(19)
(11)EP 3 028 309 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
25.03.2020 Bulletin 2020/13

(21)Application number: 14736226.3

(22)Date of filing:  12.06.2014
(51)Int. Cl.: 
H01L 21/336  (2006.01)
H01L 29/788  (2006.01)
H01L 27/11517  (2017.01)
H01L 21/84  (2006.01)
H01L 29/66  (2006.01)
H01L 27/088  (2006.01)
H01L 27/12  (2006.01)
H01L 29/78  (2006.01)
(86)International application number:
PCT/US2014/042142
(87)International publication number:
WO 2015/017030 (05.02.2015 Gazette  2015/05)

(54)

LOGIC FINFET HIGH-K/CONDUCTIVE GATE EMBEDDED MULTIPLE TIME PROGRAMMABLE FLASH MEMORY

LOGISCHER EINGEBETTETER MEHRFACHPROGRAMMIERBARER FINFET-FLASH-SPEICHER MIT HOHER DIELEKTRIZITÄTSKONSTANTE/LEITFÄHIGEM GATE

MÉMOIRE FLASH PROGRAMMABLE PLUSIEURS FOIS À GRILLE CONDUCTRICE ET DIÉLECTRIQUE DE GRILLE À CONSTANTE DIÉLECTRIQUE ÉLEVÉE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 31.07.2013 US 201361860481 P
02.10.2013 US 201314044725

(43)Date of publication of application:
08.06.2016 Bulletin 2016/23

(73)Proprietor: Qualcomm Incorporated
San Diego, CA 92121-1714 (US)

(72)Inventors:
  • LI, Xia
    San Diego, California 92121-1714 (US)
  • YANG, Bin
    San Diego, California 92121-1714 (US)
  • KANG, Seung Hyuk
    San Diego, California 92121-1714 (US)

(74)Representative: Dunlop, Hugh Christopher 
Maucher Jenkins 26 Caxton Street
London SW1H 0RJ
London SW1H 0RJ (GB)


(56)References cited: : 
EP-A1- 1 909 288
WO-A1-2007/069180
US-A1- 2012 299 098
EP-A2- 2 026 378
US-A1- 2007 090 443
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND


    Field



    [0001] Aspects of the present disclosure relate to semiconductor devices, and more particularly to a high-k/conductive gate embedded flash multiple time programmable (MTP) non-volatile memory.

    Background



    [0002] In semiconductor devices, memory is often used to configure the functions of logic blocks and the routing of interconnections between devices and circuits. For power and size considerations, programmable non-volatile memories (NVM), (e.g., multiple time programmable (MTP) non-volatile memories), may be used to allow for customization of circuit operation.

    [0003] NVM MTP memories may be fabricated from complementary metal-oxide-semiconductor (CMOS) circuits using field-effect transistor (FET) components. Recently, different structures for the transistors in CMOS have been introduced, where the transistor is a "fin" shaped (3D) structure. These structures are often referred to as "FinFET" structures.

    [0004] There are some associated problems with using FinFETs in CMOS non-volatile memory applications. FinFETs may use additional voltage to couple a floating gate structure to the fin. Because the upper portion of the fin area (the width of the fin times the length) is often small, an additional program (write) voltage is used to couple the gates together in series, which may negate the power savings realized in CMOS circuitry. Further, MOS diodes used for coupling, (e.g., for the floating gate of a memory cell), only bias in a positive direction. Positive-only biasing makes it difficult for negative voltages to be used to program ("write to") or erase to/from a floating gate memory cell.

    [0005] EP 2026378 A2 describes a non-volatile memory device, which may have higher integration density, improved or optimal structure, and/or reduce or minimize interference between adjacent cells without using an SOI substrate, and a method of fabricating the non-volatile memory device. The non-volatile memory device may include: a semiconductor substrate comprising a body, and a pair of fins protruding from the body; a buried insulating layer filling between the pair of fins; a pair of floating gate electrodes on outer surfaces of the pair of fins to a height greater than that of the pair of fins; and a control gate electrode on the pair of floating gate electrodes.

    [0006] EP 1909288 A1 describes a method of performing an operation on a flash memory cell device, used when a gate coupling ratio between a floating gate and a control gate of less than 0.4. A potential is required to be applied across the control gate. Electrons are either injected to the floating gate from the control gate or ejected from the floating gate to the control gate. The operation associated with the injection or the ejection is determined by the nature of a silicon channel provided in the device. Devices using a bulk-tied FinFET-like structure are particularly suited to this method. The method is also particularly suited for use on cells in a NAND array.

    [0007] WO 2007/069180 A1 describes a non- volatile memory device having a gap within a tunnel dielectric layer and a method of manufacturing the same. The devices have a stack of layers on top of a substrate including, a charge tunneling layer with a gap, a charge storage layer, a control gate layer and an insulating layer in between the charge storage layer and the control gate. Manufacturing proceeds through deposition of a sacrificial layer on parts of a substrate, whereupon a stack of layers including a charge-storage layer, an insulating layer and a control gate layer are formed. Subsequently, selected parts of the sacrificial layer are removed, thereby forming a gap in between the charge storage region and the substrate. The gap is protected from future processing by deposition of a sealing layer. Such a device has a reduced operating voltage and its manufacture can be easily implemented in existing semiconductor processes.

