath is advantageously arranged to provide an electrical insulation between the pressure armor layer and the tensile armor layers. The electrical insulation intermediate sheath may be a terminated layer or a non-terminated layer provided that it provides the desired electrical insulation. The first and the second length section 31a, 31b can independently of each other comprise one or more additional layers, such as an insulation layer, an additional reinforcing layer etc.

    [0141] The tensile armor layer 32a of the first length section 31a is electrically connected to the tensile armor layer 32b of the second length section 31b for example as indicated by the wires 37a, 37b which electrically connect the tensile armor layers 32a, 32b to a connecting element 38 which in an embodiment is in the form of a voltage controller and/or a conductor controlling the voltage drop over the tensile armor layers 32a, 32b along the length of the respective length sections.

    [0142] In the embodiment of the invention shown in FIG. 5 only a section of the pipe 41a comprising the first end fitting 43 is shown. The unbonded flexible pipe comprises an electrically conductive carcass 46, an electrically insulating innermost sealing sheath 45, a pair of cross wound electrically conductive tensile armor layers 42 comprising at least one helically wound electrically conductive wire and an electrically insulating outer sealing sheath 41. The unbonded flexible pipe further comprises a pressure armor layer 43a which may also be electrically conductive. In a variation the pressure armor layer 43a is omitted. In another variation an electrically insulating layer is arranged between the pressure armor layer 43a and the pair of cross wound electrically conductive tensile armor layers 42. All of the layers of the unbonded flexible pipe are terminated in the first end fitting 43. The carcass 46, the electrically insulating innermost sealing sheath 45, and the pressure armor layer 43a are securely fixed as indicated with the fixing arrangement 47. The fixing arrangement is preferably arranged to fix each of the layers 46, 45, 43a individually e.g. as known in the art. An electrical connection 48a is arranged to connect the carcass 46 to a conductor 48b, such as a single voltage conductor. In the shown embodiment the connection to the carcass 46 is via the fixing arrangement 47. In a variation the electrical connection 48a is a direct connection to the carcass.

    [0143] The electrically conductive tensile armor layers 42 are terminated and fixed in a fixing material 42a e.g. epoxy and an electrical connection 49 is arranged to connect the electrically conductive tensile armor layers 42 to ground.

    [0144] The first end fitting 43 comprises a front end 53a in which the electrically conductive layers are mechanically terminated, and a rear end 53b. The first end fitting 43 has a bore 50 extending through the front end 53a and the rear end 53b.

    [0145] The rear end 53b of the first end fitting 43 comprises a flange 52 with mounting holes 52a for being connected to a not shown production site structure in fluid connection with a flow path thereof.

    [0146] The rear end 53b of the first end fitting 43 comprises an annular wall surface 54 defining the rear end of the bore of the first end fitting, wherein at least a part 54a of the annular wall surface rear end 53b of the first end fitting 43 is electrically insulated from the electrically conductive carcass for example by being coated with a non-conducting polymer layer e.g. the part 54a of the annular wall surface rear end 53b is in the form of a wall section at the rear end comprising a rear end insulating layer in the form of an extension of the innermost sealing sheath.

    [0147] An electric power blocking 55 in the form of a valve 55 is arranged in the rear end of the bore 50 of the end fitting. The valve 55 is arranged immediately adjacent to the insulated part 54a of the annular wall surface rear end 53b.

    [0148] FIG. 6 shows another embodiment of an unbonded flexible pipe of the invention. The embodiment of FIG. 6 is similar to the embodiment of FIG. 5 where it is marked with same reference numbers. In the embodiment of FIG. 6 electrical connection 48a is arranged to connect the carcass 46 to an main power supply 58 and the electrical connection 49 is arranged to connect the electrically conductive tensile armor layers 42 to the main power supply 58. Thereby a voltage can be applied by the main power supply 58.

    [0149] An electric power blocking 55a in the form of an annular sacrificial anode 55a is arranged in the rear end of the bore 50 of the end fitting. Advantageously the cross wound electrically conductive tensile armor layers 42 are grounded at a position along the length of the unbonded flexible pipe e.g. in a distance of for example at least 10 m from the first end fitting 43.

    [0150] In the embodiment of the offshore system of the invention shown in FIG. 7 the offshore system comprises an unbonded flexible pipe 61 comprising a first end fitting 63 connected to a production site structure 72 by connecting elements 62a. The first end fitting 63 comprises a bore and the production site structure 72 comprises an inflow flow path section 70 arranged in fluid connection with the bore 60.

    [0151] The unbonded flexible pipe comprises from inside and out an electrically conductive carcass 66, an electrically insulating innermost sealing sheath 65, and a pair of cross wound electrically conductive tensile armor layers 62 comprising at least one helically would electrically conductive wire and an electrically insulating outer sealing sheath 61a. The layers are terminated as described in FIG. 5. The electrically conductive carcass 66 is connected to a conductor 68 and the tensile armor layers are grounded 69.

    [0152] The first end fitting 63 comprises a rear end 63b comprising an annular wall surface 64 defining the rear end of the bore 60 of the first end fitting 63. The entire annular wall surface 64 comprises an electrically insulating coating e.g. in the form of an extension of the electrically insulating innermost sealing sheath 65.

    [0153] The inflow path section 70 of the production site structure 72 is surrounded by an inflow flow path wall surface 74 which in a length section 74a immediately adjacent to the first end fitting 63 is electrically insulated e.g. by comprising an extension of the innermost sealing sheath 65 of the unbonded flexible pipe 61.

    [0154] The inflow path section 70 comprises an electric power blocking in the form of a sacrificial anode 75b and a valve 75a.

    [0155] In the embodiment of the offshore system of the invention shown in FIG. 8 the production site system comprises an unbonded flexible pipe 81 comprising a first end fitting 83 connected to a production site structure 92 by connecting elements 82a. The first end fitting 83 comprises a bore 80 and the production site structure 92 comprises a flow path 90 with an inflow flow path section 90a arranged in fluid connection with the bore 80.

