(19)
(11)EP 3 028 657 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
16.05.2018 Bulletin 2018/20

(21)Application number: 15191293.8

(22)Date of filing:  23.10.2015
(51)Int. Cl.: 
A61B 18/12  (2006.01)
A61B 18/14  (2006.01)

(54)

HIGH LEVEL ALGORITHMS

ALGORITHMEN AUF HOHEM NIVEAU

ALGORITHMES DE HAUT NIVEAU


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 02.12.2014 US 201414557612

(43)Date of publication of application:
08.06.2016 Bulletin 2016/23

(60)Divisional application:
17184809.6 / 3281595

(73)Proprietor: Covidien LP
Mansfield, MA 02048 (US)

(72)Inventors:
  • WHAM, Robert H.
    Boulder, CO 80305 (US)
  • FAULKNER, William D.
    Boulder, CO 80301 (US)

(74)Representative: Morgan, Marc 
Maschio & Soames IP Limited 30 Carlton Crescent
Southampton SO15 2EW
Southampton SO15 2EW (GB)


(56)References cited: : 
EP-A1- 2 666 432
US-A1- 2009 248 007
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND


    Technical Field



    [0001] The present disclosure relates to a system and method for operating an electrosurgical generator. More particularly, the present disclosure relates to a system, method, and apparatus for using a high level algorithm (HLA) to operate and control an electrosurgical generator.

    Background of Related Art



    [0002] Electrosurgery involves application of high radio frequency electrical current to a surgical site to cut, ablate, or coagulate tissue.

    [0003] Electrosurgery involves application of high radio frequency electrical current to a surgical site to, e.g., cut, ablate, or coagulate tissue. In monopolar electrosurgery, a source or active electrode delivers radio frequency alternating current from the electrosurgical generator to the targeted tissue. A patient return electrode is placed remotely from the active electrode to conduct the current back to the generator.

    [0004] In bipolar electrosurgery, return and active electrodes are placed in close proximity to each other such that an electrical circuit is formed between the two electrodes (e.g., in the case of an electrosurgical forceps). In this manner, the applied electrical current is limited to the body tissue positioned between the electrodes. Accordingly, bipolar electrosurgery generally involves the use of instruments where it is desired to achieve a focused delivery of electrosurgical energy between two electrodes positioned on the instrument, e.g. forceps or the like. A forceps is a pliers-like instrument which relies on mechanical action between its jaws to grasp, clamp, and constrict vessels or tissue. Electrosurgical forceps (open or endoscopic) utilize mechanical clamping action and electrical energy to affect hemostasis on the clamped tissue. The forceps include electrosurgical conductive surfaces which apply the electrosurgical energy to the clamped tissue. By controlling the intensity, frequency, and duration of the electrosurgical energy applied through the conductive plates to the tissue, the surgeon can, for example, coagulate, cauterize, and/or seal tissue. However, the above example is for illustrative purposes only and there are many other known bipolar electrosurgical instruments which are within the scope of the present disclosure.

    [0005] The electrosurgical procedures outlined above may utilize various tissue and energy parameters in a feedback-based control system. In electrosurgery, there is a continual need to improve delivery of energy to the tissue.
    US 2009/0248007 discloses an electrosurgical generator that supplies RF energy to a connected electrosurgical tool. The tool has memory integrated with or removable from the tool. A tool algorithm or script within the tool's memory is loaded into a script interpreter of the generator. The script provides commands and parameters readying the tool for use when connected to the generator. Upon activation of a switch coupled to the tool, the controller detects the switch closure, and authenticates the tool, checks the tool's expiration status, and initializes internal data structures representing the receptacle's tool. A subsequent activation of the tool switch initiates an event that causes the script to direct the generator to supply RF energy.

    SUMMARY



    [0006] The invention is defined in the claims. Any method
    disclosed herein does not form part of the scope of the invention.

    [0007] According to one embodiment, the present disclosure provides for a method for operating an electro surgical generator.

    [0008] In an aspect of the present disclosure, the method includes receiving a high level algorithm at an electrosurgical generator including a processor, a power supply, and a radio frequency amplifier, the high level algorithm including an interpreted language script, processing the interpreted language script through an interpreter engine executed by the processor, selecting at least one of a plurality of configuration files stored in the electrosurgical generator based on the interpreted language script to effect a desired mode of operation, and executing the interpreted language script based on the selected one of the plurality of configuration files to generate instructions which cause the electrosurgical generator to control at least one of the power supply and the radio frequency amplifier to generate radio frequency energy according to the selected one of the plurality of configuration files.

    [0009] In another aspect of the present disclosure, the method includes measuring, at a sensor coupled to the radio frequency amplifier, at least one property of the radio frequency energy.

    [0010] In a further aspect of the present disclosure, the method includes selecting another mode of operation based on the at least one property of the radio frequency energy.

    [0011] In yet a further aspect of the present disclosure, the method includes selecting a second one of the plurality of configuration files based on the selected another mode of operation.

    [0012] In a still further aspect of the present disclosure, the method includes selecting the second one of the plurality of configuration files based on the interpreted language script to effect the selected another mode of operation, and executing the interpreted language script based on the selected second one of the plurality of configuration files to generate instructions which cause the electrosurgical generator to control at least one of the power supply and the radio frequency amplifier to generate radio frequency energy according to the selected second one of the plurality of configuration files.

    [0013] In another aspect of the present disclosure, the method includes modifying the selected one of the plurality of configuration files to generate a modified configuration file, and executing the interpreted language script based on the modified configuration file to generate instructions which cause the electrosurgical generator to control at least one of the power supply and the radio frequency amplifier to generate radio frequency energy according to the modified configuration file.

    [0014] According to another embodiment, the present disclosure provides for a system for operating an electrosurgical generator.

    [0015] In an aspect of the present disclosure, the system includes an external download source configured to provide a high level algorithm to the electrosurgical generator, and the electrosurgical generator including a power supply, a radio frequency amplifier, a processor, and a memory, the processor configured to receive the high level algorithm from the external download source, the high level algorithm including an interpreted language script, process the interpreted language script through an interpreter engine executed by the processor, select at least one of a plurality of configuration files stored in the memory based on the interpreted language script to effect a desired mode of operation, and execute the interpreted language script based on the selected on of the plurality of configuration files to generate instructions which cause the electrosurgical generator to control at least one of the power supply and the radio frequency amplifier to generate radio frequency energy according to the selected one of the plurality of configuration files.

    [0016] In another aspect of the present disclosure, the electrosurgical generator further includes a sensor coupled to the radio frequency amplifier, the sensor configured to measure at least one property of the radio frequency energy.

    [0017] In a further aspect of the present disclosure, the processor is further configured to select another mode of operation based on the at least one property of the radio frequency energy.

    [0018] In yet a further aspect of the present disclosure, the processor is further configured to select a second one of the plurality of configuration files based on the selected another mode of operation.

    [0019] In still a further aspect of the present disclosure, the processor is further configured to select the second one of the plurality of configuration files based on the interpreted language script to effect the another mode of operation, and execute the interpreted language script based on the selected second one of the plurality of configuration files to generate instructions which cause the electrosurgical generator to control at least one of the power supply and the radio frequency amplifier to generate radio frequency energy according to the selected second one of the plurality of configuration files.