    [0008] US 2012/299098 A1 describes a FinFET device and method for fabricating a FinFET device. An exemplary FinFET device includes a semiconductor substrate; an insulator layer disposed over the semiconductor substrate; a fin structure disposed over the insulator layer, the fin structure having a source region, a drain region, and a channel region disposed between the source region and the drain region; a gate structure disposed adjacent to the channel region of the fin structure; and a doped region disposed in the semiconductor substrate below the channel region of the fin structure. The gate structure includes a first gate dielectric layer disposed adjacent to the fin structure, a second gate dielectric layer, a charge storing layer disposed between the first gate dielectric layer and the second gate dielectric layer, and a gate electrode layer disposed adjacent to the second gate dielectric layer.

    [0009] US 2007/090443 A1 describes a semiconductor device such as a flash memory device having a self-aligned floating gate and a method of fabricating the same. An embodiment of the device includes an isolation layer defining a fin body is formed in a semiconductor substrate. The fin body has a portion protruding above the isolation layer. A sacrificial pattern is formed on the isolation layer. The sacrificial pattern has an opening self-aligned with the protruding portion of the fin body. The protruding fin body is exposed in the opening. An insulated floating gate pattern is formed to fill the opening. The sacrificial pattern is then removed. An inter-gate dielectric layer covering the floating gate pattern is formed. A control gate conductive layer is formed over the inter-gate dielectric layer.; The control gate conductive layer, the inter-gate dielectric layer, and the floating gate pattern are patterned to form a control gate electrode crossing the fin body as well as the insulated floating gate interposed between the control gate electrode and the fin body.

    SUMMARY



    [0010] In accordance with the invention a multiple time programmable device and method for fabricating a multiple time programmable device are provided, as set forth in the claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0011] For a more complete understanding of the present disclosure, reference is now made to the following description taken in conjunction with the accompanying drawings.

    FIGURE 1 illustrates a schematic of a CMOS floating gate nonvolatile memory (NVM) cell in an aspect of the present disclosure.

    FIGURE 2 illustrates a schematic of a CMOS floating gate NVM cell in another aspect of the present disclosure.

    FIGURE 3 illustrates a schematic of a CMOS floating gate NVM cell in another aspect of the present disclosure.

    FIGURES 4 and 5 illustrate schematics of other aspects of CMOS floating gate NVM cells in accordance with the present disclosure.

    FIGURES 6A and 6B illustrate birds-eye views of a FinFET floating gate NVM transistor in accordance with various aspects of the present disclosure.

    FIGURES 7A and 7B illustrate cutaway views of the structures shown in FIGURES 6A and 6B, respectively.

    FIGURE 8 illustrates a birds-eye view of FinFET floating gate NVM transistors including an erase gate structure in accordance with an aspect of the present disclosure.

    FIGURES 9 and 10 illustrate cutaway views of a FinFET NVM structure in an aspect of the present disclosure.

    FIGURE 11 illustrates a cutaway view of a transistor in accordance with an aspect of the present disclosure.

    FIGURES 12 through 15 illustrate a process construction flow of transistors in accordance with an aspect of the present disclosure.

    FIGURE 16 illustrates an operation control table in accordance with an aspect of the present disclosure.

    FIGURE 17 illustrates a process flow in accordance with an aspect of the present disclosure.

    FIGURE 18 is a block diagram showing an exemplary wireless communication system in which an aspect of the disclosure may be advantageously employed.


    DETAILED DESCRIPTION



    [0012] The detailed description set forth below, in connection with the appended drawings, is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the various concepts. It will be apparent to those skilled in the art, however, that these concepts may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form in order to avoid obscuring such concepts. As described herein, the use of the term "and/or" is intended to represent an "inclusive OR", and the use of the term "or" is intended to represent an "exclusive OR".

    [0013] One aspect of the present disclosure is directed to a process to fabricate a multiple time programmable (MTP) NVM cell for flash memory according to claim 1.

    [0014] FIGURE 1 illustrates a schematic of a PMOS FinFET floating gate NVM cell. Representatively, a memory cell 100 includes a control transistor 102 (also referred to as coupling gate 102), a program transistor 104, and, optionally, an erase transistor 106 (also referred to as an erase gate/capacitor 106). The coupling gate 102, the gate of the program transistor 104, and, optionally, the gate of the erase gate/capacitor 106 are coupled together at the floating gate 108. The drain 110, the source 112, and the well (which may be an n-doped well) 114 are shown for the program transistor 104. There can also be a word line access transistor in series (not shown). This would be a four PMOS transistor floating gate FinFET NVM cell. It also can be a four NMOS transistor floating gate FinFET NVM cell.

    [0015] As shown in FIGURE 2, in an aspect of the present disclosure, the coupling gate 102 is a plate capacitor. To program the program transistor 104, the source 112, which is coupled to a bit line (BL) 202, is brought to a low voltage, which may be ground. In addition, the drain 110, which is coupled to a source line (SL) 200, is brought to a higher voltage, which may be the operating voltage or the supply voltage (Vdd). To turn on the program transistor 104, the voltage across the coupling gate 102 is negative raised, for example, by applying a negative voltage to the word line (WL) or control gate (CG) 206. The word line/control gate 206 is the conduction path of the coupling gate 102. When the coupling gate 102 receives a negative bias, negative charge is induced on the coupling gate 102, inducing negative charge on the floating gate 108 of the program transistor 104. The floating gate 108 may use an n-type conductive gate for PMOS devices for improved data retention. This allows the channel in the program transistor 104 to turn on and conduct. A conducting program gate of the program transistor 104 indicates a particular logic level whereas a non-conducting program gate of the program transistor 104 indicates a different logic level with positive charge inside the floating gate 108. The program floating device can be an NMOS floating gate device. The floating gate 108 may use a p-type conductive gate for NMOS devices for improved data retention. FIGURE 2 shows a one transistor floating gate NVM cell.