    [0156] The unbonded flexible pipe comprises from inside and out an electrically conductive carcass 86, an electrically insulating innermost sealing sheath 85, and a pair of cross wound electrically conductive tensile armor layers 82 comprising at least one helically would electrically conductive wire and an electrically insulating outer sealing sheath 81a. The layers are terminated as described in FIG. 5. An main power supply 88 is arranged to apply a voltage over the carcass 86 and the tensile armor layers 82. The tensile armor layers 82 are advantageously grounded 89 at a distance from the first end fitting 83 e.g. in a not shown second end fitting or in a not shown intermediate end fitting.

    [0157] The first end fitting 83 comprises a rear end comprising an annular wall surface 84 defining the rear end of the bore 80 of the first end fitting 83. The entire annular wall surface 84 comprises an electrically insulating coating e.g. in the form of an extension of the electrically insulating innermost sealing sheath 85.

    [0158] The inflow path section 90a of the production site structure 92 is surrounded by an inflow flow path wall surface which in a length section 794 immediately adjacent to the first end fitting 83 is electrically insulated e.g. by comprising an extension of the innermost sealing sheath 85 of the unbonded flexible pipe 81.

    [0159] The inflow path section 90a comprises an electric power blocking in the form of a bend 95a with a bending degree of about 90 degrees and a sacrificial anode 75b arranged in the bend 95a where turbulent flow can be expected.

    [0160] FIG. 9 show an embodiment of the unbounded flexible pipe of the invention connected to a main power supply 106. The unbounded flexible pipe has a plurality of layers, but only the carcass 101 and the electrically conducting armor later 102 are shown. The unbounded flexible pipe has a first end terminated in a first end-fitting indicated with the dotted lines 103 and a second end terminated in a second end-fitting indicated with the dotted lines 107. It should be understood that the unbounded flexible pipe generally has a length of from 20 m up to several hundred m or even 1, 2 or 3 km or longer. The distance between the two ends of the pipe can therefore be quite substantial. The unbounded flexible pipe comprises electrical connections 104, 105 arranged to apply a voltage over the electrically conductive layers 101, 102. The main power supply 106 is connected to the electrical connections 104, 105. It should be understood that the main power supply 106 advantageously can be turned on and of e.g. via a toggle switch optionally in dependence of the temperature of the fluid in the pipe and optionally automatic regulated by a not shown regulating unit. The electrically conductive layers 101, 102 are connected to each other in the second end-fitting 107 as indicated with the interconnection 108. This interconnection can for example be a toggle switch or a short circuiting arrangement.

    [0161] FIG. 10 show another embodiment of the unbounded flexible pipe of the invention connected to a main power supply 116. The unbounded flexible pipe has a plurality of layers, but only the carcass 111 and the electrically conducting armor later 112 are shown. The unbounded flexible pipe has a first end terminated in a first end-fitting indicated with the dotted lines 113 and a second end terminated in a second end-fitting indicated with the dotted lines 117. The unbounded flexible pipe comprises electrical connections 114, 115 arranged to apply a voltage over the electrically conductive layers 111, 112. The main power supply 116 is connected to the electrical connections 114, 115. At the second end of the pipe in the second end-fitting 117, the electrically conductive layers 111, 112 are connected to each other via a support power supply 120 connected to the respective electrically conductive layers 111, 112 via electrical connections 118, 119. The impressed potentials at the respective first and second end of the respective electrically conductive layer may for example be as described above.

    [0162] Fig. 11 shows the power drop over respectively the electrically conductive carcass 121 and the electrically conductive armor layer 122. At the first end fitting 123 the electrically conductive carcass 121 and the electrically conductive armor layer 122 are connected to a power supply 130, which impress a voltage over the layers. At the far position - here the second end fitting 127 the electrically conductive carcass 121 and the electrically conductive armor layer 122 are interconnected and grounded such that the electrical potential at this position is zero. The electrical potential is shown in the diagram where the voltage is plotted in dependence of the position along the pipe. It can be seen that the voltage drop over the carcass 121 is much larger than the voltage drop over the armor layer 121, which means that most of the heat will be generated in the carcass,


    Claims

    1. An unbonded flexible pipe for transportation of fluids, the unbonded flexible pipe (1) has a length along a longitudinal center axis, and a first and a second end, and a first end fitting connected to the first end, the unbonded flexible pipe (1) comprises from inside and out an electrically conductive carcass (26), an electrically insulating innermost sealing sheath (25), at least one electrically conductive armor layer (23,24) comprising at least one helically wound electrically conductive wire and an electrically insulating outer sealing sheath (21), at least the electrically conductive layers are mechanically terminated in the first end fitting and the pipe comprises electrical connections in the first end fitting arranged to apply a voltage over the electrically conductive layers which electrically conductive layers are electrically connected at a far position of the unbonded flexible pipe at a distance from the first end fitting of the unbonded flexible pipe to provide an electric circuit; wherein the unbonded flexible pipe comprises a temperature sensor; wherein the electrically conductive armor layer (23,24) comprises at least one of a tensile armor layer (22a, 22b) or a pressure armor layer (23) and wherein the electrically conductive carcass (26) and the electrically conductive armor layer (23,24) are selected such that a voltage drop Vc over the electrically conductive carcass (26) is larger than a voltage drop Va over the electrically conductive armor layer (23,24), preferably Vc > 1.5 times Va, such as Vc > 2 times Va, such as Vc > 5 times Va, such as Vc > 10 times Va.
     
    2. The unbonded flexible pipe of claim 1, wherein the first end fitting comprises a bore extending through a front end in which the electrically conductive layers (23,24, 26) are mechanically terminated, and through a rear end of the first end fitting, the rear end of the first end fitting comprises a flange for being connected to a production site structure in fluid connection with a flow path thereof.
     
