(19)
(11)EP 3 027 963 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
18.04.2018 Bulletin 2018/16

(21)Application number: 14820677.4

(22)Date of filing:  01.07.2014
(51)International Patent Classification (IPC): 
F21V 7/06(2006.01)
F21W 111/06(2006.01)
F21V 7/09(2006.01)
F21V 17/12(2006.01)
F21Y 105/10(2016.01)
F21Y 101/00(2016.01)
F21V 7/04(2006.01)
F21V 7/22(2018.01)
F21V 19/00(2006.01)
F21Y 115/10(2016.01)
(86)International application number:
PCT/US2014/045016
(87)International publication number:
WO 2015/002928 (08.01.2015 Gazette  2015/01)

(54)

REFLECTOR FOR DIRECTED BEAM LED ILLUMINATION

REFLEKTOR FÜR LED-BELEUCHTUNG MIT GERICHTETEM STRAHL

RÉFLECTEUR POUR ÉCLAIRAGE À DIODES ÉLECTROLUMINESCENTES À FAISCEAUX DIRIGÉS


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 02.07.2013 US 201313933818

(43)Date of publication of application:
08.06.2016 Bulletin 2016/23

(73)Proprietor: Cooper Technologies Company
Houston, TX 77002 (US)

(72)Inventor:
  • HUNTER, Vivian, L.
    Simsbury, CT 06070 (US)

(74)Representative: Emde, Eric 
Wagner & Geyer Gewürzmühlstrasse 5
80538 München
80538 München (DE)


(56)References cited: : 
WO-A1-2005/036054
WO-A1-2007/042493
DE-A1-102010 018 178
US-A1- 2008 232 102
WO-A1-2005/036054
CN-U- 202 432 395
US-A1- 2004 114 366
US-A1- 2012 327 657
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present disclosure relates generally to a reflector for a lighting fixture. Specifically, the present disclosure relates generally to an LED reflector for an airfield runway lighting fixture.

    BACKGROUND



    [0002] Traditional lighting sources such as incandescent, fluorescent, high intensity discharge (HID) lamps, and the like, are gradually being replaced by light emitting diodes (LEDs) in many industries and applications. LEDs hold several advantages over traditional lighting sources such as increased power efficiency, size to output efficiency, and lifespan, among other others. Thus, many lighting fixtures are being redesigned to use LEDs instead of the traditional lighting sources. However, designing a light fixture to be compatible for use with LEDs may present a suite of engineering challenges, as LEDs typically require different drive electronics, environments, and/or optics than traditional lighting sources. Thus, in order to take advantage of the benefits of LEDs, novel lighting fixtures or LED-compatible electronics, optics, and/or housings components are required. For example, while LEDs are capable of producing a large amount of light for their size, the light is typically given off in a wide directional span. Thus, in order to take advantage of the efficiency of the LEDs and to make the light useful for a particular application, special optical features may be required. Different applications may require unique electronic, optical, or housing components in order to support LED compatibly. In other words, when designing a lighting fixture for LED compatibility, the solutions may be unique and application specific.

    [0003] In the area of airfield lighting, runway lighting fixtures have typically used quartz halogen lamps, of which the light emitted is directed into a prism to produce narrow flat light desired for runway lighting. Thus, in order to effectively replace the lamps with LEDs and realize the benefits of LED lighting, it is desired to modify light emitted from the LEDs into a concentrated narrow beam, such that the beam can be efficiently directed into the prism and allow the runway light fixture to produce the desired light output.

    [0004] Attention is drawn to WO 2007 042 493 A1, which relates to a half-dipped signaling lamp with a base support to be embedded in the ground and at least one light source within the base support. A cap, removably connected to the base support and protruding from the ground, has at least one windowed seat, with an optical prism supported in the window. The optical prism directs the light beam emitted by the light source to the outside. Reflectors direct the light beam emitted by the light source toward the optical prism, to maximize the percentage of light beam coming out of the windowed seat.

    SUMMARY



    [0005] In accordance with the present invention, a directed beam reflector assembly as set forth in claim 1 is provided. Further embodiments are inter alia disclosed in the dependent claims.In an example embodiment of the present disclosure, a directed beam reflector includes a first reflector segment and a second reflector segment joined to the first reflector segment. The first reflector segment further includes a first curved reflective surface, in which the first reflector segment comprises a portion of a first curved three-dimensional shape. Likewise, the second reflector segment includes a second curved reflective surface, in which the second reflector segment comprises a portion of a second curved three-dimensional shape. During use, the first curved reflective surface in configured to substantially focus light from a first LED into a first beam of light. Likewise, the second curved reflective surface is configured to focus light from a second LED into a second beam of light. The first beam of light and second beam of light form an aggregate beam of light

    [0006] In another example embodiment of the present disclosure, a directed beam reflector assembly includes a circuit board and a reflector. The circuit board includes a first light emitting diode (LED) and a second LED. The reflector is disposed on the circuit board. The reflector includes a first reflector segment and a second reflector segment, in which the first reflector segment is substantially aligned with the first LED and the second reflector segment is substantially aligned with the second LED. During use, the first reflector segment focuses light from the first LED into a first beam of light and the second reflector segment focuses light from the second LED into a second beam of light. The first beam of light and second beam of light form an aggregate beam of light.

