CROSSREFERENCE TO RELATED APPLICATIONS
BACKGROUND
[0002] During radiation therapy, there is potential for the treatment machine, such as a linear accelerator, to collide with either the patient, the patient support system, such as the treatment table, or other equipment. Such collisions can result in patient injury and/or death as well as equipment damage. To avoid collisions, the treatment geometry is inspected by a therapist before initiation of treatment. If a potential collision geometry is found, the treatment is terminated and a revised treatment plan is created. This process requires several days and is inconvenient for the patient and costly for the provider. To avoid such situation, planners use intuition and are very conservative in the choice of treatment geometry. This inhibits the use of more advanced treatment techniques in which the machine and patient move during treatment. These advanced techniques require computer-assisted collision prediction in advance of treatment, because the advanced treatment techniques use geometries too complex for human planners to visualize.
WO 2011/073599 discloses an anti-collision system for moving an object around an environment.
Brahme A. et al., "4D laser camera for accurate patient positioning, collision avoidance, image fusion and adaptive approaches during diagnostic and therapeutic procedures", Medical Physics, vol. 35, no. 5, pages 1670 - 1681, relates to accurate patient imaging in diagnostic and therapeutic radiology.
BRIEF DESCRIPTION OF THE DRAWINGS
[0003] Many aspects of the present disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, with emphasis instead being placed upon clearly illustrating the principles of the disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
FIG. 1 is a drawing of a networked environment according to various embodiments of the present disclosure.
FIG. 2 is a flowchart illustrating one example of functionality implemented as portions of a collision detection application executed in a computing device in the networked environment of FIG. 1 according to various embodiments of the present disclosure.
FIG. 3 is a flowchart illustrating one example of functionality implemented as portions of a collision detection application executed in a computing device in the networked environment of FIG. 1 according to various embodiments of the present disclosure.
FIG. 4 is a schematic block diagram that provides one example illustration of a computing device employed in the networked environment of FIG. 1 according to various embodiments of the present disclosure.
SUMMARY
[0004] The invention is defined by the subject matter of independent claims 1 and 4. Preferred embodiments are defined by the dependent claims.
DETAILED DESCRIPTION
[0005] Various embodiments are disclosed for predicting collisions during the treatment planning process. Three-dimensional (3-D) images of the patient and patient support systems, such as the treatment table, are obtained, for example using an optical camera. A 3-D model of the patient, patient support systems, and the treatment machine is used to identify configurations of the patient, patient support systems, and treatment machine that would result in a collision. In the following discussion, a general description of the system and its components is provided, followed by a discussion of the operation of the same.
[0006] With reference to FIG. 1, shown is a networked environment 100 according to various embodiments. The networked environment 100 includes a computing device 103, and a three-dimensional imaging device 106, which are in data communication with each other via a network 109. The network 109 includes, for example, the Internet, intranets, extranets, wide area networks (WANs), local area networks (LANs), wired networks, wireless networks, direct connections, or other suitable networks,
etc., or any combination of two or more such networks. For example, such networks can comprise satellite networks, cable networks, Ethernet networks, and other types of networks.
[0007] The computing device 103 can comprise, for example, a server computer or any other system providing computing capability. Alternatively, the computing device 103 can be one of a plurality of computing devices that can be arranged, for example, in one or more server banks or computer banks or other arrangements. Such computing devices can be located in a single installation or can be distributed among many different geographical locations. For example, the computing device 103 can be one of a plurality of computing devices that together can comprise a hosted computing resource, a grid computing resource and/or any other distributed computing arrangement. In some cases, the computing device 103 can correspond to an elastic computing resource where the allotted capacity of processing, network, storage, or other computing-related resources can vary over time.
[0008] Various applications and/or other functionality can be executed in the computing device 103 according to various embodiments. Also, various data is stored in a data store 113 that is accessible to the computing device 103. The data store 113 can be representative of a plurality of data stores 113 as can be appreciated. The data stored in the data store 113, for example, is associated with the operation of the various applications and/or functional entities described below.
[0009] The components executed on the computing device 103, for example, include the collision detection application 116, and other applications, services, processes, systems, engines, or functionality not discussed in detail herein. The collision detection application 116 is executed to identify collisions between patients and therapy machines, such as radiation therapy machines.