    3. The unbonded flexible pipe of any one of claims 1 or 2, wherein an electric power blocking is arranged in the rear end of the bore of the end fitting, preferably the electric power blocking is a valve, such as a ball valve or a gate valve, preferably the valve is of nonconductive material or is coated with a nonconductive material, or the electric power blocking is a sacrificial anode comprising a metal or a metal alloy which is less noble than the annular wall surface of the first end fitting, such as an anode comprising magnesium, brass, aluminum, zinc or titanium, preferably the sacrificial anode is applied in an annular pattern in an annular wall section at the rear end of the first end fitting.
     
    4. The unbonded flexible pipe of any one of the preceding claims wherein the far position where the electrically conductive carcass (26) is electrically connected with the electrically conductive armor layer (23,24) is at a distance of at least about 5 m, such as at least about 10 m, such as at least about 30 m, along the length of the unbonded flexible pipe from the first end fitting.
     
    5. The unbonded flexible pipe of any one of the preceding claims wherein the unbonded flexible pipe comprises a second end fitting connected to the second end, and the far position where the electrically conductive carcass (26) is electrically connected with the electrically conductive armor layer (23,24) is in said second end fitting, preferably at least the electrically conductive layers (23,24) are mechanically terminated in the second end fitting and the electrical connection is provided between the electrically conductive carcass (26) and the electrically conductive armor layer (23,24).
     
    6. The unbonded flexible pipe of any one of the preceding claims, wherein the electrical connections arranged to apply a voltage over the electrically conductive layers (23,24,26) are arranged to be connected to a main power supply (58,88,106) for applying the voltage over the electrically conductive layers (23,24,26) in said first end fitting preferably the main power supply (58,88,106) is a dual power supply wherein one sub-power supply is connected over one of the electrically conductive layers (23,24,26) and zero and it adds a high potential to said one of the electrically conductive layers (23,24,26) and another sub-power supply is connected over the other one of the electrically conductive layers (23,24,26) and zero and it adds a low potential to said other one of the electrically conductive layers (23,24,26) preferably the unbonded flexible pipe comprises electrical connections for applying a support power supply in the electric circuit at a distance from the main power supply, preferably the support power supply is far position of the unbounded flexible pipe, preferably in the second end-fitting.
     
    7. The unbonded flexible pipe of any one of the preceding claims, wherein the unbonded flexible pipe comprises two or more pipe length sections (11a,11b,11c) which are mechanically and electrically connected via respective intermediate end fittings, preferably each pipe length section comprises from inside and out an electrically conductive carcass (26) length section, an electrically insulating innermost sealing sheath (25) length section, at least one armor layer (22a,22b,23) length section comprising a length section of the at least one helically would electrically conductive wire and an electrically insulating outer sealing sheath (21) length section, wherein the respective length sections (11a,11b,11c) of the conductive layers (23,24,26) are electrically interconnected to provide the electric circuit, preferably one or more of the length sections of layers are mechanically terminated in the respective intermediate end fittings.
     
    8. The unbonded flexible pipe of any one of the preceding claims, wherein the unbonded flexible pipe (1) in at least a length section thereof comprises one or more thermal insulation layers.
     
    9. The unbonded flexible pipe of any one of the preceding claims wherein the temperature sensor comprises an optical fiber.
     
    10. An offshore system comprising a production site structure (2) and an unbonded flexible pipe (1) wherein the unbonded flexible pipe (1) is as claimed in any one of claims 1-9 and suitable for transporting fluids from a subsea facility to the production site structure (2), the unbonded flexible pipe has a length along a longitudinal center axis, and a first and a second end, and a first end fitting connected to the first end, wherein the unbonded flexible pipe is connected to said production site structure via said first end fitting, the unbonded flexible pipe comprises from inside and out an electrically conductive carcass (26), an electrically insulating innermost sealing sheath (25), at least one electrically conductive armor layer (23, 24) comprising at least one helically would electrically conductive wire and an electrically insulating outer sealing sheath (21), at least the electrically conductive layers are mechanically terminated in the first end fitting and an the pipe comprises electrical connections in the first end fitting arranged to apply a voltage over the electrically conductive layers which electrically conductive layers are electrically connected at a far position of the unbounded flexible pipe at a distance from the first end fitting of the unbonded flexible pipe to provide an electric circuit and characterized in that the electrically conductive carcass (26) and the electrically conductive armor layer (23, 24) are selected such that a voltage drop Vc over the electrically conductive carcass (26) is larger than a voltage drop Va over the electrically conductive armor layer (23, 24). Preferably Vc > 1.5 times Va, such as Vc > 2 times Va, such as Vc > 5 times Va, such as Vc > 10 times Va.
     
    11. The offshore system as claimed in claim 10, wherein the first end fitting comprises a bore (50,60) extending through a front end in which the electrically conductive layers (23,24,26) are mechanically terminated, and through a rear end of the first end fitting, the rear end of the first end fitting comprises a flange connected to the production site structure in fluid connection with a flow path thereof, preferably the rear end of the first end fitting comprises an annular wall surface defining the rear end of the bore (50,60) of the first end fitting, wherein all of the annular wall surface defining the rear end of the bore (50,60) of the first end fitting is provided by a coating of an electrically insulating material.
     
    12. The offshore system of claim 11, wherein the flow path of the production site structure comprises an inflow flow path section (90) surrounded by an inflow flow path wall surface (94) which in at least a length section is electrically insulated, preferably the inflow flow path wall surface (94) is electrically insulated in a length section immediately adjacent to the first end fitting (83), the length section preferably has a length of about 5 cm, such as at least about 10 cm, such as at least about 50 cm, preferably the electrically insulated length section of the inflow flow path wall surface (94) is electrically insulated by comprising an extension of the innermost sealing sheath of the unbonded flexible pipe (1).
     