    [0007] In another example embodiment of the present disclosure, a directed beam reflector includes a reflective surface. The first reflective surface includes one or more concave parabolic surfaces, in which the parabolic surfaces are substantially linearly aligned. Each of the parabolic surfaces include a portion of a paraboloid and reflects light from a light emitting diode (LED) into a focused beam of light.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0008] For a more complete understanding of the disclosure and the advantages thereof, reference is now made to the following description, in conjunction with the accompanying figures briefly described as follows:

    Figure 1 illustrates a perspective bottom view of a directed beam reflector and its inner surface, in accordance with example embodiments of the present disclosure;

    Figure 2 illustrates a top view of the directed beam reflector of Figure 1 and its outer surface, in accordance with example embodiments of the present disclosure;

    Figure 3 illustrates a side view of the directed beam reflector of Figures 1 and 2, in accordance with example embodiments of the present disclosure;

    Figure 4 illustrates a perspective bottom view of an alternate embodiment of a directed beam reflector, in accordance with example embodiments of the present disclosure;

    Figure 5 illustrates a side view of a reflector assembly, in accordance with example embodiments of the present disclosure;

    Figure 6 illustrates a top view of the reflector assembly of Figure 5, in accordance with embodiments of the present disclosure; and

    Figure 7 illustrates an internal view of a light fixture including the reflector assembly of Figures 5 and 6.



    [0009] The drawings illustrate only example embodiments of the disclosure and are therefore not to be considered limiting of its scope, as the disclosure may admit to other equally effective embodiments. The elements and features shown in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of example embodiments of the present disclosure. Additionally, certain dimensions may be exaggerated to help visually convey such principles.

    DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS



    [0010] In the following paragraphs, the present disclosure will be described in further detail by way of examples with reference to the attached drawings. In the description, well known components, methods, and/or processing techniques are omitted or briefly described so as not to obscure the disclosure. As used herein, the "present disclosure" refers to any one of the embodiments of the disclosure described herein and any equivalents. Furthermore, reference to various feature(s) of the "present disclosure" is not to suggest that all embodiments must include the referenced feature(s). The present disclosure provides systems and methods of reflecting light emitting from LEDs into a focused beam and aggregate beam appropriate for use with airfield runway lighting features, and which provide the benefits of LED lighting while meeting the requirements for runway lighting.

    [0011] In certain example embodiments, the present disclosure provides a reflector capable of directing light from one or more light sources into a narrow beam of light, in which the light beam reaches a high brightness while the light sources require less driver power relative to the brightness of the light beam. In the present disclosure, the reflector is described in an airfield lighting environment, specifically, as an optical component of an airfield runway light fixture. However, the reflector is usable in a variety of other lighting fixtures and applications other than airfield lighting. Similarly, in the present disclosure, the reflector is used with light emitting diodes (LEDs) as the one or more light sources. While the example embodiments and applications described in this disclosure use LEDs, it is to be appreciated that in other example embodiments and applications, the reflector can be used with other types of light sources while remaining within the scope of this disclosure. Any disclosure of dimensions, proportions, or particular geometries in the description or in the figures is for conceptual and example purposes and is not limiting.

    [0012] Figure 1 illustrates a perspective bottom view of a directed beam reflector 100 in accordance with example embodiments of the present disclosure. Figure 2 illustrates a top view, or backside view, of the reflector 100 of Figure 1, in accordance with example embodiments of the present disclosure. Specifically, Figure 1 shows an inner surface 101 of the reflector 100 and Figure 2 shows an outer surface 201 of the reflector 100. Figure 3 illustrates a side view of the reflector 100 of Figures 1 and 2, in accordance with example embodiments of the present disclosure. Referring to Figures 1, 2, and 3, in certain example embodiments, the directed beam reflector 100 includes a first reflector segment 102, a second reflector segment 104, and a third reflector segment 106, in which the first reflector segment 102 is coupled to the second reflector segment 104, and the third reflector segment 106 is coupled to the second reflector segment 104 opposite the first reflector segment. In certain example embodiments, the first, second, and third reflector segments 102, 104, 106 are substantially linearly aligned. The reflector 100 further includes a mounting element, such as a mounting flange 110, coupled to at least one of the first, second, and third reflector segments. In certain example embodiments, the mounting element 110 includes a coupling element such as an aperture 108 for coupling the reflector to a mounting surface. In certain example embodiment, the mounting surface to which the reflector is to be mounted is a circuit board, a spacer, a fixture housing, or the like. In the presently illustrated embodiment, the coupling element 108 is an aperture which traverses the mounting flange 110 configured to receive a screw threaded therethrough, in which the screw secures the mounting flange 110 to a mounting surface disposed adjacent to the mounting screw. In another example embodiment, the coupling element 108 is a snap, clip, pin, slot, or the like, and the mounting surface includes a corresponding coupling feature. In certain example embodiments, the reflector includes one or more alignment elements such as alignment pins 112 for easily aligning the reflector with the mounting surface. In another example embodiment, the alignment feature is a depression, protrusion, slot, or another appropriate alignment or guide feature.