    [0020] In another aspect of the present disclosure, the processor is further configured to modify the selected one of the plurality of configuration files to generate a modified configuration file, and execute the interpreted language script based on the modified configuration file to generate instructions which cause the electrosurgical generator to control at least one of the power supply and the radio frequency amplifier to generate radio frequency energy according to the modified configuration file.

    [0021] According to another embodiment, the present disclosure provides for an electrosurgical generator.

    [0022] In an aspect of the present disclosure, the electrosurgical generator includes a power supply, a radio frequency amplifier, a processor, and a memory, the processor configured to receive a high level algorithm, the high level algorithm including an interpreted language script, process the interpreted language script through an interpreter engine executed by the processor, select at least one of a plurality of configuration files stored in the memory based on the interpreted language script to effect a desired mode of operation, and execute the interpreted language script based on the selected one of the plurality of configuration files to generate instructions which cause the electrosurgical generator to control at least one of the power supply and the radio frequency amplifier to generate radio frequency energy according to the selected one of the plurality of configuration files.

    [0023] In another aspect of the present disclosure, the electrosurgical generator further includes a sensor coupled to the radio frequency amplifier, the sensor configured to measure at least one property of the radio frequency energy.

    [0024] In a further aspect of the present disclosure, the processor is further configured to select another mode of operation based on at least one property of the radio frequency energy.

    [0025] In yet a further aspect of the present disclosure, the processor is further configured to select a second one of the plurality of configuration files based on the selected another mode of operation.

    [0026] In still a further aspect of the present disclosure, the processor is further configured to select the second one of the plurality of configuration files based on the interpreted language script to effect the another mode of operation, and execute the interpreted language script based on the selected second one of the plurality of configuration files to generate instructions which cause the electrosurgical generator to control at least one of the power supply and the radio frequency amplifier to generate radio frequency energy according to the selected second one of the plurality of configuration files.

    [0027] In another aspect of the present disclosure, the processor is further configured to modify the selected one of the plurality of configuration files to generate a modified configuration file, and execute the interpreted language script based on the modified configuration file to generate instructions which cause the electrosurgical generator to control at least one of the power supply and the radio frequency amplifier to generate radio frequency energy according to the modified configuration file.

    [0028] In another aspect of the present disclosure, the processor is further configured to modify to select another mode of operation based on at least one of user input or an identifier associated with an instrument coupled to the power supply. The identifier may be a barcode, a radio frequency identification tag, or a storage device.

    [0029] Any of the above aspects and embodiments of the present disclosure may be combined without departing from the scope of the present disclosure.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0030] Various illustrative embodiments of the present disclosure are described herein with reference to the drawings wherein:

    Fig. 1 is a perspective view of the components of an electrosurgical system according to one illustrative embodiment of the present disclosure;

    Fig. 2 is a front view of one embodiment of an electrosurgical generator according to an illustrative embodiment of the present disclosure;

    Fig. 3 is a schematic, block diagram of the embodiment of an electrosurgical generator of Fig. 2;

    Fig. 4 is a flowchart of an illustrative configuration of the electrosurgical generator of Fig. 2 using a high level algorithm; and

    Fig. 5 is a flowchart of a method for operating the electrosurgical generator of Fig. 2 using the high level algorithm of Fig. 4.


    DETAILED DESCRIPTION



    [0031] Particular embodiments of the present disclosure are described below with reference to the accompanying drawings. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.

    [0032] The present disclosure provides for systems and methods for operating an electrosurgical generator to perform any suitable electrosurgical procedure. The generator may include a plurality of outputs for interfacing with various electrosurgical instruments (e.g., a monopolar instrument, return electrode, bipolar electrosurgical forceps, footswitch, etc.). Further, the generator includes electronic circuitry configured to generate radio frequency energy specifically suited for various electrosurgical modes (e.g., cut, blend, coagulate, division with hemostasis, fulgurate, spray, etc.) and procedures (e.g., vessel sealing). In embodiments, the generator may be embedded, integrated, or otherwise coupled to the electrosurgical instruments providing for an all-in-one electrosurgical apparatus. The generator may be configured to receive a high level algorithm (HLA) which may be executable by an HLA Engine incorporated within the electrosurgical generator, allowing the electrosurgical generator to modify its operation in real-time

    [0033] Fig. 1 is a perspective view of the components of one illustrative embodiment of a bipolar and monopolar electrosurgical system 10 according to the present disclosure. The system 10 may include one or more monopolar electrosurgical instruments 20 having one or more active electrodes 23 (e.g., electrosurgical cutting probe, ablation electrode(s), etc.) for treating tissue of a patient. Electrosurgical alternating current is supplied to the instrument 20 by a generator 200 via a supply line 24 that is connected to an active terminal 230 (Fig. 3) of the generator 200, allowing the instrument 20 to cut, coagulate, ablate and/or otherwise treat tissue. The alternating current is returned to the generator 200 through a return electrode pad 26 via a return line 28 at a return terminal 32 (Fig. 3) of the generator 200. For monopolar operation, the system 10 may include a plurality of return electrode pads 26 that, in use, are disposed on a patient to minimize the chances of tissue damage by maximizing the overall contact area with the patient. In addition, the generator 200 and the return electrode pads 26 may be configured for monitoring tissue-to-patient contact to ensure that sufficient contact exists therebetween.

    [0034] The system 10 may also include one or more bipolar electrosurgical instruments, for example, a bipolar electrosurgical forceps 30 having one or more electrodes for treating tissue of a patient. The electrosurgical forceps 30 includes a housing 31 and opposing jaw members 33 and 35 disposed at a distal end of a shaft 32. The jaw members 33 and 35 have one or more active electrodes 34 and a return electrode 36 disposed therein, respectively. The active electrode 34 and the return electrode 36 are connected to the generator 200 through cable 38 that includes the supply and return lines 24, 28 coupled to the active and return terminals 230, 232, respectively (Fig. 3). The electrosurgical forceps 30 is coupled to the generator 200 at a connector having connections to the active and return terminals 230 and 232 (e.g., pins) via a plug disposed at the end of the cable 38, wherein the plug includes contacts from the supply and return lines 24, 28 as described in more detail below.

    [0035] With reference to Fig. 2, a front face 240 of the generator 200 is shown. The generator 200 may be any suitable type (e.g., electrosurgical, microwave, etc.) and may include a plurality of connectors 250-262 to accommodate various types of electrosurgical instruments (e.g., electrosurgical forceps 30, etc.).

    [0036] The generator 200 includes a user interface 241 having one or more display screens or information panels 242, 244, 246 for providing the user with variety of output information (e.g., intensity settings, treatment complete indicators, etc.). Each of the screens 242, 244, 246 is associated with corresponding connector 250-262. The generator 200 includes suitable input controls (e.g., buttons, activators, switches, touch screen, etc.) for controlling the generator 200. The display screens 242, 244, 246 are also configured as touch screens that display a corresponding menu for the electrosurgical instruments (e.g., electrosurgical forceps 30, etc.). The user then adjusts inputs by simply touching corresponding menu options.