[0010] The data stored in the data store 113 includes, for example, patient data 119, treatment machine data 123, treatment plan data 126, and potentially other data.
[0011] The patient data 119 can represent personal data and the medical history of a patient, as well as other data. Include in the patient data 119 can be one or more three-dimensional patient models 129 of a patient. The three-dimensional patient model 129 can be generated from a point cloud or other data provided by the three-dimensional imaging device 106, as will be further discussed herein. In some embodiments, the three-dimensional patient model 129 can include a model of the patient as well as any supporting or immobilizing devices connected to the patient, such as a treatment, bed, table, and/or other device. It is understood that these supporting or immobilizing can be moved, in some embodiments, in order to move the patient in relation to a treatment machine.
[0012] The treatment machine data 123 can represent the make, model, manufacturer, capabilities, optimal parameters, and other data of a treatment machine, such as a radiation treatment machine. Also include in the treatment machine data 123 can be a three-dimensional treatment machine model 133. The three-dimensional treatment machine model 133 can be representative of a computer-assisted design (CAD) model provided by the manufacturer of the corresponding treatment machine, or can represent a three-dimensional model previously created, for example by using the three-dimensional imaging device 106. In some embodiments, the treatment machine data 123 may also include accessories for the treatment machine, such as intravenous (IV) poles and lines, ventilators, and/or other devices.
[0013] The treatment plan data 126 can represent data particular to a proposed treatment of a patient using a treatment machine. The treatment plan data 126 can include a series of control points 136, which are points in space and/or time in which a machine trajectory 139 and/or a patient trajectory 143 are analyzed to determine if collision between the patient and the treatment machine during treatment will occur. The machine trajectory 139 represents the path made by one or more components of the treatment machine and/or the path made by the treatment machine itself during the course of treatment. The patient trajectory 143 represents the path made by the patient during the course of treatment. For example, an oncology patient can be rotated and repositioned during the course of a radiation treatment for his or her cancer in conjunction with movements made by a radiation treatment machine or components of the radiation treatment machine in order to optimize the treatment of the patient.
[0014] The three-dimensional imaging device 106 is representative of a plurality of client devices that can be coupled to the network 109. In some embodiments, the three-dimensional imaging device 106 can comprise a three-dimensional scanner, a depth imaging camera, or similar device. In other embodiments, The three-dimensional imaging device 106 can comprise, for example, a processor-based system such as a computer system. Such a computer system can be embodied in the form of a desktop computer, a laptop computer, personal digital assistants, cellular telephones, smartphones, web pads, tablet computer systems, or other devices with like capability. In such embodiments, a three-dimensional camera can be attached to the processor-based system to provide the ability to for the processor-based system to generate three-dimensional images. The three-dimensional imaging device 106 can include a display. The display can comprise, for example, one or more devices such as liquid crystal display (LCD) displays, gas plasma-based flat panel displays, organic light emitting diode (OLED) displays, electrophoretic ink (E ink) displays, LCD projectors, or other types of display devices,
etc.
[0015] Next, a general description of the operation of the various components of the networked environment 100 is provided. To begin, a patient and a treatment machine are placed in position for treatment. The three-dimensional imaging device 106 then scans the patient, for example using a three-dimensional scanner, an infrared depth camera, or similar device. The three-dimensional imaging device 106 sends the data related to the scan of the patient across the network 109 to the computing device 103. The collision detection application 116 then generates a three-dimensional patient model 129 using the data received from the three-dimensional imaging device 106. Subsequently, the collision detection application 116 aligns the three-dimensional patient model 129 with the coordinate system used by three-dimensional machine model 133 of the treatment machine. The collision detection application 116 then calculates whether the three-dimensional patient model 129 and the three-dimensional machine model 133 overlap at one or more control points 136 of a treatment plan 126. In some embodiments, the collision detection application 116 can use the machine trajectory 139 and the patient trajectory 143 to interpolate additional points between two or more control points for predicting collisions between a patient and a treatment machine. If a collision between the patient and the treatment machine is predicted by the collision detection application 116, then the treatment plan can be rejected by the collision detection application 116. If no collision is predicted by the collision detection application 116, then the treatment plan can be validated or otherwise approved by the collision detection application 116.