    [0013] In certain example embodiments, the first reflector segment 102 includes a portion of a first curved three-dimensional shape, the second reflector segment 104 includes a portion of a second curved three-dimensional shape, and the third reflector segment 106 includes a portion of a third curved three-dimensional shape. Reflector segments 102, 104 and 106 are connected at joints 114 as shown in the example in Figure 1. In certain example embodiments, and as illustrated in Figures 1 and 2, each of the first, second, and third reflector segments 102, 104, 106 are concave (Figure 1) in the same direction, forming the inner surface 101, and convex (Figure 2) in the same direction, forming the outer surface 201. In certain example embodiments, all or a subset of the first, second, and third curved three-dimensional shapes are paraboloids.

    [0014] In certain example embodiments, the first reflector segment 102 includes a portion of a first paraboloid, in which the portion is defined or bounded by a partial revolution of the paraboloid and a plane traversing the axis of symmetry of the paraboloid. In certain example embodiments, the plane is orthogonal to the axis of symmetry. In certain other example embodiments, the plane is not orthogonal to the axis of symmetry. Likewise, the second and third reflector segments 104, 106, respectively include portions of a second and third paraboloid and are similarly defined. In certain example embodiments, the first, second, and third paraboloids have the same geometries and comprise the same shape. Alternatively, in certain example embodiments, the first, second, and third paraboloids comprise different geometries.

    [0015] In certain example embodiments, the first, second, and third reflector segments 102, 104, 106 comprise same or different portions of their respective paraboloids. For example, and as illustrated in Figures 1, the first and third reflector segments 102, 106 comprises a larger portion of their respective paraboloids and the second reflector segment 104 comprises a smaller portion of its respective paraboloid. In other words, the second reflector segment 104 is defined by fewer degrees of revolution of the second paraboloid. Thus, in certain embodiments, the first, second, and third reflector segments 102, 104, 106 have different sizes and/or surface area.

    [0016] Referring to Figure 3, in certain example embodiments, the first reflector segment 102 is on a side of the reflector 100. Thus, in such an embodiment, an outer side 301 of the first reflector also forms an outer side 301 of the reflector 100. In certain example embodiments, the outer side 301 includes a flank portion 303 which extends beyond the defined portion of the first paraboloid and includes an outer edge 302 which traverses a plane defined by the mounting surface. The configuration of the reflector 100 with respect to the mounting surface is described in further detail with reference to Figure 5. In certain example embodiments, the flank portion 303 deviates from, or does not follow, the contour of the paraboloid.

    [0017] In certain example embodiments, the reflector 100 is fabricated from a plastic material having appropriate thermal characteristics such that the reflector is able to withstand a high temperature environment, such as that associated with LED lighting. For example, in one or more example embodiments, the reflector 100 is primary fabricated from a polycarbonate material. The inner surface 101 of the reflector 100 is a reflective surface. In certain example embodiments, the inner surface 101 is coated with a reflective material such as chrome, aluminum, silver, or the like. In certain example embodiments, the process of applying such a coating is a high temperature process. Therefore the reflector 100 would be fabricated from a material of sufficient heat resistance to withstand not only an LED environment, but also the heating involved in applying a reflective coating.

    [0018] In certain example embodiments, the reflector 100 includes more or less than three reflector segments. For example, Figure 4 illustrates a reflector 400 having a fourth reflector segment 402 in accordance with an example embodiment of the present disclosure. Alternatively, in certain example embodiments, the reflector 100 includes only two of the first, second, and third reflector segments 102, 104, 106.

    [0019] Figure 5 illustrates a side view of a reflector assembly 500 featuring the reflector 100 of Figures 1, 2, and 3, in accordance with an example embodiment of the present disclosure. Figure 5 further illustrates the first reflector segment 102 reflecting light from a first LED 506 into a first beam of light 520, in accordance with an example embodiment of the present disclosure. Referring to Figure 5, in certain example embodiments, the reflector assembly 500 includes the reflector 100, a circuit board 502, and a spacer 504. In certain example embodiments, the circuit board 502 includes a coupling element 508 such as an aperture or screw-hole. The reflector 100 is mounted onto the circuit board 502 such that the aperture 108 in the mounting element 110 of the reflector and the aperture 508 in the circuit board 502 are aligned and a screw can be threaded therethrough, securing the reflector 100 to the circuit board 502. In an example embodiment, the reflector 100 is mounted onto the circuit board 502 in an orientation in which the inner surface 101 of the reflector 100 faces the circuit board 502 and the outer surface 201 of the reflector 100 faces away from circuit board 502.