    [0037] Screen 242 controls monopolar output and the devices connected to the connectors 250 and 252. Connector 250 is configured to couple to a monopolar electrosurgical instrument (e.g., electrosurgical instrument 20) and connector 252 is configured to couple to a foot switch (not shown). The foot switch provides for additional inputs (e.g., replicating inputs of the generator 200). Screen 244 controls monopolar and bipolar output and the devices connected to the connectors 256 and 258. Connector 256 is configured to couple to other monopolar instruments. Connector 258 is configured to couple to a bipolar instrument (not shown).

    [0038] Screen 246 controls bipolar sealing procedures performed by the forceps 30 that may be plugged into the connectors 260 and 262. The generator 200 outputs energy through the connectors 260 and 262 suitable for sealing tissue grasped by the forceps 30. In particular, screen 246 outputs a user interface that allows the user to input a user-defined intensity setting. The user-defined setting is transmitted to the controller 224 where the setting may be saved in memory 226, and may be any setting that allows the user to adjust one or more energy delivery parameters, such as power, current, voltage, energy, etc. or sealing parameters, such as energy rate limiters, sealing duration, etc.. In embodiments, the intensity setting may be a number scale, such as for example, from one to ten or one to five. In embodiments, the intensity setting may be associated with an output curve of the generator 200. The intensity settings may be specific for each forceps 30 being utilized, such that various instruments provide the user with a specific intensity scale corresponding to the forceps 30.

    [0039] Fig. 3 shows a schematic block diagram of the generator 200 configured to output electrosurgical energy. The generator 200 includes a controller 224, a power supply 227, and a radio-frequency (RF) amplifier 228. The power supply 227 may be a high voltage, DC power supply connected to an AC source (e.g., line voltage) and provides high voltage, DC power to the RF amplifier 228 via leads 227a and 227b, which then converts high voltage, DC power into treatment energy (e.g., electrosurgical or microwave) and delivers the energy to the active terminal 230. The output voltage typically ranges from about 50v to 350v, and is controlled by the HLA via a software target generator 406 (Fig. 4). The energy is returned the generator 200 via the return terminal 232. The active and return terminals 230 and 232 are coupled to the RF amplifier 228 through an isolation transformer 229. The RF amplifier 228 is configured to operate in a plurality of modes, during which the generator 200 outputs corresponding waveforms having specific duty cycles, peak voltages, crest factors, etc. The RF amplifier 228 may be a phase shifted resonant inverter topology, with a pulse width modulator (PWM) input and a high voltage, DC input. Adjustments to the PWM phase control the output energy of the RF amplifier 228 such that minimum energy output is associated with low PWM phase shifts while high energy outputs are associated with high PWM phase shifts. The power supply 227 acts as a multiplier to the RF amplifier 228 output, wherein a lower power supply value will case the RF amplifier 228 output energy to be lower than the output with the same PWM phase but at a higher power supply value. It is envisioned that in other embodiments, the generator 200 may be based on other types of suitable power supply topologies.

    [0040] The controller 224 includes a microprocessor 225 operably connected to a memory 226. Memory 226 may include any non-transitory computer-readable storage media for storing data and/or software that is executable by the microprocessor 225 and which controls the operation of the generator. In an embodiment, memory 226 may include one or more solid-state storage devices such as flash memory chips. Alternatively, or in addition to the one or more solid-state storage devices, memory 226 may include one or more mass storage devices connected to the microprocessor 225 through a mass storage controller (not shown) and a communications bus (not shown). Although the description of computer-readable media contained herein refers to a solid-state storage, it should be appreciated by those skilled in the art that computer-readable storage media can be any available media that can be accessed by the microprocessor 225. That is, computer readable storage media includes non-transitory, volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules, or other data. For example, computer-readable storage media includes RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, BLU-RAY® or any other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the generator.

    [0041] The microprocessor 225 includes an output port that is operably connected to the power supply 227 and/or RF amplifier 228 allowing the microprocessor 225 to control the output of the generator 200 according to either open and/or closed control loop schemes. A closed loop control scheme is a feedback control loop, in which a plurality of sensors measure a variety of tissue and energy properties (e.g., tissue impedance, tissue temperature, output power, current and/or voltage, etc.), and provide feedback to the controller 224. The controller 224 then signals the power supply 227 and/or RF amplifier 228, which adjusts the DC and/or power supply, respectively. Those skilled in the art will appreciate that the microprocessor 225 may be substituted for by using any logic processor (e.g., control circuit) adapted to perform the calculations and/or set of instructions described herein including, but not limited to, field programmable gate array, digital signal processor, and combinations thereof.

    [0042] The generator 200 according to the present disclosure includes a plurality of sensors 280, e.g., an RF current sensor 280a, and an RF voltage sensor 280b. Various components of the generator 200, namely, the RF amplifier 228, the RF current and voltage sensors 280a and 280b, may be disposed on a printed circuit board (PCB). The RF current sensor 280a is coupled to the active terminal 230 and provides measurements of the RF current supplied by the RF amplifier 228. The RF voltage sensor 280b is coupled to the active and return terminals 230 and 232 provides measurements of the RF voltage supplied by the RF amplifier 228. In embodiments, the RF current and voltage sensors 280a and 280b may be coupled to active and return leads 228a and 228b, which interconnect the active and return terminals 230 and 232 to the RF amplifier 228, respectively. The RF sensors represent the analog and digital hardware and software required to convert the sensed voltage and current RF waveforms delivered to the patient into the representative current, voltage, and power delivered to the patient, as well as the complex patient load impedance.

    [0043] The RF current and voltage sensors 280a and 280b provide the sensed RF voltage and current signals, respectively, to the controller 224, which then may adjust output of the power supply 227 and/or the RF amplifier 228 in response to the sensed RF voltage and current signals. The controller 224 also receives input signals from the input controls of the generator 200, the instrument 20, and/or forceps 30. The controller 224 utilizes the input signals to adjust power outputted by the generator 200 and/or performs other control functions.

    [0044] With reference to Fig. 4, a flowchart of a method for using a HLA to operate and control the electrosurgical generator 200 according to the present disclosure is shown. Elements and structures with the same function as shown in Figs. 1-3 are numbered the same and will not be described again for purpose of brevity. The HLA may be written in an interpreted language which can be executed by a high level algorithm engine (HLA engine) 404. As used herein, "interpreted language" refers to any computer language that is interpreted directly by an interpreter, rather than first being compiled into machine-language instructions. The HLA engine 404 is a language interpreter configured to execute an interpreted language script (HLA script). The HLA engine 404 may be implemented in either software executable by the microprocessor 225 or hardware, e.g., microprocessor 225. The HLA script contains instructions to be executed by the engine and may include any software instructions, such as an RF delivery algorithm, which may be stored on any suitable computer-readable medium, e.g., memory 226. The instructions for performing the various functions of the generator may be contained in pre-compiled subroutines that are called by the HLA script to be executed. Thus, the HLA script may not need to include the specific instructions for causing the generator to perform a particular function, and would instead call on these pre-compiled subroutines for executing those functions. The usage of an interpreted language allows the underlying engine to be created and executed on any microprocessor or digital machine, which may then in turn execute the HLA script, thus making the HLA script highly portable and easily replaceable.