    13. The offshore system as claimed in any one of claims 10-12, wherein the system further comprises a main power supply (58,88,106) for applying the voltage over the electrically conductive layers, preferably the main power supply (58,88,106) is electrically connected to at least one of the electrical connections to the electrically conductive layers (23,24,26) in said first end fitting, said at least one of the electrical connections is preferably an electrical connection to the carcass (26), preferably the main power supply (58,88,106) is electrically connected to both of the electrical connections to the electrically conductive layers (23,24,26) in said first end fitting, preferably the main power supply (58,88,106) is arranged for application of an alternating voltage.
     
    14. The offshore system as claimed in any one of claims 10-13, wherein the main power supply is a dual power supply wherein one sub-power supply is connected over one of the electrically conductive layers (23,24,26) and zero and it adds a high potential to said one of the electrically conductive layers (23,24,26) and another sub-power supply is connected over the other one of the electrically conductive layers (23,24,26) and zero and it adds a low potential to said other one of the electrically conductive layers (23,24,26), preferably the system comprises a support power supply in the electric circuit arranged at a distance from the main power supply, preferably the support power supply is arranged at the far position of the unbounded flexible pipe, preferably in the second end-fitting, preferably the support power supply is arranged to impress an electrical potential difference between the electrically conductive layers (23,24,26) at the far position of the unbounded flexible pipe (1) such that the impressed electrical potential at the far position of each of the respective electrically conductive layers (23,24,26) is negative where the electrical potential impressed by the main power supply at the first end of the unbounded flexible pipe (1) to each of said respective electrically conductive layers (23,24,26) is positive and positive where the electrical potential impressed by the main power supply at the first end of the unbounded flexible pipe (1) to each of said respective electrically conductive layers (23,24,26) is negative.
     


    Ansprüche

    1. Ungebundenes flexibles Rohr zum Transport von Fluiden, wobei das ungebundene flexible Rohr (1) eine Länge entlang einer Längsmittelachse und ein erstes und ein zweites Ende und ein erstes Endstück hat, das mit dem ersten Ende verbunden ist, wobei das ungebundene flexible Rohr (1) von innen nach außen eine elektrisch leitende Karkasse (26), eine elektrisch isolierende innerste Dichtungshülle (25), mindestens eine elektrisch leitende Armierungsschicht (23, 24), die mindestens einen spiralförmig gewickelten elektrisch leitenden Draht aufweist, und eine elektrisch isolierende äußere Dichtungshülle (21) aufweist, wobei mindestens die elektrisch leitenden Schichten in dem ersten Endstück mechanisch abgeschlossen sind, und das Rohr elektrische Verbindungen in dem ersten Endstück aufweist, die zum Anlegen einer Spannung über die elektrisch leitenden Schichten angeordnet sind, wobei die elektrisch leitenden Schichten an einer entfernten Position des ungebundenen flexiblen Rohrs in einem Abstand von dem ersten Endstück des ungebundenen flexiblen Rohrs elektrisch verbunden sind, um einen Stromkreis bereitzustellen; wobei das ungebundene flexible Rohr einen Temperatursensor aufweist; wobei die elektrisch leitende Armierungsschicht (23, 24) mindestens eine Zugarmierungsschicht (22a, 22b) oder eine Druckarmierungsschicht (23) aufweist; und wobei die elektrisch leitende Karkasse (26) und die elektrisch leitende Armierungsschicht (23, 24) so ausgewählt sind, dass ein Spannungsabfall Vc über die elektrisch leitende Karkasse (26) größer ist als ein Spannungsabfall Va über die elektrisch leitende Armierungsschicht (23, 24), wobei vorzugsweise Vc > 1,5 mal Va, wie etwa Vc > 2 mal Va, wie etwa Vc > 5 mal Va, wie etwa Vc > 10 mal Va ist.
     
    2. Ungebundenes flexibles Rohr nach Anspruch 1, wobei das erste Endstück eine Bohrung aufweist, die sich durch ein vorderes Ende, in dem die elektrisch leitenden Schichten (23, 24, 26) mechanisch abgeschlossen sind, und durch ein hinteres Ende des ersten Endstücks erstreckt, wobei das hintere Ende des ersten Endstücks einen Flansch aufweist, um mit einer Produktionsstandortstruktur in Fluidverbindung mit einem Strömungsweg davon verbunden zu werden.
     
    3. Ungebundenes flexibles Rohr nach einem der Ansprüche 1 oder 2, wobei eine elektrische Stromblockierung im hinteren Ende der Bohrung des Endstücks angeordnet ist, wobei vorzugsweise die elektrische Stromblockierung ein Ventil ist, beispielsweise ein Kugelventil oder ein Absperrschieber, wobei vorzugsweise das Ventil aus nichtleitendem Material oder mit einem nichtleitenden Material beschichtet ist, oder wobei die elektrische Stromsperre eine Opferanode ist, die ein Metall oder eine Metalllegierung aufweist, das/die weniger edel als die ringförmige Wandfläche des ersten Endstücks ist, wie etwa eine Anode, die Magnesium, Messing, Aluminium, Zink oder Titan aufweist, wobei vorzugsweise die Opferanode ringförmig in einem ringförmigen Wandabschnitt am hinteren Ende des ersten Endstücks angebracht ist.
     
    4. Ungebundenes flexibles Rohr nach einem der vorhergehenden Ansprüche, wobei die entfernte Position, an der die elektrisch leitende Karkasse (26) mit der elektrisch leitenden Armierungsschicht (23, 24) elektrisch verbunden ist, sich in einem Abstand von mindestens ungefähr 5 m, wie etwa mindestens ungefähr 10 m, wie etwa mindestens ungefähr 30 m, entlang der Länge des ungebundenen flexiblen Rohrs von dem ersten Endstück, befindet.
     