    [0016] Another aspect of the present disclosure, shown in FIGURE 3, includes the erase gate/capacitor 106 as part of the memory cell 100. When the erase gate/capacitor 106 is biased by voltage of the erase gate/capacitor 106, in optional conjunction with changing the voltage on the word line/control gate 206, the charge at the floating gate 108 is reduced such that the program transistor 104 no longer has enough electrical charge on the floating gate 108 to shut off current between the source line 200 and the bit line 202. The floating gate 108 may use an n-type conductive gate for PMOS devices for better data retention. This "erases" the program transistor 104. The program floating device can also be an NMOS floating gate device. The floating gate 108 may use a p-type conductive gate for NMOS devices for better data retention. The program floating device can also be an NMOS floating gate device. The floating gate 108 may use a p-type conductive gate for NMOS devices for improved data retention. Figure 3 shows a two transistor floating gate NVM cell.

    [0017] FIGURES 4 and 5 illustrate schematics of other aspects of PMOS floating gate NVM cells in accordance with the present disclosure.

    [0018] As shown in FIGURE 4, the control gate (CG) 400 may be separated from the word line gate 406 (as opposed to being a combined word line/control gate 206 as shown in FIGURE 2) by including an access transistor 402 coupled to the source 112 of the program transistor 104. The bit line 202 is then coupled to the source of the access transistor 402, and the word line gate 406 is coupled to the gate of the access transistor 402. FIGURE 4 shows a two transistor floating gate NVM cell.

    [0019] As shown in FIGURE 5, the schematic of FIGURE 4 can include an erase gate/capacitor 106. FIGURE 5 shows a four transistor floating gate NVM cell. The floating gate 108 may use an n-type conductive gate for PMOS devices for better data retention. The program floating device can also be an NMOS floating gate device. The floating gate 108 may use a p-type conductive gate for NMOS devices for better data retention.

    [0020] FIGURE 6A illustrates a cutaway view of a FinFET floating gate transistor in accordance with an aspect of the present disclosure. Representatively, a substrate 600 supporting an n-well 602 is shown (for PMOS devices). An oxide layer 604, which may be a shallow trench isolation (STI) oxide layer 604, is coupled to the substrate 600 and a portion of the oxide layer 604 is opened to expose the n-well 602. A fin structure 606 with a width and a height is formed, and a gate oxide layer 608 is formed around the fin structure 606. The gate oxide layer 608 may be silicon oxide, or may be a dielectric or other material with a different dielectric constant (k) than silicon oxide, such as Aluminum Oxide, Hafnium Oxide, Hafnium Oxide Nitride, Zirconium Oxide, laminates and/or alloys of these materials. Other materials may be used without departing from the scope of the present disclosure.

    [0021] A thickness-adjustable oxide may also be coupled to the gate oxide layer 608. Further, the gate oxide layer 608 may be a high-k dielectric material. A "high-k dielectric material" is a dielectric material with a dielectric constant k greater than the dielectric constant of silicon dioxide. For the same actual thickness, a high-k material will provide more capacitance per unit area than silicon dioxide. The high-k gate dielectric film may be made of, for example, Silicon Nitride (SiN), Silicon Carbide (SiC), Aluminum Oxide (Al2O3), Hafnium Oxide (HfOx), Hafnium Oxide Nitride, Zirconium Oxide, combinations or laminations of these or other materials, etc. These materials are used by standard logic FinFET processes and also used in FinFET floating gate devices in the memory cell 100. Use of high-K materials may also improve logic device performance for scaling technology, be used in a multiple time programmable memory, such as the memory cell 100.

    [0022] As channel sizes in transistors become smaller, the thickness of the dielectric region in the gate oxide layer 608, and the thickness of a coupling film 610, is often reduced. The dielectric constant k of the gate oxide layer 608, along with the thickness of the gate oxide layer 608, has a heightened effect on the control of the floating gate 108 over the channel of the program transistor 104 (between the source 112 and the drain 110)(FIGURE 1).

    [0023] A high-k material allows for higher capacitance across the width of the material. Therefore, a high-k material can be used with a smaller channel size. The increased capacitive coupling accommodates the smaller channel size, allowing the gate to maintain the appropriate influence over the channel of the transistor. A larger actual thickness of a high-k material helps reduce or even minimize leakage current in the transistor.

    [0024] A floating gate 108 is formed around the gate oxide layer 608. The floating gate 108 is conductive, and may be metal, polysilicon, or other materials. The coupling film 610, which is also referred to as a cap layer, is then placed on the floating gate 108. The coupling film 610 may be a dielectric, or other insulator as specified. The coupling gate 102 is then placed on the coupling film 610. A source contact 612, a drain contact 614, and a coupling gate contact 616 are then deposited on the source 112, the drain 110, and the coupling gate 102, respectively.

    [0025] The fin structure 606 has a width W and a height H. As the voltages on the coupling gate contact 616 (which may be coupled to the word line/control gate 206), drain contact 614 (which is coupled to the source line 200), source contact 612 (which is coupled to the bit line 202) are changed, capacitive coupling occurs between the coupling gate 102 and the floating gate 108. The capacitive coupling allows conduction between the source contact 612 and the drain contact 614.