    [0045] The HLA may be received by the generator 200 from a download source. The download source may be external to the generator 200, such as another computer or server accessible over a network, or internal, such as a memory storage device, for example memory 226 and/or a removable storage medium. Alternatively, the download source may be a cloud-based update server or the like. A handset for use with the generator 200 may incorporate a radio frequency identification (RFID) device, or any other suitable storage medium, which may include its own memory storing a HLA script that the generator 200 may download, and/or instructions to configure the generator to download a particular HLA script from an external source, such as a cloud-based update server. In embodiments, the storage medium may be a barcode including a link to the external source for downloading the HLA. The network may be any network known to those skilled in the art, such as a local area network (LAN) consisting of a wired network and/or a wireless network, a wide area network (WAN), a wireless mobile network, a BLUETOOTH® network, and/or the Internet.

    [0046] In addition to the HLA, the generator 200 may receive or store, e.g., by preloading, a set of mode configuration files ("CFG files") 402 which control the operation of the generator. The CFG files 402 contain all the information required to generate a specific form of RF energy, which enables the generator 200 to operate in various RF modes, such as, for example, cut, coag, spray, fulgurate, etc. Multiple CFG files 402 may be associated with a single HLA, which allows the HLA to use several modes during execution. The HLA can load a specific CFG file 402 to start RF generation, and then monitor the delivered RF and tissue response and during energy application, a new CFG file 402 may be loaded based on sensed tissue or energy properties as needed. In embodiments, to enter a different RF mode, the HLA may modify the existing CFG files 402 to modify RF energy delivery, e.g., change mode, adjust amplitude, etc., when a specific tissue event occurs. In further embodiments, during execution, the HLA may start treatment using a first mode, e.g., a cut RF mode, and, once cutting is completed, the HLA may then load a second mode, e.g., coag RF mode which then cauterizes the tissue.

    [0047] During execution of the HLA in conjunction with the CFG files 402, HLA engine 404 sends instructions to a software target generator (SWC) 406. SWC 406 controls the programming of a hardware compensator (HWC) 408, and controls target adjustments so that HWC 408 correctly implements a desired RF energy profile specified by the loaded CFG file 402. HWC 408 is described below as one exemplary embodiment of an RF inverter or output stage and any other suitable inverter may be utilized by the generator 200 according to the present disclosure. HWC 408 in turn controls RF amplifier 228 based on the loaded CFG file 402 to implement the correct configuration and the desired RF energy output range. SWC 406 may be implemented as software executable by a microprocessor, and/or implemented as a hardware component. HWC 408 is designed to adjust the PWM phase shift such that energy is delivered to the patient at the desired RF current, voltage, and/or power. HWC 408 also creates the pulse patterns of the RF waveform. Referring now to Fig. 5, a flowchart is shown of a method for using an HLA to operate and control the generator 200 according to the present disclosure. Processing may start at step S502, when the generator 200 receives an HLA. Receiving the HLA may include one or more of loading the HLA from internal storage, loading the HLA from external storage, and/or downloading the HLA from a source external to the generator 200, such as, for example, a computer connected via a network. At step S504, the generator 200 receives one or more CFG files. Receiving the CFG files may also include one or more of loading the CFG files from internal storage, loading the CFG files from external storage, loading the CFG files from a memory storage device associated with the electrosurgical instrument 20 connected to generator 200, and/or downloading the CFG files from a source external to the generator 200, such as, for example, a computer connected via a network. In embodiments, CFG files may be preloaded in the generator 200, e.g., memory 226. Thereafter, at step S506, a CFG file is selected and loaded based on a desired mode of operation. In one aspect of the present disclosure, if a cut operation is desired, a corresponding CFG file may be loaded to implement a RF energy profile to perform a cut operation. Alternatively, if a coag operation is desired, a corresponding CFG file may be loaded to implement a RF energy profile to perform a coag operation.

    [0048] At step S508, the HLA is executed by the HLA engine using the loaded CFG file. The execution of the HLA in turn, at step S510, controls the power supply 227 and the RF amplifier 228 to generate RF energy according to the RF energy profile associated with the loaded CFG file. At step S512, the generated RF energy is applied to the patient.

    [0049] At step S514, feedback regarding the application of the RF energy to the patient is received by the RF sensors 280. Based on the feedback received by the RF sensors 280, the HLA, at step S516, determines whether a different mode of operation is required. If YES, processing proceeds to step S518. If NO, processing proceeds to step S522. At step S518, the HLA determines whether a different CFG file is required to control the generator 200 to operate in a different mode. If YES, processing returns to step S506 where a new CFG file is selected and loaded based on the desired mode of operation. If NO, processing proceeds to step S520.

    [0050] At step S520, the loaded CFG file is modified by the HLA to slightly adjust its parameters. For example, based on the feedback received by RF sensors 280, the HLA may determine that the generated RF energy is to be adjusted. In such a case, the HLA may modify the CFG file to adjust the generated RF energy profile instead of loading a new CFG file. After the CFG file has been modified, processing returns to step S508 where the HLA is executed by the HLA engine using the modified CFG file. In embodiments, the generator 200 at step S520 may also receive another HLA in response to the detected feedback, thus moving back to S502.

    [0051] At step S522, which is reached if it is determined at step S516 that a different mode of operation is not required, the HLA determines whether additional RF energy generation is required. If YES, processing returns to step S510 where the power supply 227 and the RF amplifier 228 is controlled to generate additional RF energy according to the RF energy profile associated with the loaded CFG file. If NO, processing ends.

    [0052] While several embodiments of the disclosure have been shown in the drawings and/or described herein, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

    [0053] The invention may be described by reference to the following numbered paragraphs:-
    1. 1. A method for operating an electrosurgical generator, the method comprising:

      receiving a high level algorithm at an electrosurgical generator including a processor, a power supply, and a radio frequency amplifier, the high level algorithm including an interpreted language script;

      processing the interpreted language script through an interpreter engine executed by the processor;

      selecting at least one of a plurality of configuration files stored in the electrosurgical generator based on the interpreted language script to effect a desired mode of operation; and

      executing the interpreted language script based on the selected one of the plurality of configuration files to generate instructions which cause the electrosurgical generator to control at least one of the power supply and the radio frequency amplifier to generate radio frequency energy according to the selected one of the plurality of configuration files.

    2. 2. The method according to paragraph 1, further comprising measuring, at a sensor coupled to the radio frequency amplifier, at least one property of the radio frequency energy.
    3. 3. The method according to paragraph 2, further comprising selecting another mode of operation based on the at least one property of the radio frequency energy.
    4. 4. The method according to paragraph 3, wherein selecting one of a plurality of configuration files includes selecting a second one of the plurality of configuration files based on the selected another mode of operation.
    5. 5. The method according to paragraph 4, further comprising:

      selecting the second one of the plurality of configuration files based on the interpreted language script to effect the selected another mode of operation; and

      executing the interpreted language script based on the selected second one of the plurality of configuration files to generate instructions which cause the electrosurgical generator to control at least one of the power supply and the radio frequency amplifier to generate radio frequency energy according to the selected second one of the plurality of configuration files.