    5. Ungebundenes flexibles Rohr nach einem der vorhergehenden Ansprüche, wobei das ungebundene flexible Rohr ein zweites Endstück aufweist, das mit dem zweiten Ende verbunden ist, und sich die entfernte Position, an der die elektrisch leitende Karkasse (26) mit der elektrisch leitenden Armierungsschicht (23, 24) elektrisch verbunden ist, in dem zweiten Endstück befindet, wobei vorzugsweise mindestens die elektrisch leitenden Schichten (23, 24) in dem zweiten Endstück mechanisch abgeschlossen sind und die elektrische Verbindung zwischen der elektrisch leitenden Karkasse (26) und der elektrisch leitenden Armierungsschicht (23, 24) vorgesehen ist.
     
    6. Ungebundenes flexibles Rohr nach einem der vorhergehenden Ansprüche, wobei die elektrischen Verbindungen, die zum Anlegen einer Spannung über die elektrisch leitenden Schichten (23, 24, 26) angeordnet sind, so angeordnet sind, dass sie mit einer Hauptstromversorgung (58, 88, 106) zum Anlegen der Spannung über die elektrisch leitenden Schichten (23, 24, 26) in dem ersten Endstück verbunden sind, wobei vorzugsweise die Hauptstromversorgung (58, 88, 106) eine Doppelstromversorgung ist, wobei eine Teilstromversorgung über eine der elektrisch leitenden Schichten (23, 24, 26) und Null angeschlossen ist, und der einen der elektrisch leitenden Schichten (23, 24, 26) ein hohes Potential hinzufügt, und eine weitere Teilstromversorgung über die andere der elektrisch leitenden Schichten (23, 24, 26) und Null angeschlossen ist, und der anderen der elektrisch leitenden Schichten (23, 24, 26) ein niedriges Potential hinzufügt, wobei vorzugsweise das ungebundene flexible Rohr elektrische Verbindungen zum Anlegen einer Hilfsstromversorgung in dem elektrischen Stromkreis in einem Abstand von der Hauptstromversorgung aufweist, wobei vorzugsweise sich die Hilfsstromversorgung in der entfernten Position des ungebundenen flexiblen Rohrs, vorzugsweise in dem zweiten Endstück, befindet.
     
    7. Ungebundenes flexibles Rohr nach einem der vorhergehenden Ansprüche, wobei das ungebundene flexible Rohr zwei oder mehr Rohrlängenabschnitte (11a, 11b, 11c) aufweist, die mechanisch und elektrisch über jeweilige Zwischenendstücke verbunden sind, wobei vorzugsweise jeder Rohrlängenabschnitt von innen nach außen einen elektrisch leitenden Karkassenlängenabschnitt (26), einen elektrisch isolierenden innersten Dichtungshüllenlängenabschnitt (25), mindestens einen Armierungsschichtlängenabschnitt (22a, 22b, 23), der einen Längenabschnitt des mindestens einen spiralförmig gewickelten elektrisch leitenden Drahts aufweist, und einen elektrisch isolierenden äußeren Dichtungshüllenlängenabschnitt (21) aufweist, wobei die jeweiligen Längenabschnitte (11a, 11b, 11c) der leitenden Schichten (23, 24, 26) elektrisch miteinander verbunden sind, um den Stromkreis bereitzustellen, wobei vorzugsweise einer oder mehrere der Längenabschnitte von Schichten in den jeweiligen Zwischenendstücke mechanisch abgeschlossen sind.
     
    8. Ungebundenes flexibles Rohr nach einem der vorhergehenden Ansprüche, wobei das ungebundene flexible Rohr (1) in mindestens einem Längenabschnitt davon eine oder mehrere Wärmeisolationsschichten aufweist.
     
    9. Ungebundenes flexibles Rohr nach einem der vorhergehenden Ansprüche, wobei der Temperatursensor eine optische Faser aufweist.
     
    10. Offshore-System, das eine Produktionsstandortstruktur (2) und ein ungebundenes flexibles Rohr (1) aufweist, wobei das ungebundene flexible Rohr (1) wie in einem der Ansprüche 1 bis 9 beansprucht und zum Transportieren von Fluiden von einer Unterwasseranlage zur Produktionsstandortstruktur (2) geeignet ist, wobei das ungebundene flexible Rohr eine Länge entlang einer Längsmittelachse und ein erstes und ein zweites Ende und ein erstes Endstück hat, das mit dem ersten Ende verbunden ist, wobei das ungebundene flexible Rohr über das erste Endstück mit der Produktionsstandortstruktur verbunden ist, wobei das ungebundene flexible Rohr von innen nach außen eine elektrisch leitende Karkasse (26), eine elektrisch isolierende innerste Dichtungshülle (25), mindestens eine elektrisch leitende Armierungsschicht (23, 24), die mindestens einen spiralförmig gewickelten elektrisch leitenden Draht aufweist, und eine elektrisch isolierende äußere Dichtungshülle (21) aufweist, wobei mindestens die elektrisch leitenden Schichten in dem ersten Endstück mechanisch abgeschlossen sind, und das Rohr elektrische Verbindungen in dem ersten Endstück aufweist, die angeordnet sind, um eine Spannung über die elektrisch leitenden Schichten anzulegen, wobei die elektrisch leitenden Schichten an einer entfernten Position des ungebundenen flexiblen Rohrs in einem Abstand von dem ersten Endstück des ungebundenen flexiblen Rohrs elektrisch verbunden sind, um einen Stromkreis bereitzustellen, und dadurch gekennzeichnet, dass die elektrisch leitende Karkasse (26) und die elektrisch leitende Armierungsschicht (23, 24) so ausgewählt sind, dass ein Spannungsabfall Vc über die elektrisch leitende Karkasse (26) größer ist als ein Spannungsabfall Va über die elektrisch leitende Armierungsschicht (23, 24), wobei vorzugsweise Vc > 1,5 mal Va, wie etwa Vc > 2 mal Va, wie etwa Vc > 5 mal Va, wie etwa Vc > 10 mal Va ist.
     