    [0020] In certain other example embodiments, the reflector 100 is mounted onto the circuit board 502 via a different coupling mechanism, such as a clip, snap, groove, and the like. In certain example embodiments, the circuit board 502 is mounted on a spacer 504 such that the circuit board 502 is disposed between the reflector 100 and the spacer 504. In an example embodiment, the spacer 504 includes one or more apertures or screw-holes which align with the apertures or screw-holes in the circuit board 502 and the reflector 100. In such an embodiment, a screw is threaded through the reflector 100, the circuit board 502, and the spacer 504, thereby securing the three elements to each other. In an example embodiment, the spacer 504 is also secured to an optical housing on a lighting fixture when installed. Additionally, in certain example embodiments, the alignment pins 112 of the reflector 100 provide accurate alignment and relative positioning between the reflector 100, the circuit board 502, and/or the spacer 504. In certain example embodiments, the spacer 504 is secured to the optical housing with one or more screws or another appropriate coupling device or element. In an example embodiment, the spacer 504 provides an angled surface on which the circuit board 502 is mounted, thereby providing an angle between the reflector 100 and the optical housing to which the spacer 504 is mounted. In certain example embodiments, the spacer 504 further functions as a heat sink, dissipating a portion of the heat generated by the LEDs 506.

    [0021] The circuit board 502 further includes one or more LEDs 506 disposed thereon. In certain example embodiments, the LED 506 is a surface mount LED package 506. The LED 506 is directed upwards towards the inner surface 101 of the reflector 100. In one example embodiment, the circuit board 502 has as many LEDs 506 as the reflector has reflector segments, in which each LED 506 corresponds to and is positioned under one of the reflector segments. In an example embodiment, the LED 506 is positioned with respect to the first reflector segment 102. Specifically, in the example embodiment, the LED 506 and the reflector 100 are oriented on the circuit board 502 such that the LED 506 is substantially positioned at the geometric focus 512 of the first paraboloid 504, of which the first reflector segment comprises a portion, as described above. Thus, light given off by the LED 506 is reflected by the reflector 100 in a direction substantially parallel to the optical axis 516 of the first paraboloid 514, forming a first beam of light 520. The optical axis 516 is at an angle to the circuit board 502, which directs the first beam of light 520 in the angle with respect to the circuit board 502. Such an optical angle facilitates optical efficiency of the reflector segment and the lighting fixture and/or housing in which the reflector 100 is installed. However, given that the light emitting area of the LED 506 spans an area larger than one geometric point, some of the light emitted does not originate from the exact geometric focus 512 and is reflected at an slight angle to the axis of symmetry 516. In certain example embodiments, the LED 506 can be positioned offset from the geometric focus 512 to achieve another desired lighting effect.

    [0022] In certain example embodiments, the LED 506 is mounted as close to an edge 518 of the circuit board 502 as practicable, as excess surface area of the circuit board 502 may deflect more light emitted from the LED 506, reducing the overall brightness of the first beam of light 520. As discussed above, in an example embodiment, the outer side 301 of the reflector 100 includes a flank portion 303 and an outer edge 302 which traverses and extends beyond a plane 510 defined by the circuit board 502. The extra reflective surface provided by the flank portion 303 provides a stray light baffling function, which reduces the amount to light lost in the fixture and focusses more light into the first beam of light 520.

    [0023] Figure 6 illustrates a top view of the reflector assembly 500 of Figure 5, in accordance with an example embodiment of the present disclosure. Referring to Figure 6, in an example embodiment, the circuit board 502 includes a first LED 506, a second LED 612, and a third LED 614 mounted thereon. In the example embodiment, the reflector 100 includes the first reflector segment 102, the second reflector segment 104, and the third reflector segment 106. Accordingly, the first reflector segment 102 reflects light emitted by the first LED 506 into a first beam of light 616, the second reflector segment 104 reflects light emitted by the second LED 612 into a second beam of light 618, and the third reflector segment 106 reflects light emitted by the third LED 612 into a third beam of light 620.

    [0024] In certain example embodiments, the first, second, and third beams of light 616, 618, 620 converge slightly to form an aggregate beam 622. When used in an airfield runway lighting application, such convergence generates a beam which meets Federal Aviation Administration (FAA) standards and/or international airfield standards. In certain example embodiments, the angle of convergence is defined as "full-width half maximum", or the complete width across the beam at the half power point. For example, in one embodiment, the angle of convergence is approximately 10° horizontally (left to right direction in Figure 6) and 4.5° vertically (top to bottom direction in Figure 5). Thus, the aggregate beam 622 is wider than it is tall. In certain example embodiments, the horizontal angle of convergence ranges from approximately 8° to 12° and the vertical angle of convergence ranges from approximately 3° to 5°. In other example embodiments, the horizontal and vertical angles of convergence are outside of these ranges.