[0016] Referring next to FIG. 2, shown is a flowchart that provides one example of the operation of a portion of the collision detection application 116 according to various embodiments. It is understood that the flowchart of FIG. 2 provides merely an example of the many different types of functional arrangements that can be employed to implement the operation of the portion of the collision detection application 116 as described herein. As an alternative, the flowchart of FIG. 2 can be viewed as depicting an example of elements of a method implemented in the computing device 103 (FIG. 1) according to one or more embodiments.
[0017] Beginning with box 203, the collision detection application 116 generates a three-dimensional patient model 129 (FIG. 1) based at least in part on data received from the three-dimensional imaging device 106 (FIG. 1). For example, the collision detection application 116 can generate a wire-frame model and/or a mesh model based at least in part on a point cloud provided by the three-dimensional imaging device 106. The point cloud can be obtained by the three-dimensional imaging device 106 using optical scanning methods or using infrared depth mapping.
[0018] Proceeding next to box 206, the collision detection application 116 aligns the three-dimensional patient model 129 with the coordinate system of the radiation treatment machine model 133.
[0019] Moving on to box 209, the collision detection application 116 determines whether a collision will occur at each one of a series of control points 136 (FIG. 1) related to treatment plan 126 (FIG. 1). At each of the control points 136, the collision detection application 116 can identify whether the three-dimensional patient model 129 overlaps the radiation treatment machine model 133. If an overlap is detected, this can indicate a potential collision. In some embodiments, the collision detection application 116 can interpolate additional points, based at least in part on the control points 136, the patient trajectory 139 (FIG. 1), and/or the machine trajectory 143 (FIG. 1). In such embodiments, the collision detection application 116 can identify whether the three-dimensional patient model 129 overlaps the radiation treatment machine model 133 at the interpolated points in a similar manner.
[0020] Referring next to box 213, the collision detection application 116 generates a list of collision positions that were determined in box 209. Execution subsequently ends.
[0021] Referring next to FIG. 3, shown is a flowchart that provides one example of the operation of a portion of the collision detection application 116 according to various embodiments. It is understood that the flowchart of FIG. 3 provides merely an example of the many different types of functional arrangements that can be employed to implement the operation of the portion of the collision detection application 116 as described herein. As an alternative, the flowchart of FIG. 3 can be viewed as depicting an example of elements of a method implemented in the computing device 103 (FIG. 1) according to one or more embodiments.
[0022] Beginning with box 303, the collision detection application 116 generates a three-dimensional patient model 129 (FIG. 1) based at least in part on data received from the three-dimensional imaging device 106 (FIG. 1). For example, the collision detection application 116 can generate a wire-frame model and/or a mesh model based at least in part on a point cloud provided by the three-dimensional imaging device 106. The point cloud can be obtained by the three-dimensional imaging device 106 using optical scanning methods or using infrared depth mapping.
[0023] Proceeding next to box 306, the collision detection application 116 aligns the three-dimensional patient model 129 with the coordinate system of the radiation treatment machine model 133. Moving on to box 309, the collision detection application 116 selects a treatment plan 126 (FIG. 1) for analysis.
[0024] Referring next to box 313, the collision detection application 116 determines whether a collision will occur at each one of a series of control points 136 (FIG. 1) related to the selected treatment plan 126. At each of the control points 136, the collision detection application 116 can identify whether the three-dimensional patient model 129 overlaps the radiation treatment machine model 133. If an overlap is detected, this can indicate a potential collision. In some embodiments, the collision detection application 116 can interpolate additional points, based at least in part on the control points 136, the patient trajectory 139 (FIG. 1), and/or the machine trajectory 143 (FIG. 1). In such embodiments, the collision detection application 116 can identify whether the three-dimensional patient model 129 overlaps the radiation treatment machine model 133 at the interpolated points in a similar manner.
[0025] Proceeding next to box 316, the collision detection application 116 determines whether any potential collisions were detected during the operations of box 313. If potential collisions were detected, the collision detection application 116 marks the treatment plan 126 as invalid and execution loops back to box 309. If no potential collisions were detected, then execution proceeds on box 319.