    11. Offshore-System nach Anspruch 10, wobei das erste Endstück eine Bohrung (50, 60) aufweist, die sich durch ein vorderes Ende, in dem die elektrisch leitenden Schichten (23, 24, 26) mechanisch abgeschlossen sind, und durch ein hinteres Ende des ersten Endstücks erstreckt, wobei das hintere Ende des ersten Endstücks einen Flansch aufweist, der mit einer Produktionsstandortstruktur in Fluidverbindung mit einem Strömungsweg davon verbunden ist, wobei vorzugsweise das hintere Ende des ersten Endstücks eine ringförmige Wandfläche aufweist, die das hintere Ende der Bohrung (50, 60) des ersten Endstücks definiert, wobei die gesamte ringförmige Wandfläche, die das hintere Ende der Bohrung (50, 60) des ersten Endstücks definiert, durch eine Beschichtung aus einem elektrisch isolierenden Material bereitgestellt wird.
     
    12. Offshore-System nach Anspruch 11, wobei der Strömungsweg der Produktionsstandortstruktur einen Zuflussströmungswegabschnitt (90) aufweist, der von einer Zuflussströmungswegwandfläche (94) umgeben ist, die in mindestens einem Längenabschnitt elektrisch isoliert ist, wobei vorzugsweise die Zuflussströmungswegwandfläche (94) in einem Längenabschnitt unmittelbar neben dem ersten Endstück (83) elektrisch isoliert ist, wobei der Längenabschnitt vorzugsweise eine Länge von etwa 5 cm hat, beispielsweise von mindestens etwa 10 cm, beispielsweise von mindestens etwa 50 cm, wobei vorzugsweise der elektrisch isolierte Längenabschnitt der Zuflussströmungswegwandfläche (94) elektrisch isoliert ist, indem er eine Verlängerung der innersten Dichtungshülle des ungebundenen flexiblen Rohrs (1) aufweist.
     
    13. Offshore-System nach einem der Ansprüche 10 bis 12, wobei das System ferner eine Hauptstromversorgung (58, 88, 106) zum Anlegen der Spannung über die elektrisch leitenden Schichten aufweist, wobei vorzugsweise die Hauptstromversorgung (58, 88, 106) elektrisch mit mindestens einer der elektrischen Verbindungen mit den elektrisch leitenden Schichten (23, 24, 26) in dem ersten Endstück verbunden ist, wobei die mindestens eine der elektrischen Verbindungen vorzugsweise eine elektrische Verbindung mit der Karkasse (26) ist, wobei vorzugsweise die Hauptstromversorgung (58, 88, 106) elektrisch mit beiden elektrischen Verbindungen mit den elektrisch leitenden Schichten (23, 24, 26) in dem ersten Endstück verbunden ist, wobei vorzugsweise die Hauptstromversorgung (58, 88, 106) zum Anlegen einer Wechselspannung angeordnet ist.
     
    14. Offshore-System nach einem der Ansprüche 10 bis 13, wobei die Hauptstromversorgung eine Doppelstromversorgung ist, wobei eine Teilstromversorgung über eine der elektrisch leitenden Schichten (23, 24, 26) und Null angeschlossen ist, und der einen der elektrisch leitenden Schichten (23, 24, 26) ein hohes Potential hinzufügt, und eine weitere Teilstromversorgung über die andere der elektrisch leitenden Schichten (23, 24, 26) und Null angeschlossen ist, und der anderen der elektrisch leitenden Schichten (23, 24, 26) ein niedriges Potential hinzufügt, wobei vorzugsweise das System eine Hilfsstromversorgung in dem Stromkreis aufweist, die in einem Abstand von der Hauptstromversorgung angeordnet ist, wobei vorzugsweise die Hilfsstromversorgung in der entfernten Position des ungebundenen flexiblen Rohrs angeordnet ist, vorzugsweise in dem zweiten Endstück, wobei vorzugsweise die Hilfsstromversorgung angeordnet ist, um eine elektrische Potentialdifferenz zwischen den elektrisch leitenden Schichten (23, 24, 26) an der entfernten Position des ungebundenen flexiblen Rohrs (1) derart anzulegen, dass das angelegte elektrische Potential an der entfernten Position jeder der jeweiligen elektrisch leitenden Schichten (23, 24, 26) negativ ist, wo das von der Hauptstromversorgung am ersten Ende des ungebundenen flexiblen Rohrs (1) an jede der jeweiligen elektrisch leitenden Schichten (23, 24, 26) angelegte elektrische Potential positiv ist, und positiv ist, wo das von der Hauptstromversorgung am ersten Ende des ungebundenen flexiblen Rohrs (1) an jede der jeweiligen elektrisch leitenden Schichten (23, 24, 26) angelegte elektrische Potential negativ ist.
     


    Revendications

    1. Tuyau souple non lié pour le transport de fluides, le tuyau souple non lié (1) a une longueur le long d'un axe central longitudinal, et une première et une seconde extrémité, et un premier raccord d'extrémité connecté à la première extrémité, le tuyau souple non lié (1) comprend de l'intérieur vers l'extérieur une carcasse électriquement conductrice (26), une gaine d'étanchéité électriquement isolante le plus à l'intérieur (25), au moins une couche de blindage électriquement conductrice (23, 24) comprenant au moins un fil électriquement conducteur enroulé de façon hélicoïdale et une gaine d'étanchéité extérieure électriquement isolante (21), au moins les couches électriquement conductrices sont mécaniquement terminées dans le premier raccord d'extrémité et le tuyau comprend des connexions électriques dans le premier raccord d'extrémité agencées pour appliquer une tension sur les couches électriquement conductrices, lesquelles couches électriquement conductrices sont électriquement connectées dans une position éloignée du tuyau souple non lié à une distance du premier raccord d'extrémité du tuyau souple non lié pour fournir un circuit électrique ; dans lequel le tuyau souple non lié comprend un capteur de température ; dans lequel la couche de blindage électriquement conductrice (23, 24) comprend au moins l'une d'une couche de blindage de traction (22a, 22b) ou une couche de blindage de pression (23) et dans lequel la carcasse électriquement conductrice (26) et la couche de blindage électriquement conductrice (23, 24) sont sélectionnées de telle sorte qu'une chute de tension Vc sur la carcasse électriquement conductrice (26) est plus élevée qu'une chute de tension Va sur la couche de blindage électriquement conductrice (23, 24), de préférence Vc > 1,5 fois Va, tel que Vc > 2 fois Va, tel que Vc > 5 fois Va, tel que Vc > 10 fois Va.
     