    [0025] In certain example embodiments, the reflector 100 includes more or less than three reflector segments, and the reflector assembly 500 includes more or less than three LEDs, thereby producing more or less than three light beams which converge to form the aggregate light beam. The reflector segments can be arranged differently to produce a different aggregate light beam. For example, in an embodiment, more reflector segments are arranged side by side to produce a wider aggregate light beam. Alternatively, in an example embodiment, reflector segments are arranged out of line with each other or stacked to produce an aggregate light of more height.

    [0026] Figure 7 illustrates an internal view of a light fixture 700 using the reflector 100, in accordance with example embodiments of the present disclosure. Specifically, Figure 7 illustrates the underside of an optical housing 702 of a runway light fixture 700. In certain example embodiments, the optical housing 702 houses certain optical and electrical components which support the function of the light fixture 700. In an example embodiment, the light fixture 700 includes a first reflector assembly 500a and a second reflector assembly 500b. Respectively, the first and second reflector assemblies 500a, 500b, include first and second reflectors 100a, 100b, and first and second circuit boards 502a, 502b. The light fixture 700 further includes a first prism housing 704a and a second prism housing 704b, which house first and second prism 706a, 706b, respectively. In the example embodiment, the first and second prisms 706a, 706b and the first and second prism housings 704a, 704b are positioned at a 180° rotation from each other so that light is emitted in opposite directions. The first and second reflector assemblies 500a, 500b are mounted onto the optical housing 702 substantially adjacent to and facing the first and second prism housings 704a, 704b, respectively as shown in Figure 7. The prism housings 704a, 704b include a window which exposes the prisms 706a, 706b to the reflectors 100a, 100b. Specifically, the prisms 706a, 706b are substantially perpendicular to the axis of symmetry 516 (Figure 5) of the reflector segments, such that the aggregate light beams 622 (Figure 6) reflected by the reflectors 100a, 100b enter the prisms 706a, 706b. The light beams 622 are directed by the prisms 706a, 706b and exit the fixture 700 on the top side (not shown) in a direction substantially parallel to the ground when the fixture 700 is installed on a runway, thus providing flat and focused light for runway lighting. In certain example embodiments, the fixture 700 includes more or less than two reflector assemblies 500, and the reflector assemblies are arranged differently. In certain example embodiments, the light fixture 700 is an elevated runway light or another type of airfield lighting fixture.

    [0027] Although embodiments of the present disclosure have been described herein in detail, the descriptions are by way of example. The features of the disclosure described herein are representative and, in alternative embodiments, certain features and elements may be added or omitted. Additionally, modifications to aspects of the embodiments described herein may be made by those skilled in the art without departing from the scope of the present disclosure defined in the following claims, the scope of which are to be accorded the broadest interpretation so as to encompass modifications and equivalent structures.


    Claims

    1. A directed beam reflector assembly, comprising:

    a circuit board (502) comprising a first light emitting diode, LED (506) and a second LED (612), wherein the circuit board (502) defines a plane, and wherein the circuit board (502) comprises one or more coupling apertures (508) for coupling a reflector (100); and

    the reflector (100) comprising:

    a first reflector segment (102) having a first optical axis (516) and a second reflector segment (104) having a second optical axis (516) and, wherein the first reflector segment (102) is substantially aligned with the first LED (506) and the second reflector segment (104) is substantially aligned with the second LED (612), and

    a mounting flange (110) integral to the reflector (100) and configured to mount the reflector (100) onto the circuit board (502):

    wherein the reflector (100) is mounted on the circuit board (502) such that:

    an inner surface (101) of the first reflector segment (102) extends from the circuit board (502) at the mounting flange (110) over the first LED (506) and towards an edge (518) of the circuit board (502) that is adjacent the first LED (506),

    an inner surface (101) of the second reflector segment (104) extends from the circuit board (502) at the mounting flange (110) over the second LED (612) and towards an edge (518) of the circuit board (502) that is adjacent the second LED (612), and

    the plane of the circuit board (502) forms an angle that is acute with the first optical axis (516) and the second optical axis (516) to improve an optical efficiency of the first reflector segment (102) and the second reflector segment (104), and

    wherein the first reflector segment (102) substantially focuses light from the first LED (506) into a first beam of light (616) that is directed at the angle with respect to the plane defined by the circuit board (502); the second reflector segment (104) substantially focuses light from the second LED (612) into a second beam of light (618) that is directed at the angle with respect to the plane defined by the circuit board (502); and

    the first beam of light (616) and second beam of light (618) form an aggregate beam of light (622).