[0026] Moving on to box 319, the collision detection application 116 validates the treatment plan 126. Validation can include, for example, sending a copy of the treatment plan 126 to a client device, or causing a message to be rendered on a display of the computing device 103 (FIG. 1) indicating that the treatment plan 126 does not appear to contain any collisions. Execution subsequently ends.
[0027] With reference to FIG. 4, shown is a schematic block diagram of the computing device 103 according to an embodiment of the present disclosure. The computing device 103 includes at least one processor circuit, for example, having a processor 403 and a memory 406, both of which are coupled to a local interface 409. To this end, the computing device 103 can comprise, for example, a server computer or like device. The local interface 409 can comprise, for example, a data bus with an accompanying address/control bus or other bus structure as can be appreciated.
[0028] Stored in the memory 406 are both data and several components that are executable by the processor 403. In particular, stored in the memory 406 and executable by the processor 403 are list of main applications, and potentially other applications. Also stored in the memory 406 can be a data store 1113 and other data. In addition, an operating system can be stored in the memory 406 and executable by the processor 403.
[0029] It is understood that there can be other applications that are stored in the memory 406 and are executable by the processor 403 as can be appreciated. Where any component discussed herein is implemented in the form of software, any one of a number of programming languages can be employed such as, for example, C, C++, C#, Objective C, Java
®, JavaScript
®, Perl, PHP, Visual Basic
®, Python
®, Ruby, Flash
®, or other programming languages.
[0030] A number of software components are stored in the memory 406 and are executable by the processor 403. In this respect, the term "executable" means a program file that is in a form that can ultimately be run by the processor 403. Examples of executable programs can be, for example, a compiled program that can be translated into machine code in a format that can be loaded into a random access portion of the memory 406 and run by the processor 403, source code that can be expressed in proper format such as object code that is capable of being loaded into a random access portion of the memory 406 and executed by the processor 403, or source code that can be interpreted by another executable program to generate instructions in a random access portion of the memory 406 to be executed by the processor 403,
etc. An executable program can be stored in any portion or component of the memory 406 including, for example, random access memory (RAM), read-only memory (ROM), hard drive, solid-state drive, USB flash drive, memory card, optical disc such as compact disc (CD) or digital versatile disc (DVD), floppy disk, magnetic tape, or other memory components.
[0031] The memory 406 is defined herein as including both volatile and nonvolatile memory and data storage components. Volatile components are those that do not retain data values upon loss of power. Nonvolatile components are those that retain data upon a loss of power. Thus, the memory 406 can comprise, for example, random access memory (RAM), read-only memory (ROM), hard disk drives, solid-state drives, USB flash drives, memory cards accessed via a memory card reader, floppy disks accessed via an associated floppy disk drive, optical discs accessed via an optical disc drive, magnetic tapes accessed via an appropriate tape drive, and/or other memory components, or a combination of any two or more of these memory components. In addition, the RAM can comprise, for example, static random access memory (SRAM), dynamic random access memory (DRAM), or magnetic random access memory (MRAM) and other such devices. The ROM can comprise, for example, a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or other like memory device.
[0032] Also, the processor 403 can represent multiple processors 403 and/or multiple processor cores and the memory 406 can represent multiple memories 406 that operate in parallel processing circuits, respectively. In such a case, the local interface 409 can be an appropriate network that facilitates communication between any two of the multiple processors 403, between any processor 403 and any of the memories 406, or between any two of the memories 406,
etc. The local interface 409 can comprise additional systems designed to coordinate this communication, including, for example, performing load balancing. The processor 403 can be of electrical or of some other available construction.
[0033] Although the collision detection application 116, and other various systems described herein, can be embodied in software or code executed by general purpose hardware as discussed above, as an alternative the same can also be embodied in dedicated hardware or a combination of software/general purpose hardware and dedicated hardware. If embodied in dedicated hardware, each can be implemented as a circuit or state machine that employs any one of or a combination of a number of technologies. These technologies can include, but are not limited to, discrete logic circuits having logic gates for implementing various logic functions upon an application of one or more data signals, application specific integrated circuits (ASICs) having appropriate logic gates, field-programmable gate arrays (FPGAs), or other components,
etc. Such technologies are generally well known by those skilled in the art and, consequently, are not described in detail herein.