    2. Tuyau souple non lié selon la revendication 1, dans lequel le premier raccord d'extrémité comprend un trou s'étendant à travers une extrémité avant dans laquelle les couches électriquement conductrices (23, 24, 26) sont mécaniquement terminées, et à travers une extrémité arrière du premier raccord d'extrémité, l'extrémité arrière du premier raccord d'extrémité comprend une bride pour être connectée à une structure de site de production en connexion fluidique avec un chemin d'écoulement de celle-ci.
     
    3. Tuyau souple non lié selon l'une quelconque des revendications 1 ou 2, dans lequel un blocage d'énergie électrique est agencé dans l'extrémité arrière du trou du raccord d'extrémité, de préférence le blocage d'énergie électrique est un clapet, tel qu'un clapet à bille ou un robinet-vanne, de préférence le clapet est d'un matériau non conducteur ou est revêtu d'un matériau non conducteur, ou le blocage d'énergie électrique est une anode sacrificielle comprenant un matériau ou un alliage métallique qui est moins noble que la surface de paroi annulaire du premier raccord d'extrémité, telle qu'une anode comprenant du magnésium, du laiton, de l'aluminium, du zinc ou du titane, de préférence l'anode sacrificielle est appliquée selon un motif annulaire dans une section de paroi annulaire au niveau de l'extrémité arrière du premier raccord d'extrémité.
     
    4. Tuyau souple non lié selon l'une quelconque des revendications précédentes dans lequel la position éloignée où la carcasse électriquement conductrice (26) est électriquement connectée à la couche de blindage électriquement conductrice (23, 24) est à une distance d'au moins environ 5 m, telle qu'au moins environ 10 m, telle qu'au moins environ 30 m, sur la longueur du tuyau souple non lié à partir du premier raccord d'extrémité.
     
    5. Tuyau souple non lié selon l'une quelconque des revendications précédentes dans lequel le tuyau souple non lié comprend un second raccord d'extrémité connecté à la seconde extrémité, et la position éloignée où la carcasse électriquement conductrice (26) est électriquement connectée à la couche de blindage électriquement conductrice (23, 24) est dans ledit second raccord d'extrémité, de préférence au moins les couches électriquement conductrices (23, 24) sont mécaniquement terminées dans le second raccord d'extrémité et la connexion électrique est prévue entre la carcasse électriquement conductrice (26) et la couche de blindage électriquement conductrice (23, 24).
     
    6. Tuyau souple non lié selon l'une quelconque des revendications précédentes dans lequel les connexions électriques agencées pour appliquer une tension sur les couches électriquement conductrices (23, 24, 26) sont agencées pour être connectées à une alimentation électrique principale (58, 88, 106) pour appliquer la tension sur les couches électriquement conductrices (23, 24, 26) dans ledit premier raccord d'extrémité, de préférence l'alimentation électrique principale (58, 88, 106) est une alimentation électrique double dans laquelle une sous-alimentation électrique est connectée sur l'une des couches électriquement conductrices (23, 24, 26) et zéro et elle ajoute un potentiel élevé à ladite une des couches électriquement conductrices (23, 24, 26) et une autre sous-alimentation électrique est connectée sur l'autre des couches électriquement conductrices (23, 24, 26) et zéro et elle ajoute un potentiel faible à ladite autre des couches électriquement conductrices (23, 24, 26), de préférence le tuyau souple non lié comprend des connexions électriques pour appliquer une alimentation électrique de support dans le circuit électrique à une distance de l'alimentation électrique principale, de préférence l'alimentation électrique de support est dans une position éloignée du tuyau souple non lié, de préférence dans le second raccord d'extrémité.
     
    7. Tuyau souple non lié selon l'une quelconque des revendications précédentes, dans lequel le tuyau souple non lié comprend deux ou plus sections de longueur de tuyau (11a, 11b, 11c) qui sont mécaniquement et électriquement connectées via des raccords d'extrémité intermédiaires respectifs, de préférence chaque section de longueur de tuyau comprend de l'intérieur vers l'extérieur une section de longueur de carcasse électriquement conductrice (26), une section de longueur de gaine d'étanchéité électriquement isolante le plus à l'intérieur (25), au moins une section de longueur de couche de blindage (22a, 22b, 23) comprenant une section de longueur de l'au moins un fil électriquement conducteur enroulé de façon hélicoïdale et une section de longueur de gaine d'étanchéité extérieure électriquement isolante (21), dans lequel les sections de longueur (11a, 11b, 11c) respectives des couches conductrices (23, 24, 26) sont électriquement interconnectées pour fournir le circuit électrique, de préférence une ou plusieurs des sections de longueur de couches sont mécaniquement terminées dans les raccords d'extrémité intermédiaires respectifs.
     
    8. Tuyau souple non lié selon l'une quelconque des revendications précédentes, dans lequel le tuyau souple non lié (1) dans au moins une section de longueur de celui-ci comprend une ou plusieurs couches d'isolation thermique.
     
    9. Tuyau souple non lié selon l'une quelconque des revendications précédentes dans lequel le capteur de température comprend une fibre optique.
     