    [0026] FIGURE 6B illustrates a birds-eye view of a FinFET floating gate transistor in accordance with another aspect of the present disclosure. FIGURE 6B illustrates that the coupling gate 102 may wrap around the floating gate 108 in an aspect of the present disclosure. The additional surface area between the coupling gate 102 and the floating gate 108 increases coupling ratio and decreases the amount of voltage specified to induce charge on the floating gate 108.

    [0027] FIGURE 7A illustrates a cutaway of the structure shown in FIGURE 6A. Representatively, the gate oxide layer 608 is shown surrounding the fin structure 606, and dielectric layer 700, which may be an inter-layer dielectric (ILD) layer, is shown. Another layer 702, which may be a dielectric layer, insulating layer, or interconnection layer is also shown on the coupling gate 102.

    [0028] FIGURE 7B illustrates a cutaway view of a FinFET floating gate transistor as shown in FIGURE 6B. In this configuration, the offset nature of the coupling gate 102 with respect to the fin structure 606 illustrates that the channel between the source 112 and the drain 110 is controllable with the coupling gate 102. Control of the channel between the source 112 and the drain 110 is possible even when the coupling gate 102 is not in line with the fin structure 606. The coupling gate 102 generates charge on the floating gate 108 that controls the channel between the source 112 and the drain 110.

    [0029] FIGURE 8 illustrates a cutaway view of another FinFET floating gate transistor including an erase capacitor structure in accordance with an aspect of the present disclosure. Representatively, floating gate transistors 800 and 802 are illustrated. Similar to the structure shown in FIGURE 6, the substrate 600 is shown, with a p-well 804 (for NMOS devices). An n-well 602 similar to that shown in FIGURE 6 may be used without departing from the scope of the present disclosure. A fin structure 606 is shown, with the floating gate 108 and the gate oxide layer 608. The coupling gate 102 and coupling gate contact 616, which is part of "metal layer 0," is shown.

    [0030] An erase capacitor oxide 806 and erase capacitor contact 808 are also shown in between the floating gate transistors 800 and 802. In this configuration, the floating gate transistors 800 and 802 are FinFET versions of the program transistor 104, and the erase capacitor oxide 806 is an example of the erase gate/capacitor 106. Nevertheless, other configurations of the program transistor 104, which may be a CMOS transistor without a FinFET structure, and other configurations of the erase gate/capacitor 106, are envisioned to be within the scope of the present disclosure.

    [0031] FIGURE 9 illustrates a cutaway view of a FinFET structure according to the present invention as defined in the claims. In particular, as shown in FIGURE 9, the coupling gate 102 and the coupling gate contact 616 for the floating gate transistors 800 and 802 are shown. A spacer layer 900 is shown to provide a different capacitive coupling between the sides of the coupling gate 102 and the sides of the floating gate 108. To program, read, and erase the floating gate transistors 800 and 802, voltages on the coupling gate 102 (which is coupled to the coupling gate contact 616), the word line/control gate 206, the bit line 202, the source line 200 (as shown in FIGURE 2), and the erase gate/capacitor 106 (which is coupled to the erase capacitor contact 808) are selectively controlled to store or remove charge on the floating gate 108.

    [0032] For example, and not by way of limitation, to program the floating gate transistor 802, the word line/control gate 206 is brought to a high voltage, which may be the supply voltage Vcc. This puts charge carriers into the fin structure 606 from an NMOS access word line (e.g., the word line/control gate 206). The source line is brought to a programming voltage, which may be between 1 and 4 volts. The control gate (CG) 400 (or the coupling gate contact 616) coupled to the coupling gate 102 is brought to a programming voltage, which may be approximately 4∼10 volts. The erase capacitor contact 808 is brought to a programming voltage, which may be similar to the voltage on the source line 200. These voltages allow for current to flow through the floating gate transistor 802, and hot electron injection allows for charge to inject into the floating gate 108. The electric charge injection direction 902 between the fin structure 606 and the floating gate 108 is shown. Once the floating gate 108 is charged, the voltages can be selectively removed and the charge is stored on the floating gate 108.

    [0033] To erase a floating gate transistor 802 that is programed, the erase capacitor contact 808 is brought to an erase voltage, which may be approximately 6 to 10 volts. The word line/control gate 206, the source line 200, the bit line 202, and the control gate/capacitor 400 are all brought to a low voltage, which may be zero volts. This difference in voltage potentials allows for Fowler-Nordheim (FN) tunneling of the charge carriers stored on the floating gate 108 to migrate across the erase capacitor oxide 806 to the erase capacitor contact 808. The FN path 906 for erasure of the floating gate transistor 802 is shown. Similar actions occur for writing to and erasing from the floating gate transistor 800. An additional layer 908 of dielectric or other material may be applied to planarize or otherwise seal the structure if specified, such that other manufacturing processes may be performed on the structure shown in FIGURE 9.

    [0034] For a device not forming part of the present invention as defined in the claims, FIGURE 10 illustrates that the cap layer 904 may reside between the coupling gate 102 and the coupling film 610. The cap layer 904 and the coupling film 610 may be dielectrics or other insulators as specified.

    [0035] FIGURE 11 illustrates a cutaway view of an NMOS floating gate and word line access transistors in accordance with an aspect of the present disclosure. When the structure of FIGURE 8 is cutaway along the Y-Y' line, the view of FIGURE 11 is seen. The substrate 600 and p-well 804 are shown, and the fin structure 606 shows a fin channel 1100 between the drain 110 and the source 112. As voltage is applied to the coupling gate contact 616, electric fields are generated in the fin channel 1100. Depending on the voltages present on the source line 200, the bit line 202, and the word line/control gate 206, current will flow between the source 112 and the drain 110. The cutaway view of FIGURE 11 includes the access transistor 402, as the word line/control gate 206 and the coupling gate contact 616 are separated.