[0034] The flowcharts of FIGS. 2 and 3 show the functionality and operation of an implementation of portions of the collision detection application 116. If embodied in software, each block can represent a module, segment, or portion of code that comprises program instructions to implement the specified logical function(s). The program instructions can be embodied in the form of source code that comprises human-readable statements written in a programming language or machine code that comprises numerical instructions recognizable by a suitable execution system such as a processor 403 in a computer system or other system. The machine code can be converted from the source code,
etc. If embodied in hardware, each block can represent a circuit or a number of interconnected circuits to implement the specified logical function(s).
[0035] Although the flowcharts of FIGS. 2 and 3 show a specific order of execution, it is understood that the order of execution can differ from that which is depicted. For example, the order of execution of two or more blocks can be scrambled relative to the order shown. Also, two or more blocks shown in succession in FIGS. 2 and 3 can be executed concurrently or with partial concurrence. Further, in some embodiments, one or more of the blocks shown in FIGS. 2 and 3 can be skipped or omitted. In addition, any number of counters, state variables, warning semaphores, or messages might be added to the logical flow described herein, for purposes of enhanced utility, accounting, performance measurement, or providing troubleshooting aids,
etc.
[0036] Also, any logic or application described herein, including the collision detection application 116, that comprises software or code can be embodied in any non-transitory computer-readable medium for use by or in connection with an instruction execution system such as, for example, a processor 403 in a computer system or other system. In this sense, the logic can comprise, for example, statements including instructions and declarations that can be fetched from the computer-readable medium and executed by the instruction execution system. In the context of the present disclosure, a "computer-readable medium" can be any medium that can contain, store, or maintain the logic or application described herein for use by or in connection with the instruction execution system.
[0037] The computer-readable medium can comprise any one of many physical media such as, for example, magnetic, optical, or semiconductor media. More specific examples of a suitable computer-readable medium would include, but are not limited to, magnetic tapes, magnetic floppy diskettes, magnetic hard drives, memory cards, solid-state drives, USB flash drives, or optical discs. Also, the computer-readable medium can be a random access memory (RAM) including, for example, static random access memory (SRAM) and dynamic random access memory (DRAM), or magnetic random access memory (MRAM). In addition, the computer-readable medium can be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or other type of memory device.
[0038] Further, any logic or application described herein, including list of main applications, can be implemented and structured in a variety of ways. For example, one or more applications described can be implemented as modules or components of a single application. Further, one or more applications described herein can be executed in shared or separate computing devices or a combination thereof. For example, a plurality of the applications described herein can execute in the same computing device 103, or in multiple computing devices 103. Additionally, it is understood that terms such as "application," "service," "system," "engine," "module," and so on can be interchangeable and are not intended to be limiting.
1. A system comprising one or more circuits, one or more processors, or any combination thereof, configured to at least:
generate (303) a three-dimensional model of a patient (129);
align (306) the three-dimensional model of the patient (129) with a coordinate system of a three-dimensional model of a radiation treatment machine (133);
identify (309) a series of control points (136) corresponding to movement of at least one of the three-dimensional model of the patient (129) or the three-dimensional model of the radiation treatment machine (133), the series of control points (136) being specified by a radiation treatment plan; interpolate (313) additional control points based at least in part on the series of control points (136); and
determine (313) whether the three-dimensional model of the patient (129) and the three-dimensional model of the radiation treatment machine (133) overlap at any control point in the series of control points or at the interpolated additional control points,
wherein the one or more circuits, one or more processors, or any combination thereof, are further configured to identify (313) a collision between the patient and the radiation treatment machine based at least in part on such overlapping.
2. The system of claim 1, wherein the three-dimensional model of the patient (129) is based at least in part on a point map provided by a three-dimensional imaging device (106) in data communication with the one or more circuits, one or more processors, or any combination thereof.
3. The system of claim 1, wherein the series of control points (136) is based at least in part on a trajectory (139 and 143) of at least one of the patient (143) or the radiation treatment machine (139).