    6. 6. The method according to paragraph 1, further comprising:

      modifying the selected one of the plurality of configuration files to generate a modified configuration file; and

      executing the interpreted language script based on the modified configuration file to generate instructions which cause the electrosurgical generator to control at least one of the power supply and the radio frequency amplifier to generate radio frequency energy according to the modified configuration file.

    7. 7. A system for operating an electrosurgical generator, the system comprising:

      an external download source configured to provide a high level algorithm to the electrosurgical generator; and

      the electrosurgical generator including a power supply, a radio frequency amplifier, a processor, and a memory, the processor configured to:

      receive the high level algorithm from the external download source, the high level algorithm including an interpreted language script;

      process the interpreted language script through an interpreter engine executed by the processor;

      select at least one of a plurality of configuration files stored in the memory based on the interpreted language script to effect a desired mode of operation; and

      execute the interpreted language script based on the selected on of the plurality of configuration files to generate instructions which cause the electrosurgical generator to control at least one of the power supply and the radio frequency amplifier to generate radio frequency energy according to the selected one of the plurality of configuration files.

    8. 8. The system according to paragraph 7, wherein the electrosurgical generator further includes a sensor coupled to the radio frequency amplifier, the sensor configured to measure at least one property of the radio frequency energy.
    9. 9. The system according to paragraph 8, wherein the processor is further configured to select another mode of operation based on the at least one property of the radio frequency energy.
    10. 10. The system according to paragraph 9, wherein selecting one of a plurality of configuration files includes selecting a second one of the plurality of configuration files based on the selected another mode of operation.
    11. 11. The system according to paragraph 10, wherein the processor is further configured to:

      select the second one of the plurality of configuration files based on the interpreted language script to effect the another mode of operation; and

      execute the interpreted language script based on the selected second one of the plurality of configuration files to generate instructions which cause the electrosurgical generator to control at least one of the power supply and the radio frequency amplifier to generate radio frequency energy according to the selected second one of the plurality of configuration files.

    12. 12. The system according to paragraph 7, wherein the processor is further configured to:

      modify the selected one of the plurality of configuration files to generate a modified configuration file; and

      execute the interpreted language script based on the modified configuration file to generate instructions which cause the electrosurgical generator to control at least one of the power supply and the radio frequency amplifier to generate radio frequency energy according to the modified configuration file.

    13. 13. An electrosurgical generator comprising:
      a power supply, a radio frequency amplifier, a processor, and a memory, the processor configured to:

      receive a high level algorithm, the high level algorithm including an interpreted language script;

      process the interpreted language script through an interpreter engine executed by the processor;

      select at least one of a plurality of configuration files stored in the memory based on the interpreted language script to effect a desired mode of operation; and

      execute the interpreted language script based on the selected one of the plurality of configuration files to generate instructions which cause the electrosurgical generator to control at least one of the power supply and the radio frequency amplifier to generate radio frequency energy according to the selected one of the plurality of configuration files.

    14. 14. The electrosurgical generator according to paragraph 13, further comprising a sensor coupled to the radio frequency amplifier, the sensor configured to measure at least one property of the radio frequency energy.
    15. 15. The electrosurgical generator according to paragraph 14, wherein the processor is further configured to select another mode of operation based on at least one property of the radio frequency energy.
    16. 16. The electrosurgical generator according to paragraph 15, wherein selecting one of a plurality of configuration files includes selecting a second one of the plurality of configuration files based on the selected another mode of operation.
    17. 17. The electrosurgical generator according to paragraph 16, wherein the processor is further configured to:

      select the second one of the plurality of configuration files based on the interpreted language script to effect the another mode of operation; and

      execute the interpreted language script based on the selected second one of the plurality of configuration files to generate instructions which cause the electrosurgical generator to control at least one of the power supply and the radio frequency amplifier to generate radio frequency energy according to the selected second one of the plurality of configuration files.

    18. 18. The electrosurgical generator according to paragraph 13, wherein processor is further configured to:

      modify the selected one of the plurality of configuration files to generate a modified configuration file; and

      execute the interpreted language script based on the modified configuration file to generate instructions which cause the electrosurgical generator to control at least one of the power supply and the radio frequency amplifier to generate radio frequency energy according to the modified configuration file.

    19. 19. The electrosurgical generator according to paragraph 13, wherein the processor is further configured to select another mode of operation based on at least one of user input or an identifier associated with an instrument coupled to the power supply.
    20. 20. The electrosurgical generator according to paragraph 13, wherein the identifier is selected from the group consisting of a barcode, a radio frequency identification tag, and a storage device.



    Claims

    1. An electrosurgical generator (200) comprising:
    a power supply (227), a radio frequency amplifier (228), a processor (225), and a memory (226), the processor configured to:

    receive a high level algorithm, the high level algorithm including an interpreted language script;

    process the interpreted language script through an interpreter engine (404) executed by the processor;

    select at least one of a plurality of configuration files (402) stored in the memory based on the interpreted language script to effect a desired mode of operation; and

    execute the interpreted language script based on the selected one of the plurality of configuration files to generate instructions which cause the electrosurgical generator to control at least one of the power supply and the radio frequency amplifier to generate radio frequency energy according to the selected one of the plurality of configuration files.


     
    2. The electrosurgical generator according to claim 1, further comprising a sensor coupled to the radio frequency amplifier, the sensor configured to measure at least one property of the radio frequency energy, preferably wherein the processor is further configured to select another mode of operation based on at least one property of the radio frequency energy.
     
    3. The electrosurgical generator according to claim 2, wherein selecting one of a plurality of configuration files includes selecting a second one of the plurality of configuration files based on the selected another mode of operation.
     
    4. The electrosurgical generator according to claim 3, wherein the processor is further configured to:

    select the second one of the plurality of configuration files based on the interpreted language script to effect the another mode of operation; and

    execute the interpreted language script based on the selected second one of the plurality of configuration files to generate instructions which cause the electrosurgical generator to control at least one of the power supply and the radio frequency amplifier to generate radio frequency energy according to the selected second one of the plurality of configuration files.


     
    5. The electrosurgical generator according to any one of claims 1 to 4, wherein processor is further configured to:

    modify the selected one of the plurality of configuration files to generate a modified configuration file; and

    execute the interpreted language script based on the modified configuration file to generate instructions which cause the electrosurgical generator to control at least one of the power supply and the radio frequency amplifier to generate radio frequency energy according to the modified configuration file.


     
    6. The electrosurgical generator according to any preceding claim, wherein the processor is further configured to select another mode of operation based on at least one of user input or an identifier associated with an instrument coupled to the power supply, preferably wherein the identifier is selected from the group consisting of a barcode, a radio frequency identification tag, and a storage device.
     
    7. A system for operating an electrosurgical generator according to claim 6, the system comprising:

    an external download source configured to provide the high level algorithm to the electrosurgical generator; and

    the processor configured to:
    receive the high level algorithm from the external download source.


     
    8. The system according to claim 7, wherein the electrosurgical generator further includes a sensor (280) coupled to the radio frequency amplifier, the sensor configured to measure at least one property of the radio frequency energy, preferably wherein the processor is further configured to select another mode of operation based on the at least one property of the radio frequency energy.
     