     
    2. The directed beam reflector assembly of Claim 1, wherein the reflector (100) comprises a right edge (302) and a left edge (302), wherein the right and left edges (302) extend beyond the plane defined by the circuit board (502).
     
    3. The directed beam reflector assembly of Claim 1, wherein the mounting flange (110) is mounted on the circuit board (502) and the circuit board (502) is coupled to a spacer (504) via one or more screws.
     
    4. The directed beam reflector assembly of Claim 1, wherein:

    the first reflector segment (102) comprises a first curved reflective surface (101) and a portion of a first curved three-dimensional shape; and

    the second reflector segment (104) comprises a second curved reflective surface (101) joined to the first reflector portion, and comprises a portion of a second curved three-dimensional shape.


     
    5. The directed beam reflector assembly of Claim 4, wherein the reflector (100) further comprises a third reflector segment (106) joined to the second reflector segment (104) opposite the first reflector segment (102), the third reflector segment (106) comprising a third curved reflective surface (101) and a portion of a third curved three-dimensional shape.
     
    6. The directed beam reflector assembly of Claim 4, wherein the first curved three-dimensional shape and the second curved three-dimensional shape comprise first and second paraboloids, respectively.
     
    7. The directed beam reflector assembly of Claim 6, wherein the first LED (506) is positioned at approximately a geometric focus (512) of the first paraboloid.
     
    8. The directed beam reflector of Claim 1, wherein a horizontal convergence of the aggregate beam light (622) is approximately 8 to 12 degrees and a vertical convergence of the aggregate beam light (622) is approximately 3 to 5 degrees.
     
    9. The directed beam reflector assembly of Claim 3, wherein the spacer (504) includes one or more apertures that are aligned with the one or more coupling apertures of the circuit board (502) when the circuit board (502) and the reflector (100) are mounted onto the spacer (504).
     
    10. The directed beam reflector assembly of Claim 1, wherein the directed beam reflector assembly is placed adjacent to a prism housing (704) in an optical housing (702) such that the aggregate beam of light (622) from the reflector (100) enters the prism housing (704) through a prism housing window and is directed by a prism (706) in the prism housing (704) to exit the optical housing (702).
     
    11. The directed beam reflector assembly of Claim 1, wherein the aggregate beam of light (622) is wider than it is tall, width being measured in a horizontal direction traversing the reflector (100).
     


    Ansprüche

    1. Eine gerichtete Strahlenreflektor-Anordnung, die Folgendes aufweist:

    eine Schaltplatte (502), die eine erste Licht emittierende Diode, LED (506) und eine zweite LED (612) aufweist, wobei die Schaltplatte (502) eine Ebene definiert, und wobei die Schaltplatte (502) ein oder mehr Kopplungsöffnungen (508) zur Kopplung eines Reflektors (100) aufweist; und

    der Reflektor (100) Folgendes aufweist:

    ein erstes Reflektor-Segment (102) mit einer ersten optischen Achse (516) und ein zweites Reflektor-Segment (104) mit einer zweiten optischen Achse (516) und wobei das erste Reflektor-Segment (102) im Wesentlichen mit der ersten LED (506) ausgerichtet ist und das zweite Reflektor-Element (104) im Wesentlichen mit der zweiten LED (612) ausgerichtet ist, und

    einen Anbringungsflansch (110), der Bestandteil des Reflektors (100) ist und konfiguriert ist, den Reflektor (100) auf der Schaltplatte (502) anzubringen. wobei der Reflektor (100) an der Schaltplatte (502) so angebracht ist, dass:

    sich eine Innenfläche (101) des ersten Reflektor-Segments (102) von der Schaltplatte (502) an dem Anbringungsflansch (110) über die erste LED (506) und hin zu einer Kante (518) der Schaltplatte (502), die zur ersten LED (506) benachbart ist, erstreckt,

    sich eine Innenfläche (101) des zweiten Reflektor-Segments (104) von der Schaltplatte (502) an dem Anbringungsflansch (110) über die zweite LED (612) und hin zu einer Kante (518) der Schaltplatte (502), die zur zweiten LED (612) benachbart ist, erstreckt, und

    die Ebene der Schaltplatte (502) einen Winkel bildet, der spitzwinklig mit der ersten optischen Achse (516) und der zweiten optischen Achse (516) ist, um eine optische Effizienz des ersten Reflektor-Segments (102) und des zweiten Reflektor-Segments (104) zu verbessern, und

    wobei das erste Reflektor-Segment (102) im Wesentlichen Licht von der ersten LED (506) in einen ersten Lichtstrahl (616) fokussiert, der mit dem Winkel zur Ebene, die durch die Schaltplatte (502) definiert ist, gerichtet wird;

    das zweite Reflektor-Segment (104) im Wesentlichen Licht von der zweiten LED (612) in einen zweiten Lichtstrahl (618) fokussiert, der mit dem Winkel zur Ebene, die durch die Schaltplatte (502) definiert ist, gerichtet wird; und

    der erste Lichtstrahl (616) und der zweite Lichtstrahl (618) einen Gesamt-Lichtstrahl (622) bilden.