4. A computer-implemented method, comprising:
generating (303), via a computing device (103), a three-dimensional model of a patient (129) based at least in part on data received from a three-dimensional imaging device (106) in network communication with the computing device;
aligning (306), via the computing device, the three-dimensional model of the patient with a coordinate system of a three-dimensional model of a radiation treatment machine (133);
identifying (309) a series of control points (136) corresponding to movement of at least one of the three-dimensional model of the patient (129) or the three-dimensional model of the radiation treatment machine (133), the series of control points (136) being specified by a radiation treatment plan;
interpolating (313) additional control points based at least in part on the series of control points (136);
determining (313) whether the three-dimensional model of the patient (129) and the three-dimensional model of the radiation treatment machine (133)
overlap at any control point in the series of control points or at the interpolated additional control points; and
identifying a collision between the patient and the radiation treatment machine based at least in part on such overlapping.
5. The method of claim 4, further comprising approving (319), via the computing device, the radiation treatment plan in response to a determination by the computing device that the collision between the patient and the radiation treatment machine will not occur.
6. The method of claim 4, further comprising rejecting (319), via the computing device, the radiation treatment plan in response to a determination by the computing device that the collision between the patient and the radiation treatment machine will occur at at least one of the series of control points of the radiation treatment plan or at the interpolated additional control point.
7. The method of claim 4, wherein the three-dimensional model of the patient comprises a mesh wire-frame and the data from the three-dimensional imaging device comprises a point cloud.
8. The method of claim 4, wherein determining whether a collision between the patient and the radiation treatment machine will occur comprises:
identifying, via the computing device, a bounded space occupied by the three-dimensional model of the patient at each one of the series of control points of the radiation treatment plan;
identifying, via the computing device, a bounded space occupied by the three-dimensional model of the radiation treatment machine; and
determining, via the computing device, whether the bounded space occupied by the three-dimensional model of the patient overlaps, at least in part, the bounded space occupied by the three-dimensional model of the radiation treatment machine at each one of the series of control points of the radiation treatment plan.
1. Ein System, das einen oder mehrere Schaltkreise, einen oder mehrere Prozessoren oder eine beliebige Kombination davon umfasst, die so konfiguriert sind, dass sie zumindest Folgendes bewerkstelligen:
Erzeugen (303) eines dreidimensionalen Modells eines Patienten (129);
Ausrichten (306) des dreidimensionalen Modells des Patienten (129) mit einem Koordinatensystem eines dreidimensionalen Modells einer Strahlenbehandlungsmaschine (133);
Identifizieren (309) einer Reihe von Kontrollpunkten (136), die einer Bewegung von mindestens einem von dem dreidimensionalen Modell des Patienten (129) oder dem dreidimensionalen Modell der Strahlenbehandlungsmaschine (133) entsprechen, wobei die Reihe von Kontrollpunkten (136) durch einen Strahlenbehandlungsplan spezifiziert wird;
Interpolieren (313) zusätzlicher Kontrollpunkte zumindest teilweise auf der Grundlage der Reihe von Kontrollpunkten (136); und
Feststellen (313), ob sich das dreidimensionale Modell des Patienten (129) und das dreidimensionale Modell der Strahlenbehandlungsmaschine (133) an irgendeinem Kontrollpunkt in der Reihe von Kontrollpunkten oder an den interpolierten zusätzlichen Kontrollpunkten überlappen, wobei der eine oder die mehreren Schaltkreise, der eine oder die mehreren Prozessoren oder eine beliebige Kombination davon ferner dazu konfiguriert sind, eine Kollision zwischen dem Patienten und der Strahlenbehandlungsmaschine zumindest teilweise auf der Grundlage einer solchen Überlappung zu identifizieren (313).
2. Das System nach Anspruch 1, wobei das dreidimensionale Modell des Patienten (129) zumindest teilweise auf einer Punktkarte basiert, die von einer dreidimensionalen Bildgebungsvorrichtung (106) bereitgestellt wird, die in Datenkommunikation mit dem einen oder den mehreren Schaltkreisen, dem einen oder den mehreren Prozessoren oder einer beliebigen Kombination davon steht.
3. Das System nach Anspruch 1, wobei die Reihe von Kontrollpunkten (136) zumindest teilweise auf einer Bewegungsbahn bzw. Trajektorie (139 und 143) von mindestens einem von dem Patienten (143) oder der Strahlenbehandlungsmaschine (139) basiert.