    9. The system according to claim 8, wherein selecting one of a plurality of configuration files includes selecting a second one of the plurality of configuration files based on the selected another mode of operation, preferably wherein the processor is further configured to:

    select the second one of the plurality of configuration files based on the interpreted language script to effect the another mode of operation; and

    execute the interpreted language script based on the selected second one of the plurality of configuration files to generate instructions which cause the electrosurgical generator to control at least one of the power supply and the radio frequency amplifier to generate radio frequency energy according to the selected second one of the plurality of configuration files.


     
    10. The system according to claim 8 or 9, wherein the processor is further configured to:

    modify the selected one of the plurality of configuration files to generate a modified configuration file; and

    execute the interpreted language script based on the modified configuration file to generate instructions which cause the electrosurgical generator to control at least one of the power supply and the radio frequency amplifier to generate radio frequency energy according to the modified configuration file.


     
    11. Non-transitory computer readable storage media storing software executable by a microprocessor to control operation of an electrosurgical generator according to a method comprising:

    receiving a high level algorithm at the electrosurgical generator (200) including the processor (225), a power supply (227), and a radio frequency amplifier (228), the high level algorithm including an interpreted language script;

    processing the interpreted language script through an interpreter engine (404) executed by the processor;

    selecting at least one of a plurality of configuration files (402) stored in the electrosurgical generator based on the interpreted language script to effect a desired mode of operation; and

    executing the interpreted language script based on the selected one of the plurality of configuration files to generate instructions which cause the electrosurgical generator to control at least one of the power supply and the radio frequency amplifier to generate radio frequency energy according to the selected one of the plurality of configuration files.


     
    12. Non-transitory computer readable storage media according to claim 11, the method further comprising measuring, at a sensor (280) coupled to the radio frequency amplifier, at least one property of the radio frequency energy.
     
    13. Non-transitory computer readable storage media according to claim 12, the method further comprising selecting another mode of operation based on the at least one property of the radio frequency energy preferably wherein selecting one of a plurality of configuration files includes selecting a second one of the plurality of configuration files based on the selected another mode of operation.
     
    14. Non-transitory computer readable storage media according to claim 13, the method further comprising:

    selecting the second one of the plurality of configuration files based on the interpreted language script to effect the selected another mode of operation; and

    executing the interpreted language script based on the selected second one of the plurality of configuration files to generate instructions which cause the electrosurgical generator to control at least one of the power supply and the radio frequency amplifier to generate radio frequency energy according to the selected second one of the plurality of configuration files.


     
    15. Non-transitory computer readable storage media according to any of claims 11 to 14, the method further comprising:

    modifying the selected one of the plurality of configuration files to generate a modified configuration file; and

    executing the interpreted language script based on the modified configuration file to generate instructions which cause the electrosurgical generator to control at least one of the power supply and the radio frequency amplifier to generate radio frequency energy according to the modified configuration file.


     


    Ansprüche

    1. Elektrochirurgischer Generator (200), umfassend:
    eine Stromversorgung (227), einen Radiofrequenzverstärker (228), einen Prozessor (225) und einen Speicher (226), wobei der Prozessor dazu ausgebildet ist:

    einen High-Level-Algorithmus zu empfangen, wobei der High-Level-Algorithmus ein Interpretersprachenscript aufweist;

    das Interpretersprachenscript durch eine von dem Prozessor ausgeführte Interpreter-Engine (404) zu verarbeiten;

    mindestens eine von mehreren in dem Speicher gespeicherten Konfigurationsdateien (402) auf Basis des Interpretersprachenscripts auszuwählen, um eine gewünschte Betriebsweise zu bewirken; und

    das Interpretersprachenscript auf Basis der aus den mehreren Konfigurationsdateien ausgewählten Konfigurationsdatei auszuführen, um Anweisungen zu erzeugen, die bewirken, dass der elektrochirurgische Generator die Stromversorgung und/oder den Radiofrequenzverstärker derart ansteuert, dass Radiofrequenzenergie gemäß der aus den mehreren Konfigurationsdateien ausgewählten Konfigurationsdatei erzeugt wird.


     
    2. Elektrochirurgischer Generator nach Anspruch 1, weiter umfassend einen mit dem Radiofrequenzverstärker verbundenen Sensor, wobei der Sensor dazu ausgebildet ist, mindestens eine Eigenschaft der Radiofrequenzenergie zu messen, wobei bevorzugt der Prozessor weiter dazu ausgebildet ist, eine andere Betriebsweise auf Basis von mindestens einer Eigenschaft der Radiofrequenzenergie auszuwählen.
     
    3. Elektrochirurgischer Generator nach Anspruch 2, wobei das Auswählen einer Konfigurationsdatei aus mehreren Konfigurationsdateien das Auswählen einer zweiten Konfigurationsdatei aus den mehreren Konfigurationsdateien auf Basis der ausgewählten anderen Betriebsweise umfasst.
     
    4. Elektrochirurgischer Generator nach Anspruch 3, wobei der Prozessor weiter dazu ausgebildet ist:

    die zweite Konfigurationsdatei aus den mehreren Konfigurationsdateien auf Basis des Interpretersprachenscripts auszuwählen, um die andere Betriebsweise zu bewirken; und

    das Interpretersprachenscript auf Basis der aus den mehreren Konfigurationsdateien ausgewählten zweiten Konfigurationsdatei auszuführen, um Anweisungen zu erzeugen, die bewirken, dass der elektrochirurgische Generator die Stromversorgung und/oder den Radiofrequenzverstärker derart ansteuert, dass Radiofrequenzenergie gemäß der aus den mehreren Konfigurationsdateien ausgewählten zweiten Konfigurationsdatei erzeugt wird.


     
    5. Elektrochirurgischer Generator nach einem der Ansprüche 1 bis 4, wobei der Prozessor weiter dazu ausgebildet ist:

    die aus den mehreren Konfigurationsdateien ausgewählte Konfigurationsdatei zu modifizieren, um eine modifizierte Konfigurationsdatei zu erzeugen; und

    das Interpretersprachenscript auf Basis der modifizierten Konfigurationsdatei auszuführen, um Anweisungen zu erzeugen, die bewirken, dass der elektrochirurgische Generator die Stromversorgung und/oder den Radiofrequenzverstärker derart ansteuert, dass Radiofrequenzenergie gemäß der modifizierten Konfigurationsdatei erzeugt wird.


     
    6. Elektrochirurgischer Generator nach einem vorstehenden Anspruch, wobei der Prozessor weiter dazu ausgebildet ist, eine andere Betriebsweise auf Basis einer Benutzereingabe und/oder eines einem mit der Stromversorgung verbundenen Instrument zugeordneten Identifikators auszuwählen, wobei bevorzugt der Identifikator aus der Gruppe bestehend aus einem Barcode, eines Radiofrequenz-Identifizierungsetiketts und einer Speichereinrichtung ausgewählt ist.
     
    7. System zum Betreiben eines elektrochirurgischen Generators nach Anspruch 6, wobei das System Folgendes umfasst:

    eine externe Download-Quelle, die dazu ausgebildet ist, den High-Level-Algorithmus für den elektrochirurgischen Generator zu liefern; und wobei

    der Prozessor dazu ausgebildet ist:
    den High-Level-Algorithmus von der externen Download-Quelle zu empfangen.