    10. Système en mer comprenant une structure de site de production (2) et un tuyau souple non lié (1) dans lequel le tuyau souple non lié (1) est tel que revendiqué dans l'une quelconque des revendications 1 à 9 et approprié pour le transport de fluides depuis une installation sous-marine jusqu'à la structure de site de production (2), le tuyau souple non lié a une longueur le long d'un axe central longitudinal, et une première et une seconde extrémité, et un premier raccord d'extrémité connecté à la première extrémité, dans lequel le tuyau souple non lié est connecté à ladite structure de site de production via ledit premier raccord d'extrémité, le tuyau souple non lié comprend de l'intérieur vers l'extérieur une carcasse électriquement conductrice (26), une gaine d'étanchéité électriquement isolante le plus à l'intérieur (25), au moins une couche de blindage électriquement conductrice (23, 24) comprenant au moins un fil électriquement conducteur enroulé de façon hélicoïdale et une gaine d'étanchéité extérieure électriquement isolante (21), au moins les couches électriquement conductrices sont mécaniquement terminées dans le premier raccord d'extrémité et le tuyau comprend des connexions électriques dans le premier raccord d'extrémité agencées pour appliquer une tension sur les couches électriquement conductrices, lesquelles couches électriquement conductrices sont électriquement connectées dans une position éloignée du tuyau souple non lié à une distance du premier raccord d'extrémité du tuyau souple non lié pour fournir un circuit électrique et caractérisé en ce que la carcasse électriquement conductrice (26) et la couche de blindage électriquement conductrice (23, 24) sont sélectionnées de telle sorte qu'une chute de tension Vc sur la carcasse électriquement conductrice (26) est plus élevée qu'une chute de tension Va sur la couche de blindage électriquement conductrice (23, 24), de préférence Vc > 1,5 fois Va, tel que Vc > 2 fois Va, tel que Vc > 5 fois Va, tel que Vc > 10 fois Va.
     
    11. Système en mer selon la revendication 10, dans lequel le premier raccord d'extrémité comprend un trou (50, 60) s'étendant à travers une extrémité avant dans laquelle les couches électriquement conductrices (23, 24, 26) sont mécaniquement terminées, et à travers une extrémité arrière du premier raccord d'extrémité, l'extrémité arrière du premier raccord d'extrémité comprend une bride connectée à une structure de site de production en connexion fluidique avec un chemin d'écoulement de celle-ci, de préférence l'extrémité arrière du premier raccord d'extrémité comprend une surface de paroi annulaire définissant l'extrémité arrière du trou (50, 60) du premier raccord d'extrémité, dans lequel toute la surface de paroi annulaire définissant l'extrémité arrière du trou (50, 60) du premier raccord d'extrémité est fournie par un revêtement d'un matériau électriquement isolant.
     
    12. Système en mer selon la revendication 11, dans lequel le chemin d'écoulement de la structure de site de production comprend une section de chemin d'écoulement pour écoulement entrant (90) entourée par une surface de paroi de chemin d'écoulement pour écoulement entrant (94) qui dans au moins une section de longueur est électriquement isolée, de préférence la surface de paroi de chemin d'écoulement pour écoulement entrant (94) est électriquement isolée dans une section de longueur immédiatement adjacente au premier raccord d'extrémité (83), la section de longueur a de préférence une longueur d'environ 5 cm, telle qu'au moins environ 10 cm, telle qu'au moins environ 50 cm, de préférence la section de longueur électriquement isolée dans la surface de paroi de chemin d'écoulement pour écoulement entrant (94) est électriquement isolée en comprenant une extension de la gaine d'étanchéité le plus à l'intérieur du tuyau souple non lié (1).
     
    13. Système en mer selon l'une quelconque des revendications 10 à 12, dans lequel le système comprend en outre une alimentation électrique principale (58, 88, 106) pour appliquer la tension sur les couches électriquement conductrices, de préférence l'alimentation électrique principale (58, 88, 106) est électriquement connectée à au moins une des connexions électriques aux couches électriquement conductrices (23, 24, 26) dans ledit premier raccord d'extrémité, ladite au moins une des connexions électriques est de préférence une connexion électrique à la carcasse (26), de préférence l'alimentation électrique principale (58, 88, 106) est électriquement connectée aux deux connexions électriques aux couches électriquement conductrices (23, 24, 26) dans ledit premier raccord d'extrémité, de préférence l'alimentation électrique principale (58, 88, 106) est agencée pour application d'une tension alternative.
     
    14. Système en mer selon l'une quelconque des revendications 10 à 13, dans lequel l'alimentation électrique principale est une alimentation électrique double dans lequel une sous-alimentation électrique est connectée sur une des couches électriquement conductrices (23, 24, 26) et zéro et elle ajoute un potentiel élevé à ladite une des couches électriquement conductrices (23, 24, 26) et une autre sous-alimentation électrique est connectée sur l'autre des couches électriquement conductrices (23, 24, 26) et zéro et elle ajoute un potentiel faible à ladite autre des couches électriquement conductrices (23, 24, 26), de préférence le système comprend une alimentation électrique de support dans le circuit électrique agencée à une distance de l'alimentation électrique principale, de préférence l'alimentation électrique de support est agencée dans la position éloignée du tuyau souple non lié, de préférence dans le second raccord d'extrémité, de préférence l'alimentation électrique de support est agencée pour imposer une différence de potentiel électrique entre les couches électriquement conductrices (23, 24, 26) dans la position éloignée du tuyau souple non lié (1) de telle sorte que le potentiel électrique imposé dans la position éloignée de chacune des couches électriquement conductrices (23, 24, 26) respectives est négatif là où le potentiel électrique imposé par l'alimentation électrique principale au niveau de la première extrémité du tuyau souple non lié (1) à chacune desdites couches électriquement conductrices (23, 24, 26) respectives est positif et positif là où le potentiel électrique imposé par l'alimentation électrique principale au niveau de la première extrémité du tuyau souple non lié (1) à chacune desdites couches électriquement conductrices (23, 24, 26) respectives est négatif.
     




    Drawing




































    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description




    Non-patent literature cited in the description