4. Ein computer-implementiertes Verfahren, das Folgendes umfasst:
Erzeugen (303), über eine Rechenvorrichtung (103), eines dreidimensionalen Modells eines Patienten (129) zumindest teilweise auf der Grundlage von Daten, die von einer dreidimensionalen Bildgebungsvorrichtung (106) in Netzwerkkommunikation mit der Rechenvorrichtung empfangen werden;
Ausrichten (306), über die Rechenvorrichtung, des dreidimensionalen Modells des Patienten mit einem Koordinatensystem eines dreidimensionalen Modells einer Strahlenbehandlungsmaschine (133);
Identifizieren (309) einer Reihe von Kontrollpunkten (136), die einer Bewegung von mindestens einem von dem dreidimensionalen Modell des Patienten (129) oder dem dreidimensionalen Modell der Strahlenbehandlungsmaschine (133) entsprechen, wobei die Reihe von Kontrollpunkten (136) durch einen Strahlenbehandlungsplan spezifiziert wird;
Interpolieren (313) zusätzlicher Kontrollpunkte zumindest teilweise auf der Grundlage der Reihe von Kontrollpunkten (136);
Feststellen (313), ob sich das dreidimensionale Modell des Patienten (129) und das dreidimensionale Modell der Strahlenbehandlungsmaschine (133) an irgendeinem Kontrollpunkt in der Reihe von Kontrollpunkten oder an den interpolierten zusätzlichen Kontrollpunkten überlappen; und
Identifizieren einer Kollision zwischen dem Patienten und der Strahlenbehandlungsmaschine zumindest teilweise auf der Grundlage einer solchen Überlappung.
5. Das Verfahren nach Anspruch 4, das ferner Folgendes umfasst:
Genehmigen (319), über die Rechenvorrichtung, des Bestrahlungsplans in Reaktion auf die Feststellung durch die Rechenvorrichtung, dass die Kollision zwischen dem Patienten und der Strahlenbehandlungsmaschine nicht auftreten wird.
6. Das Verfahren nach Anspruch 4, das ferner Folgendes umfasst:
Ablehnen (319), über die Rechenvorrichtung, des Bestrahlungsplans in Reaktion auf die Feststellung durch die Rechenvorrichtung, dass die Kollision zwischen dem Patienten und der Strahlenbehandlungsmaschine an mindestens einem der Reihe von Kontrollpunkten des Bestrahlungsplans oder an dem interpolierten zusätzlichen Kontrollpunkt auftreten wird.
7. Das Verfahren nach Anspruch 4, wobei das dreidimensionale Modell des Patienten ein Mesh-Drahtgittermodell (mesh wire-frame) umfasst und die Daten von der dreidimensionalen Bildgebungsvorrichtung eine Punktwolke umfassen.
8. Das Verfahren nach Anspruch 4, wobei das Feststellen, ob eine Kollision zwischen dem Patienten und der Strahlenbehandlungsmaschine auftreten wird, Folgendes umfasst:
Identifizieren, über die Rechenvorrichtung, eines begrenzten Raums, der vom dreidimensionalen Modell des Patienten an jedem der Reihe von Kontrollpunkten des Bestrahlungsplans eingenommen wird;
Identifizieren, über die Rechenvorrichtung, eines begrenzten Raums, der vom dreidimensionalen Modell der Strahlenbehandlungsmaschine eingenommen wird; und
Feststellen, über die Rechenvorrichtung, ob der begrenzte Raum, der vom dreidimensionalen Modell des Patienten eingenommen wird, zumindest teilweise den begrenzten Raum überlappt, der vom dreidimensionalen Modell der Strahlenbehandlungsmaschine an jedem der Reihe von Kontrollpunkten des Strahlenbehandlungsplans eingenommen wird.