     
    2. Gerichtete Strahlenreflektor-Anordnung nach Anspruch 1, wobei der Reflektor (100) eine rechte Kante (302) und eine linke Kante (302) aufweist, wobei die rechte und linke Kante (302) sich über die von der Schaltplatte (502) definierte Ebene hinaus erstrecken.
     
    3. Gerichtete Strahlenreflektor-Anordnung nach Anspruch 1, wobei der Anbringungsflansch (110) an der Schaltplatte (502) angebracht ist und die Schaltplatte (502) an einen Abstandshalter (504) mittels einer oder mehreren Schrauben gekoppelt ist.
     
    4. Gerichtete Strahlenreflektor-Anordnung nach Anspruch 1, wobei:

    das erste Reflektor-Segment (102) eine erste gekrümmte reflektierende Oberfläche (101) aufweist und ein Teil einer ersten gekrümmten dreidimensionalen Form; und

    das zweite Reflektor-Segment (104) eine zweite gekrümmte reflektierende Oberfläche (101) aufweist, die mit dem ersten Reflektor-Teil verbunden ist, und einen Teil einer zweiten gekrümmten dreidimensionalen Form aufweist.


     
    5. Gerichtete Strahlenreflektor-Anordnung nach Anspruch 4, wobei der Reflektor (100) ferner ein drittes Reflektor-Segment (106) aufweist, das mit dem zweiten Reflektor-Segment (104) gegenüber dem ersten Reflektor-Segment (102) verbunden ist, wobei das dritte Reflektor-Segment (106) eine dritte gekrümmte reflektierende Oberfläche (101) aufweist und einen Teil einer dritten gekrümmten dreidimensionalen Form.
     
    6. Gerichtete Strahlenreflektor-Anordnung nach Anspruch 4, wobei die erste gekrümmte dreidimensionale Form und die zweite gekrümmte dreidimensionale Form erste bzw. zweite Paraboloide aufweisen.
     
    7. Gerichtete Strahlenreflektor-Anordnung nach Anspruch 6, wobei die erste LED (506) an ungefähr einem geometrischen Fokus (512) des ersten Paraboloids positioniert ist.
     
    8. Gerichtete Strahlenreflektor-Anordnung nach Anspruch 1, wobei eine horizontale Konvergenz des Gesamt-Lichtstrahls (622) ungefähr 8 bis 12 Grad beträgt und eine vertikale Konvergenz des Gesamt-Lichtstrahls (622) ungefähr 3 bis 5 Grad beträgt.
     
    9. Gerichtete Strahlenreflektor-Anordnung nach Anspruch 3, wobei der Abstandshalter (504) eine oder mehr Öffnung/en aufweist, die mit der einen oder mehr Kopplungsöffnung/en der Schaltplatte (502) ausgerichtet sind, wenn die Schaltplatte (502) und der Reflektor (100) an dem Abstandshalter (504) angebracht sind.
     
    10. Gerichtete Strahlenreflektor-Anordnung nach Anspruch 1, wobei die gerichtete Strahlenreflektor-Anordnung benachbart zu einem Prisma-Gehäuse (704) in einem optischen Gehäuse (702) angeordnet ist, so dass der Gesamt-Lichtstrahl (622) von dem Reflektor (100) in das Prisma-Gehäuse (704) durch ein Prisma-Gehäusefenster hineingeht und durch ein Prisma (706) in dem Prisma-Gehäuse (704) gerichtet wird, um aus dem optischen Gehäuse (702) auszutreten.
     
    11. Gerichtete Strahlenreflektor-Anordnung nach Anspruch 1, wobei der Gesamt-Lichtstrahl (622) breiter als hoch ist, wobei die Breite in einer horizontalen, den Reflektor (100) kreuzenden Richtung gemessen wird.
     


    Revendications

    1. Ensemble réflecteur à faisceau dirigé, comprenant :

    une carte de circuit (502) comprenant une première diode électroluminescente, LED, (506) et une deuxième LED (612), la carte de circuit (502) définissant un plan, et la carte de circuit (502) comprenant une ou plusieurs ouvertures de couplage (508) pour coupler un réflecteur (100) ; et

    le réflecteur (100) comprenant :

    un premier segment de réflecteur (102) ayant un premier axe optique (516) et un deuxième segment de réflecteur (104) ayant un deuxième axe optique (516), et le premier segment de réflecteur (102) étant sensiblement aligné avec la première LED (506) et le deuxième segment de réflecteur (104) étant sensiblement aligné avec la deuxième LED (612), et