    [0036] FIGURES 12 through 15 illustrate a process construction flow of transistors in accordance with the present invention as defined in the claims. FIGURE 12 illustrates initial steps of depositing layers on the fin structure 606. The gate oxide layer 608, which may be a high-k dielectric material, is coupled to the fin structure 606, and the floating gate 108. An opening 1200 is made near the floating gate transistor 800, and a layer 1202 of material, which may be a section of the floating gate material is deposited. The spacer layer 900 is also deposited and etched or otherwise manipulated to conform the spacer layer 900 around the fin structure 606.

    [0037] FIGURE 13 illustrates addition of the coupling film 610, and the coupling gate 102, to the floating gate transistor 800. Because the material used for the coupling gate 102 is often conductive, a layer 1300 of this material, or other material, is deposited on the layer 1202 and in the opening 1200 for the erase contact.

    [0038] FIGURE 14 shows the erase connection 1400 and the cap layer 904, with the dielectric layer 700 as a planarizing and/or isolation material such that the cap layer 904 is substantially planar and electrical contacts are isolated from each other as specified. The planarization allows for additional processing of the floating gate transistor 800.

    [0039] FIGURE 15 illustrates addition of the coupling gate contact 616 and the erase capacitor contact 808. Additionally the layer 908 may be added, again for planarization and/or isolation of the contacts as specified. Additional layers, such as interconnections, vias, or other electronic circuitry may be added to the floating gate transistor 800 as specified.

    [0040] FIGURE 16 illustrates an operation control table in accordance with an aspect of the present disclosure. To program a particular transistor, voltages are set for certain operations 1600. The word line/control gate 206, the source line 200, the control gate/capacitor 400, erase gate/capacitor 106, and the bit line 202 are controlled based on the selected operation 1600. A read operation 1602, a programming operation 1604, and an erase operation 1606 may be performed. Voltages that may be applied to the lines are shown for when a given transistor is selected or unselected for the operations used in NVM cells, including MTP memory cells of the present disclosure.

    [0041] FIGURE 17 illustrates a process flow in accordance with an aspect of the present disclosure. Representatively, a flow chart 1700 illustrates a method of fabricating a multiple time programmable (MTP) NVM device. At block 1702, fins of a first conducting type are formed on a substrate of a second conducting type, as shown, for example, in FIGURE 6. At block 1704, a floating gate dielectric is formed to partially surround the fins.

    [0042] At block 1706, a floating gate is formed on the floating gate dielectric. At block 1708, a coupling film is formed on the floating gate. At block 1710, a coupling gate is formed on the coupling film.

    [0043] Aspects of the present disclosure provides advantages over the related art by using a high-k/metal gate process to form an floating gate type eFlash MTP cell. Further, one aspect of the present disclosure allows the use of FinFET structures within an MTP cell. The structures, according to one aspect of the present disclosure, use similar processing as related devices. This aspect of present disclosure allows for a thickness tunable coupling oxide/high-k film, which may reduce the erase voltage used and improve data retention in the MTP cell. The control voltage of coupling gate 102 on the floating gate 108 can be positive or negative, whereas the related art used a positive voltage on the floating gate 108.

    [0044] Aspects of the present disclosure also allow for additional coupling of the FinFET structure by "wrapping" the floating gate 108 and the coupling gate 102 around the fin structure 606 as shown in FIGURE 15. This increased coupling allows for lower programming (write) voltages in the FinFET structure of this aspect of the present disclosure. Again, the control voltage of coupling gate 102 on the floating gate 108 can be positive or negative in this aspect of the present disclosure, eliminating the positive-only control of the related art.

    [0045] FIGURE 18 is a block diagram showing an exemplary wireless communication system 1800 in which an aspect of the disclosure may be advantageously employed. For purposes of illustration, FIGURE 18 shows three remote units 1820, 1830, and 1850 and two base stations 1840. It will be recognized that wireless communication systems may have many more remote units and base stations. Remote units 1820, 1830, and 1850 include IC devices 1825A, 1825C, and 1825B that include the floating gate transistors 800 and 802 or other disclosed structures in the present disclosure. It will be recognized that other devices may also include the disclosed devices, such as the base stations, switching devices, and network equipment. FIGURE 18 shows forward link signals 1880 from the base station 1840 to the remote units 1820, 1830, and 1850 and reverse link signals 1890 from the remote units 1820, 1830, and 1850 to base stations 1840.

    [0046] In FIGURE 18, remote unit 1820 is shown as a mobile telephone, remote unit 1830 is shown as a portable computer, and remote unit 1850 is shown as a fixed location remote unit in a wireless local loop system. For example, the remote units may be mobile phones, hand-held personal communication systems (PCS) units, portable data units such as personal data assistants, GPS enabled devices, navigation devices, set top boxes, music players, video players, entertainment units, fixed location data units such as meter reading equipment, or other devices that store or retrieve data or computer instructions, or combinations thereof. Although FIGURE 18 illustrates remote units according to the aspects of the disclosure, the disclosure is not limited to these exemplary illustrated units. Aspects of the disclosure may be suitably employed in many devices, which include the disclosed transistors, FinFETs, or other structures within the scope of the present disclosure.

    [0047] Those of skill would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the disclosure herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure.

    [0048] The various illustrative logical blocks, modules, and circuits described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.

    [0049] The steps of a method or algorithm described in connection with the disclosure may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM, EPROM, EEPROM, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.