1. Système comprenant un ou plusieurs circuits, un ou plusieurs processeurs, ou toute combinaison de ceux-ci, configuré pour au moins :
générer (303) un modèle tridimensionnel d'un patient (129) ;
aligner (306) le modèle tridimensionnel du patient (129) avec un système de coordonnées d'un modèle tridimensionnel d'une machine de radiothérapie (133) ;
identifier (309) une série de points de commande (136) correspondant à un déplacement d'au moins l'un parmi le modèle tridimensionnel du patient (129) et le modèle tridimensionnel de la machine de radiothérapie (133), la série de points de commande (136) étant spécifiée par un plan de radiothérapie ;
interpoler (313) des points de commande supplémentaires sur la base au moins en partie de la série de points de commande (136) ; et
déterminer (313) si le modèle tridimensionnel du patient (129) et le modèle tridimensionnel de la machine de radiothérapie (133) se chevauchent à tout point de commande dans la série de points de commande ou aux points de commande supplémentaires interpolés,
dans lequel les un ou plusieurs circuits, les un ou plusieurs processeurs, ou toute combinaison de ceux-ci, sont en outre configurés pour identifier (313) une collision entre le patient et la machine de radiothérapie sur la base au moins en partie d'un tel chevauchement.
2. Système selon la revendication 1, dans lequel le modèle tridimensionnel du patient (129) est basé au moins en partie sur une carte de points fournie par un dispositif d'imagerie tridimensionnelle (106) en communication de données avec les un ou plusieurs circuits, les un ou plusieurs processeurs ou toute combinaison de ceux-ci.
3. Système selon la revendication 1, dans lequel la série de points de commande (136) est basée au moins en partie sur une trajectoire (139 et 143) d'au moins l'un parmi le patient (143) et la machine de radiothérapie (139).
4. Procédé mis en oeuvre par ordinateur, comprenant :
la génération (303), via un dispositif informatique (103), d'un modèle tridimensionnel d'un patient (129) sur la base au moins en partie de données reçues depuis un dispositif d'imagerie tridimensionnelle (106) en communication de réseau avec le dispositif informatique ;
l'alignement (306), via le dispositif informatique, du modèle tridimensionnel du patient avec un système de coordonnées d'un modèle tridimensionnel d'une machine de radiothérapie (133) ;
l'identification (309) d'une série de points de commande (136) correspondant à un déplacement d'au moins l'un parmi le modèle tridimensionnel du patient (129) et le modèle tridimensionnel de la machine de radiothérapie (133), la série de points de commande (136) étant spécifiée par un plan de radiothérapie ;
l'interpolation (313) de points de commande supplémentaires sur la base au moins en partie de la série de points de commande (136) ;
la détermination (313) si le modèle tridimensionnel du patient (129) et le modèle tridimensionnel de la machine de radiothérapie (133) se chevauchent à tout point de commande dans la série de points de commande ou aux points de commande supplémentaires interpolés ; et
l'identification d'une collision entre le patient et la machine de radiothérapie sur la base au moins en partie d'un tel chevauchement.
5. Procédé selon la revendication 4, comprenant en outre l'approbation (319), via le dispositif informatique, du plan de radiothérapie en réponse à une détermination par le dispositif informatique que la collision entre le patient et la machine de radiothérapie ne se produira pas.
6. Procédé selon la revendication 4, comprenant en outre le rejet (319), via le dispositif informatique, du plan de radiothérapie en réponse à une détermination par le dispositif informatique que la collision entre le patient et la machine de radiothérapie se produira à au moins l'un de la série de points de commande du plan de radiothérapie ou au point de commande supplémentaire interpolé.
7. Procédé selon la revendication 4, dans lequel le modèle tridimensionnel du patient comprend un quadrillage et les données du dispositif d'imagerie tridimensionnelle comprennent un nuage de points.
8. Procédé selon la revendication 4, dans lequel la détermination si une collision entre le patient et la machine de radiothérapie se produira comprend :
l'identification, via le dispositif informatique, d'un espace délimité occupé par le modèle tridimensionnel du patient à chacun de la série de points de commande du plan de radiothérapie ;
l'identification, via le dispositif informatique, d'un espace délimité occupé par le modèle tridimensionnel de la machine de radiothérapie ; et
la détermination, via le dispositif informatique, si l'espace délimité occupé par le modèle tridimensionnel du patient chevauche, au moins en partie, l'espace délimité occupé par le modèle tridimensionnel de la machine de radiothérapie à chacun de la série de points de commande du plan de radiothérapie.