     
    8. System nach Anspruch 7, wobei der elektrochirurgische Generator weiter einen mit dem Radiofrequenzverstärker verbundenen Sensor (280) aufweist, wobei der Sensor dazu ausgebildet ist, mindestens eine Eigenschaft der Radiofrequenzenergie zu messen, wobei bevorzugt der Prozessor weiter dazu ausgebildet ist, eine andere Betriebsweise auf Basis der mindestens einen Eigenschaft der Radiofrequenzenergie auszuwählen.
     
    9. System nach Anspruch 8, wobei das Auswählen einer Konfigurationsdatei aus mehreren Konfigurationsdateien das Auswählen einer zweiten Konfigurationsdatei aus den mehreren Konfigurationsdateien auf Basis der ausgewählten anderen Betriebsweise umfasst, wobei bevorzugt der Prozessor weiter dazu ausgebildet ist:

    die zweite Konfigurationsdatei aus den mehreren Konfigurationsdateien auf Basis des Interpretersprachenscripts auszuwählen, um die andere Betriebsweise zu bewirken; und

    das Interpretersprachenscript auf Basis der aus den mehreren Konfigurationsdateien ausgewählten zweiten Konfigurationsdatei auszuführen, um Anweisungen zu erzeugen, die bewirken, dass der elektrochirurgische Generator die Stromversorgung und/oder den Radiofrequenzverstärker derart ansteuert, dass Radiofrequenzenergie gemäß der aus den mehreren Konfigurationsdateien ausgewählten zweiten Konfigurationsdatei erzeugt wird.


     
    10. System nach Anspruch 8 oder 9, wobei der Prozessor weiter dazu ausgebildet ist:

    die aus den mehreren Konfigurationsdateien ausgewählte Konfigurationsdatei zu modifizieren, um eine modifizierte Konfigurationsdatei zu erzeugen; und

    das Interpretersprachenscript auf Basis der modifizierten Konfigurationsdatei auszuführen, um Anweisungen zu erzeugen, die bewirken, dass der elektrochirurgische Generator die Stromversorgung und/oder den Radiofrequenzverstärker derart ansteuert, dass Radiofrequenzenergie gemäß der modifizierten Konfigurationsdatei erzeugt wird.


     
    11. Nichtflüchtiges computerlesbares Speichermedium zum Speichern von durch einen Mikroprozessor ausführbarer Software zum Steuern des Betriebs eines elektrochirurgischen Generators gemäß einem Verfahren, umfassend:

    Empfangen eines High-Level-Algorithmus an dem elektrochirurgischen Generator (200), der den Prozessor (225), eine Stromversorgung (227) und einen Radiofrequenzverstärker (228) aufweist, wobei der High-Level-Algorithmus ein Interpretersprachenscript aufweist;

    Verarbeiten des Interpretersprachenscripts durch eine durch den Prozessor ausgeführte Interpreter-Engine (404);

    Auswählen mindestens einer Konfigurationsdatei aus mehreren in dem elektrochirurgischen Generator gespeicherten Konfigurationsdateien (402) auf Basis des Interpretersprachenscripts, um eine gewünschte Betriebsweise zu bewirken; und

    Ausführen des Interpretersprachenscripts auf Basis der aus den mehreren Konfigurationsdateien ausgewählten Konfigurationsdatei, um Anweisungen zu erzeugen, die bewirken, dass der elektrochirurgische Generator die Stromversorgung und/oder den Radiofrequenzverstärker derart ansteuert, dass Radiofrequenzenergie gemäß der aus den mehreren Konfigurationsdateien ausgewählten Konfigurationsdatei erzeugt wird.


     
    12. Nichtflüchtiges computerlesbares Speichermedium nach Anspruch 11, wobei das Verfahren weiter das Messen von mindestens einer Eigenschaft der Radiofrequenzenergie an einem mit dem Radiofrequenzverstärker verbundenen Sensor (280) umfasst.
     
    13. Nichtflüchtiges computerlesbares Speichermedium nach Anspruch 12, wobei das Verfahren weiter das Auswählen einer anderen Betriebsweise auf Basis der mindestens einen Eigenschaft der Radiofrequenzenergie umfasst, wobei bevorzugt das Auswählen einer Konfigurationsdatei aus mehreren Konfigurationsdateien das Auswählen einer zweiten Konfigurationsdatei aus den mehreren Konfigurationsdateien auf Basis der ausgewählten anderen Betriebsweise umfasst.
     
    14. Nichtflüchtiges computerlesbares Speichermedium nach Anspruch 13, wobei das Verfahren weiter umfasst:

    Auswählen der zweiten Konfigurationsdatei aus den mehreren Konfigurationsdateien auf Basis des Interpretersprachenscripts, um die ausgewählte andere Betriebsweise zu bewirken; und

    Ausführen des Interpretersprachenscripts auf Basis der aus den mehreren Konfigurationsdateien ausgewählten zweiten Konfigurationsdatei, um Anweisungen zu erzeugen, die bewirken, dass der elektrochirurgische Generator die Stromversorgung und/oder den Radiofrequenzverstärker derart ansteuert, dass Radiofrequenzenergie gemäß der aus den mehreren Konfigurationsdateien ausgewählten zweiten Konfigurationsdatei erzeugt wird.


     
    15. Nichtflüchtiges computerlesbares Speichermedium nach einem der Ansprüche 11 bis 14, wobei das Verfahren weiter umfasst:

    Modifizieren der aus den mehreren Konfigurationsdateien ausgewählten Konfigurationsdatei, um eine modifizierte Konfigurationsdatei zu erzeugen; und

    Ausführen des Interpretersprachenscripts auf Basis der modifizierten Konfigurationsdatei, um Anweisungen zu erzeugen, die bewirken, dass der elektrochirurgische Generator die Stromversorgung und/oder den Radiofrequenzverstärker derart ansteuert, dass Radiofrequenzenergie gemäß der modifizierten Konfigurationsdatei erzeugt wird.


     


    Revendications

    1. Générateur électrochirurgical (200) comprenant :
    une alimentation électrique (227), un amplificateur de fréquence radio (228), un processeur (225) et une mémoire (226), le processeur étant configuré pour :

    recevoir un algorithme de haut niveau, l'algorithme de haut niveau comprenant un script de langage interprété ;

    traiter le script de langage interprété via un moteur interprète (404) exécuté par le processeur;

    choisir au moins l'un d'une pluralité de fichiers de configuration (402) stockés dans la mémoire sur la base du script de langage interprété pour effectuer un mode de fonctionnement souhaité ; et

    exécuter le script de langage interprété sur la base de celui choisi de la pluralité de fichiers de configuration pour générer des instructions qui amènent le générateur électrochirurgical à commander au moins l'un(e) de l'alimentation électrique et de l'amplificateur de fréquence radio pour générer de l'énergie de fréquence radio selon celui sélectionné de la pluralité de fichiers de configuration.