    [0050] In one or more exemplary designs, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage media may be any available media that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store specified program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.


    Claims

    1. A method of fabricating a multiple time programmable, MTP, device, comprising:
    forming (1702) a plurality of fins (606) of a first conducting type on a substrate (600), each fin (606) having a first wall, a second wall, and a surface connecting the first wall and the second wall, the first wall and the second wall adjoining the substrate (600); for each fin:

    forming (1704) a floating gate dielectric (608) to partially surround the fin (606), the floating gate dielectric (608) having a first dielectric surface directly on the first wall of the fin (606), a second dielectric surface directly on the surface of the fin (606), and a third dielectric surface directly on the second wall of the fin (606);

    forming (1706) a floating gate (108) directly on the first dielectric surface, the second dielectric surface, and the third dielectric surface of the floating gate dielectric (608);

    forming a dielectric spacer layer (900) directly on the floating gate (108) only over the first dielectric surface and the third dielectric surface, around the fin (606), but not over the second dielectric surface;

    forming (1706) a coupling film (610) directly on the floating gate (108) over the second dielectric surface;

    forming (1710) a coupling gate (102) directly on the coupling film (610) over the first dielectric surface, the second dielectric surface and the third dielectric surface;

    characterized in that said substrate (600) is of a second conductivity type and by forming said coupling film (610) directly on said dielectric spacer layer (900) over the first dielectric surface and the third dielectric surface so that said dielectric spacer layer (900) is arranged to provide a capacitive coupling between said floating gate (108) and said coupling gate (616).
     
    2. The method of claim 1, in which the floating gate (108) is configured to store logic states of the MTP device.
     
    3. The method of claim 1, in which the floating gate dielectric (608) comprises an oxide, silicon nitride, silicon carbide, aluminium oxide, hafnium oxide, hafnium oxide nitride and/or zirconium oxide.
     
    4. The method of claim 1, in which the floating gate dielectric (608) has a dielectric constant greater than a dielectric constant of silicon oxide.
     
    5. The method of claim 1, further comprising integrating the MTP device into a mobile phone, a set top box, a music player, a video player, an entertainment unit, a navigation device, a computer, a hand-held personal communication systems, PCS, unit, a portable data unit, and/or a fixed location data unit.
     
    6. A multiple time programmable, MTP, device, comprising:

    a substrate;

    a fin (606) having a first wall, a second wall, and a surface connecting the first wall and the second wall, the first wall and the second wall adjoining the substrate (600);

    a floating gate dielectric (608) having a first dielectric surface on the first wall of the fin (606), a second dielectric surface on the surface of the fin (606), and a third dielectric surface on the second wall of the fin (606);

    a floating gate (108) directly on the first dielectric surface, the second dielectric surface, and the third dielectric surface of the floating gate dielectric (608);

    a dielectric spacer layer (900) directly on the floating gate (108), only over the first dielectric surface and the third dielectric surface, around the fin (606), but not over the second dielectric surface;

    a coupling film (610) directly on the floating gate (108) over the second dielectric surface; and

    a coupling gate (616) directly on the coupling film (610) over the first dielectric
    surface, the second dielectric surface and the third dielectric surface;

    characterized in that said coupling film (610) is directly on said dielectric spacer layer (900) over the first dielectric surface and the third dielectric surface so that said dielectric spacer layer (900) is arranged to provide a capacitive coupling between said floating gate (108) and said coupling gate (616).
     
    7. The MTP device of claim 6, in which the floating gate dielectric (608) comprises an oxide, silicon nitride, silicon carbide, aluminium oxide, hafnium oxide, hafnium oxide nitride and/or zirconium oxide.
     
    8. The MTP device of claim 6, in which the floating gate dielectric (608) has a dielectric constant greater than a dielectric constant of silicon oxide.
     
    9. The MTP device of claim 6, further comprising integrating the MTP device into a mobile phone, a set top box, a music player, a video player, an entertainment unit, a navigation device, a computer, a hand-held personal communication systems (PCS) unit, a portable data unit, and/or a fixed location data unit.
     


    Ansprüche

    1. Verfahren zum Herstellen einer mehrmals programmierbaren, MTP (MTP = multiple time programmable), Vorrichtung, wobei die Vorrichtung umfasst:
    Bilden (1702) einer Vielzahl von Rippen (606) eines ersten leitenden Typs auf einem Substrat (600), wobei jede Rippe (606) eine erste Wand, eine zweite Wand und eine Oberfläche aufweist, die die erste Wand und die zweite Wand verbindet, wobei die erste Wand und die zweite Wand an das Substrat (600) angrenzen; für jede Rippe:

    Bilden (1704) eines Dielektrikums (608) mit schwebendem Gate, um die Rippe (606) teilweise zu umgeben, wobei das Dielektrikum (608) mit schwebenden Gate eine erste Dielektrikum-Oberfläche direkt auf der ersten Wand der Rippe (606), eine zweite Dielektrikum-Oberfläche direkt auf der Oberfläche der Rippe (606) und eine dritte Dielektrikum-Oberfläche direkt auf der zweiten Wand der Rippe (606) aufweist;

    Bilden (1706) eines schwebenden Gates (108) direkt auf der ersten Dielektrikum-Oberfläche, der zweiten Dielektrikum-Oberfläche und der dritten Dielektrikum-Oberfläche des Dielektrikums (608) mit schwebenden Gate;