    un rebord de montage (110) intégré dans le réflecteur (100) et agencé pour monter le réflecteur (100) sur la carte de circuit (502) :

    dans lequel le réflecteur (100) est monté sur la carte de circuit (502) de telle sorte que :

    une surface intérieure (101) du premier segment de réflecteur (102) s'étend à partir de la carte de circuit (502) au niveau du rebord de montage (110) au-dessus de la première LED (506) et en direction d'un bord (518) de la carte de circuit (502) qui est adjacent à la première LED (506),

    une surface intérieure (101) du deuxième segment de réflecteur (104) s'étend à partir de la carte de circuit (502) au niveau du rebord de montage (110) au-dessus de la deuxième LED (612) et en direction d'un bord (518) de la carte de circuit (502) qui est adjacent à la deuxième LED (612), et

    le plan de la carte de circuit (502) fait un angle aigu avec le premier axe optique (516) et le deuxième axe optique (516) pour améliorer le rendement optique du premier segment de réflecteur (102) et du deuxième segment de réflecteur (104), et

    dans lequel le premier segment de réflecteur (102) focalise sensiblement la lumière provenant de la première LED (506) en un premier faisceau de lumière (616) qui est dirigé selon l'angle par rapport au plan défini par la carte de circuit (502) ; le deuxième segment de réflecteur (104) focalise sensiblement la lumière provenant de la deuxième LED (612) en un deuxième faisceau de lumière (618) qui est dirigé selon l'angle par rapport au plan défini par la carte de circuit (502) ; et

    le premier faisceau de lumière (116) et le deuxième faisceau de lumière (618) forment un faisceau de lumière agrégé (622).


     
    2. Ensemble réflecteur à faisceau dirigé selon la revendication 1, dans lequel le réflecteur (100) comprend un bord droit (302) et un bord gauche (302), dans lequel les bords droit et gauche (302) s'étendent au-delà du plan défini par la carte de circuit (502).
     
    3. Ensemble réflecteur à faisceau dirigé selon la revendication 1, dans lequel le rebord de montage (110) est monté sur la carte de circuit (502) et la carte de circuit (502) est couplée à une entretoise (504) par l'intermédiaire d'une ou plusieurs vis.
     
    4. Ensemble réflecteur à faisceau dirigé selon la revendication 1, dans lequel :

    le premier segment de réflecteur (102) comprend une première surface réfléchissante courbe (101) et une portion d'une première forme tridimensionnelle courbe ; et

    le deuxième segment de réflecteur (104) comprend une deuxième surface réfléchissante courbe (101) jointe à la première portion de réflecteur, et comprend une portion d'une deuxième forme tridimensionnelle courbe.


     
    5. Ensemble réflecteur à faisceau dirigé selon la revendication 4, dans lequel le réflecteur (100) comprend en outre un troisième segment de réflecteur (106) joint au deuxième segment de réflecteur (104) opposé au premier segment de réflecteur (102), le troisième segment de réflecteur (106) comprenant une troisième surface réfléchissante courbe (101) et une portion d'une troisième forme tridimensionnelle courbe.
     
    6. Ensemble réflecteur à faisceau dirigé selon la revendication 4, dans lequel la première forme tridimensionnelle courbe et la deuxième forme tridimensionnelle courbe comprennent des premier et deuxième paraboloïdes, respectivement.
     
    7. Ensemble réflecteur à faisceau dirigé selon la revendication 6, dans lequel la première LED (506) est disposée approximativement au foyer géométrique (512) du premier paraboloïde.
     
    8. Réflecteur à faisceau dirigé selon la revendication 1, dans lequel la convergence horizontale du faisceau de lumière agrégé (622) est d'environ 8 à 12 degrés et la convergence verticale du faisceau lumineux agrégé (622) est d'environ 3 à 5 degrés.
     
    9. Ensemble réflecteur à faisceau dirigé selon la revendication 3, dans lequel l'entretoise (504) comprend une ou plusieurs ouvertures qui sont alignées avec lesdites une ou plusieurs ouvertures de couplage de la carte de circuit (502) lorsque la carte de circuit (502) et le réflecteur (100) sont montés sur l'entretoise (504).
     
    10. Ensemble réflecteur à faisceau dirigé selon la revendication 1, dans lequel l'ensemble réflecteur à faisceau dirigé est placé adjacent à un logement de prisme (704) dans un boîtier optique (702) de sorte que le faisceau de lumière agrégé (622) provenant du réflecteur (100) rentre dans le logement de prisme (704) par l'intermédiaire d'une fenêtre de logement de prisme et est dirigé par un prisme (706) dans le logement de prisme (704) pour sortir du boitier optique (702).
     
    11. Ensemble réflecteur à faisceau dirigé selon la revendication 1, dans lequel le faisceau de lumière agrégé (622) est plus large que haut, la largeur étant mesurée dans une direction horizontale traversant le réflecteur (100).
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description