     
    2. Générateur électrochirurgical selon la revendication 1, comprenant en outre un capteur couplé à l'amplificateur de fréquence radio, le capteur étant configuré pour mesurer au moins une propriété de l'énergie de fréquence radio, de préférence dans lequel le processeur est en outre configuré pour choisir un autre mode de fonctionnement sur la base d'au moins une propriété de l'énergie de fréquence radio.
     
    3. Générateur électrochirurgical selon la revendication 2, dans lequel la sélection de l'un d'une pluralité de fichiers de configuration comprend la sélection d'un second de la pluralité de fichiers de configuration sur la base du un autre mode de fonctionnement choisi.
     
    4. Générateur électrochirurgical selon la revendication 3, dans lequel le processeur est en outre configuré pour :

    choisir le second de la pluralité de fichiers de configuration sur la base du script de langage interprété pour effectuer le un autre mode de fonctionnement ; et

    exécuter le script de langage interprété sur la base du second choisi de la pluralité de fichiers de configuration afin de générer des instructions qui amènent le générateur électrochirurgical à commander au moins l'un(e) de l'alimentation électrique et de l'amplificateur de fréquence radio pour générer de l'énergie de fréquence radio selon le second choisi de la pluralité de fichiers de configuration.


     
    5. Générateur électrochirurgical selon l'une quelconque des revendications 1 à 4, dans lequel le processeur est en outre configuré pour :

    modifier celui choisi de la pluralité de fichiers de configuration pour générer un fichier de configuration modifié ; et

    exécuter le script de langage interprété sur la base du fichier de configuration modifié pour générer des instructions qui amènent le générateur électrochirurgical à commander au moins l'un(e) de l'alimentation électrique et de l'amplificateur de fréquence radio afin de générer de l'énergie de fréquence radio selon le fichier de configuration modifié.


     
    6. Générateur électrochirurgical selon l'une quelconque des revendications précédentes, dans lequel le processeur est en outre configuré pour sélectionner un autre mode de fonctionnement sur la base d'au moins l'un(e) d'une entrée utilisateur ou d'un identifiant associé à un instrument couplé à l'alimentation électrique, de préférence dans lequel l'identifiant est choisi dans le groupe constitué d'un code à barres, d'une étiquette d'identification de fréquence radio et d'un dispositif de stockage.
     
    7. Système de fonctionnement d'un générateur électrochirurgical selon la revendication 6, le système comprenant :

    une source de téléchargement externe configurée pour fournir l'algorithme de haut niveau au générateur électrochirurgical ; et

    le processeur configuré pour :
    recevoir l'algorithme de haut niveau de la source de téléchargement externe.


     
    8. Système selon la revendication 7, dans lequel le générateur électrochirurgical comprend en outre un capteur (280) couplé à l'amplificateur de fréquence radio, le capteur étant configuré pour mesurer au moins une propriété de l'énergie de fréquence radio, de préférence dans lequel le processeur est en outre configuré pour choisir un autre mode de fonctionnement sur la base de la au moins une propriété de l'énergie de fréquence radio.
     
    9. Système selon la revendication 8, dans lequel le choix d'une pluralité de fichiers de configuration comprend le choix d'un second de la pluralité de fichiers de configuration sur la base du un autre mode de fonctionnement choisi, de préférence dans lequel le processeur est en outre configuré pour :

    choisir le second de la pluralité de fichiers de configuration sur la base du script de langage interprété pour effectuer le un autre mode de fonctionnement ; et

    exécuter le script de langage interprété sur la base du second choisi de la pluralité de fichiers de configuration afin de générer des instructions qui amènent le générateur électrochirurgical à commander au moins l'un(e) de l'alimentation électrique et de l'amplificateur de fréquence radio afin de générer de l'énergie de fréquence radio selon le second choisi de la pluralité de fichiers de configuration.


     
    10. Système selon la revendication 8 ou 9, dans lequel le processeur est en outre configuré pour :

    modifier celui choisi de la pluralité de fichiers de configuration pour générer un fichier de configuration modifié ; et

    exécuter le script de langage interprété sur la base du fichier de configuration modifié afin de générer des instructions qui amènent le générateur électrochirurgical à commander au moins l'un(e) de l'alimentation électrique et de l'amplificateur de fréquence radio afin de générer de l'énergie de fréquence radio selon le fichier de configuration modifié.


     
    11. Support de stockage lisible par ordinateur non transitoire stockant un logiciel exécutable par un microprocesseur pour commander le fonctionnement d'un générateur électrochirurgical selon le procédé, comprenant :

    la réception d'un algorithme de haut niveau dans le générateur électrochirurgical (200) comprenant le processeur (225), une alimentation électrique (227) et un amplificateur de fréquence radio (228), l'algorithme de haut niveau comprenant un script de langage interprété ;

    le traitement du script de langage interprété via un moteur interprète (404) exécuté par le processeur ;

    le choix d'au moins l'un d'une pluralité de fichiers de configuration (402) stockés dans le générateur électrochirurgical sur la base du script de langage interprété pour effectuer un mode de fonctionnement souhaité ; et

    l'exécution du script de langage interprété sur la base du l'un choisi de la pluralité de fichiers de configuration afin de générer des instructions qui amènent le générateur électrochirurgical à commander au moins l'un(e) de l'alimentation électrique et de l'amplificateur de fréquence radio afin de générer de l'énergie de fréquence radio selon l'un choisi de la pluralité de fichiers de configuration.


     
    12. Support de stockage lisible par ordinateur non transitoire selon la revendication 11, le procédé comprenant en outre la mesure, dans un capteur (280) couplé à l'amplificateur de fréquence radio, d'au moins une propriété de l'énergie de fréquence radio.
     
    13. Support de stockage lisible par ordinateur non transitoire selon la revendication 12, le procédé comprenant en outre le choix d'un autre mode de fonctionnement sur la base de la au moins une propriété de l'énergie de fréquence radio, de préférence dans lequel le choix de l'un d'une pluralité de fichiers de configuration comprend le choix d'un second de la pluralité de fichiers de configuration sur la base du un autre mode de fonctionnement choisi.
     
    14. Support de stockage lisible par ordinateur non transitoire selon la revendication 13, le procédé comprenant en outre :

    le choix du second de la pluralité de fichiers de configuration sur la base du script de langage interprété pour effectuer le un autre mode de fonctionnement choisi ; et

    l'exécution du script de langage interprété sur la base du second choisi de la pluralité de fichiers de configuration afin de générer des instructions qui amènent le générateur électrochirurgical à commander au moins l'un(e) de l'alimentation électrique et de l'amplificateur de fréquence afin de générer de l'énergie de fréquence radio selon le second choisi de la pluralité de fichiers de configuration.


     
    15. Support de stockage lisible par ordinateur non transitoire selon l'une quelconque des revendications 11 à 14, le procédé comprenant en outre :

    la modification de l'un choisi de la pluralité de fichiers de configuration afin de générer un fichier de configuration modifié ; et

    l'exécution du script de langage interprété sur la base du fichier de configuration modifié pour générer une instruction qui amène le générateur électrochirurgical à commander au moins l'un(e) de l'alimentation électrique et de l'amplificateur de fréquence radio afin de générer de l'énergie de fréquence radio selon le fichier de configuration modifié.


     




    Drawing


















    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description