    Bilden einer Dielektrikum-Abstandhalter-Schicht (900) direkt auf dem schwebenden Gate (108) nur über der ersten Dielektrikum-Oberfläche und der dritten Dielektrikum-Oberfläche, um die Rippe (606), aber nicht über der zweiten Dielektrikum-Oberfläche;

    Bilden (1706) eines Kopplungsfilms (610) direkt auf dem schwebenden Gate (108) über der zweiten Dielektrikum-Oberfläche;

    Bilden (1710) eines Kopplungsgates (102) direkt auf dem Kopplungsfilm (610) über der ersten Dielektrikum-Oberfläche, der zweiten Dielektrikum-Oberfläche und der dritten Dielektrikum-Oberfläche;

    dadurch gekennzeichnet, dass das Substrat (600) von einem zweiten Leitfähigkeitstyp ist und durch Bilden des Kopplungsfilms (610) direkt auf der Dielektrikum-Abstandhalter-Schicht (900) über der ersten Dielektrikum-Oberfläche und der dritten Dielektrikum-Oberfläche, so dass die Dielektrikum-Abstandhalter-Schicht (900) angeordnet ist, um eine kapazitive Kopplung zwischen dem schwebenden Gate (108) und dem Kopplungsgate (616) bereitzustellen.
     
    2. Verfahren nach Anspruch 1, in dem das schwebende Gate (108) konfiguriert ist, um Logikzustände der MTP Vorrichtung zu speichern.
     
    3. Verfahren nach Anspruch 1, in dem das Dielektrikum (608) mit schwebendem Gate ein Oxid, Siliziumnitrid, Siliziumkarbid, Aluminiumoxid, Hafniumoxid, Hafniumoxidnitrid und/oder Zirkoniumoxid umfasst.
     
    4. Verfahren nach Anspruch 1, in dem das Dielektrikum (608) mit schwebendem Gate eine Dielektrizitätskonstante aufweist, die größer als eine Dielektrizitätskonstante von Siliziumoxid ist.
     
    5. Verfahren nach Anspruch 1, wobei das Verfahren ferner ein Integrieren der MTP-Vorrichtung in ein Mobiltelefon, eine Set-Top-Box, einen Musikspieler, einen Videospieler, eine Unterhaltungseinheit, eine Navigationsvorrichtung, einen Computer, eine in der Hand gehaltene PCS-Einheit, (PCS = personal communication system), eine tragbare Dateneinheit und/oder eine Dateneinheit mit festem Standort umfasst.
     
    6. Eine mehrmals programmierbare, MTP (MTP = multiple time programmable), Vorrichtung, wobei die Vorrichtung umfasst:

    ein Substrat;

    eine Rippe (606), die eine erste Wand, eine zweite Wand und eine Oberfläche aufweist, die die erste Wand und die zweite Wand verbindet, wobei die erste Wand und die zweite Wand an das Substrat (600) angrenzen;

    ein Dielektrikum (608), das eine erste Dielektrikum-Oberfläche auf der ersten Wand der Rippe (606), eine zweite Dielektrikum-Oberfläche auf der Oberfläche der Rippe (606) und eine dritte Dielektrikum-Oberfläche auf der zweiten Wand der Rippe (606) aufweist;

    ein schwebendes Gate (108) direkt auf der ersten Dielektrikum-Oberfläche, der zweiten Dielektrikum-Oberfläche und der dritten Dielektrikum-Oberfläche des Dielektrikums (608) mit dem schwebenden Gate;

    eine Dielektrikum-Abstandhalter-Schicht (900) direkt auf dem schwebenden Gate (108) nur über der ersten Dielektrikum-Oberfläche und der dritten Dielektrikum-Oberfläche, um die Rippe (606), aber nicht über der zweiten Dielektrikum-Oberfläche;

    ein Kopplungsfilm (610) direkt auf dem schwebenden Gate (108) über der zweiten Dielektrikum-Oberfläche;

    ein Kopplungsgate (616) direkt auf dem Kopplungsfilm (610) über der ersten Dielektrikum-Oberfläche, der zweiten Dielektrikum-Oberfläche und der dritten Dielektrikum-Oberfläche;

    dadurch gekennzeichnet, dass der Kopplungsfilm (610) direkt auf der Dielektrikum-Abstandhalter-Schicht (900) über der ersten Dielektrikum-Oberfläche und der dritten Dielektrikum-Oberfläche liegt, so dass die Dielektrikum-Abstandhalter-Schicht (900) angeordnet ist, um eine kapazitive Kopplung zwischen dem schwebenden Gate (108) und dem Kopplungsgate (616) bereitzustellen.
     
    7. MTP Vorrichtung nach Anspruch 6, in der das Dielektrikum (608) mit schwebendem Gate ein Oxid, Siliziumnitrid, Siliziumkarbid, Aluminiumoxid, Hafniumoxid, Hafniumoxidnitrid und/oder Zirkoniumoxid umfasst.
     
    8. MTP Vorrichtung nach Anspruch 6, in der das Dielektrikum (608) mit schwebendem Gate eine Dielektrizitätskonstante aufweist, die größer als eine Dielektrizitätskonstante von Siliziumoxid ist.
     
    9. MTP Vorrichtung nach Anspruch 6, wobei die Vorrichtung ferner ein Integrieren der MTP-Vorrichtung in ein Mobiltelefon, eine Set-Top-Box, einen Musikspieler, einen Videospieler, eine Unterhaltungseinheit, eine Navigationsvorrichtung, einen Computer, eine in der Hand gehaltene PCS-Einheit, (PCS = personal communication system), eine tragbare Dateneinheit und/oder eine Dateneinheit mit festem Standort umfasst.
     


    Revendications

    1. Procédé de fabrication d'un dispositif programmable plusieurs fois, MTP, comprenant les étapes consistant à :
    former (1702) une pluralité d'ailettes (606) d'un premier type conducteur sur un substrat (600), chaque ailette (606) ayant une première paroi, une seconde paroi, et une surface reliant la première paroi et la seconde paroi, la première paroi et la seconde paroi jouxtant le substrat (600) ; pour chaque ailette :

    former (1704) un diélectrique de grille flottante (608) afin d'entourer partiellement l'ailette (606), le diélectrique de grille flottante (608) ayant une première surface diélectrique directement sur la première paroi de l'ailette (606), une deuxième surface diélectrique directement sur la surface de l'ailette (606), et une troisième surface diélectrique directement sur la seconde paroi de l'ailette (606) ;

    former (1706) une grille flottante (108) directement sur la première surface diélectrique, la deuxième surface diélectrique, et la troisième surface diélectrique du diélectrique de grille flottante (608) ;

    former une couche d'espacement diélectrique (900) directement sur la grille flottante (108) uniquement au-dessus de la première surface diélectrique et de la troisième surface diélectrique, autour de l'ailette (606), mais pas au-dessus de la deuxième surface diélectrique ;

    former (1706) un film de couplage (610) directement sur la grille flottante (108) au-dessus de la deuxième surface diélectrique ;

    former (1710) une grille de couplage (102) directement sur le film de couplage (610) au-dessus de la première surface diélectrique, de la deuxième surface diélectrique et de la troisième surface diélectrique ;

    caractérisé en ce que ledit substrat (600) est d'un second type de conductivité et en ce que ledit film de couplage (610) est formé directement sur ladite couche d'espacement diélectrique (900) au-dessus de la première surface diélectrique et de la troisième surface diélectrique de telle sorte que ladite couche d'espacement diélectrique (900) est agencée pour fournir un couplage capacitif entre ladite grille flottante (108) et ladite grille de couplage (616).
     
    2. Procédé selon la revendication 1, dans lequel la grille flottante (108) est conçue pour stocker des états logiques du dispositif MTP.
     
    3. Procédé selon la revendication 1, dans lequel le diélectrique de grille flottante (608) comprend un oxyde, un nitrure de silicium, un carbure de silicium, un oxyde d'aluminium, un oxyde de hafnium, un oxynitrure de hafnium et/ou un oxyde de zirconium.
     
    4. Procédé selon la revendication 1, dans lequel le diélectrique de grille flottante (608) a une constante diélectrique supérieure à une constante diélectrique d'un oxyde de silicium.
     
    5. Procédé selon la revendication 1, comprenant en outre l'étape consistant à intégrer le dispositif MTP dans un téléphone mobile, un boîtier décodeur, un lecteur de musique, un lecteur vidéo, une unité de divertissement, un dispositif de navigation, un ordinateur, une unité de systèmes de communication personnels portables, PCS, une unité de données portable, et/ou une unité de données à emplacement fixe.
     
    6. Dispositif programmable plusieurs fois, MTP, comprenant :

    un substrat ;

    une ailette (606) ayant une première paroi, une seconde paroi, et une surface reliant la première paroi et la seconde paroi, la première paroi et la seconde paroi jouxtant le substrat (600) ;

    un diélectrique de grille flottante (608) ayant une première surface diélectrique sur la première paroi de l'ailette (606), une deuxième surface diélectrique sur la surface de l'ailette (606), et une troisième surface diélectrique sur la seconde paroi de l'ailette (606) ;

    une grille flottante (108) directement sur la première surface diélectrique, la deuxième surface diélectrique, et la troisième surface diélectrique du diélectrique de grille flottante (608) ;

    une couche d'espacement diélectrique (900) directement sur la grille flottante (108) uniquement au-dessus de la première surface diélectrique et de la troisième surface diélectrique, autour de l'ailette (606), mais pas au-dessus de la deuxième surface diélectrique ;

    un film de couplage (610) directement sur la grille flottante (108) au-dessus de la deuxième surface diélectrique ; et

    une grille de couplage (616) directement sur le film de couplage (610) au-dessus de la première surface diélectrique, de la deuxième surface diélectrique et de la troisième surface diélectrique ;

    caractérisé en ce que ledit film de couplage (610) est directement sur ladite couche d'espacement diélectrique (900) au-dessus de la première surface diélectrique et de la troisième surface diélectrique de telle sorte que ladite couche d'espacement diélectrique (900) est agencée pour fournir un couplage capacitif entre ladite grille flottante (108) et ladite grille de couplage (616).
     
    7. Dispositif MTP selon la revendication 6, dans lequel le diélectrique de grille flottante (608) comprend un oxyde, un nitrure de silicium, un carbure de silicium, un oxyde d'aluminium, un oxyde de hafnium, un oxynitrure de hafnium et/ou un oxyde de zirconium.
     
    8. Dispositif MTP selon la revendication 6, dans lequel le diélectrique de grille flottante (608) a une constante diélectrique supérieure à une constante diélectrique d'un oxyde de silicium.
     
    9. Dispositif MTP selon la revendication 6, comprenant en outre l'étape consistant à intégrer le dispositif MTP dans un téléphone mobile, un boîtier décodeur, un lecteur de musique, un lecteur vidéo, une unité de divertissement, un dispositif de navigation, un ordinateur, une unité de systèmes de communication personnels portables (PCS), une unité de données portable, et/ou une unité de données à emplacement fixe.
     




    Drawing

























































    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description