(19)
(11)EP 3 028 792 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
13.01.2021 Bulletin 2021/02

(21)Application number: 15197573.7

(22)Date of filing:  02.12.2015
(51)International Patent Classification (IPC): 
B22F 1/00(2006.01)
C09D 11/037(2014.01)
C09D 11/52(2014.01)
B22F 9/24(2006.01)

(54)

NANO-SILVER POWDER, THE PREPARATION THEREOF, METHOD AND APPLICATION IN PREPARATION OF ELECTRICALLY CONDUCTIVE INK AND ELECTRICALLY CONDUCTIVE INK

NANO-SILBERPULVER, HERSTELLUNGSVERFAHREN DAFÜR UND ANWENDUNG BEI DER HERSTELLUNG VON ELEKTRISCH LEITFÄHIGER TINTE UND ELEKTRISCH LEITFÄHIGE TINTE

POUDRE CONTENANT DES NANOPARTICULES D'ARGENT, SON PROCÉDÉ DE PRÉPARATION ET APPLICATION DANS LA PRÉPARATION D'UNE ENCRE ÉLECTRIQUEMENT CONDUCTRICE ET LADITE ENCRE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 02.12.2014 CN 201410723078

(43)Date of publication of application:
08.06.2016 Bulletin 2016/23

(73)Proprietor: Institute Of Chemistry, Chinese Academy Of Sciences
Beijing 100190 (CN)

(72)Inventors:
  • Zhang, Xingye
    100190 Beijing (CN)
  • Song, Yanlin
    100190 Beijing (CN)

(74)Representative: Nederlandsch Octrooibureau 
P.O. Box 29720
2502 LS The Hague
2502 LS The Hague (NL)


(56)References cited: : 
EP-A1- 2 773 477
US-A1- 2006 159 603
CN-A- 103 258 584
  
  • JIN ZHINA ET AL: "Alkylamine-effected formation of PVB-capped silver nanoparticles in alcohol solution at room temperature", MICRO AND NANO LETTERS, THE INSTITUTION OF ENGINEERING AND TECHNOLOGY, MICHAEL FARADAY HOUSE, SIX HILLS WAY, STEVENAGE, HERTS. SG1 2AY, UK, vol. 7, no. 5, 31 May 2012 (2012-05-31), pages 496-500, XP006042280, DOI: 10.1049/MNL.2012.0276
  • YILIANG WU ET AL: "A Simple and Efficient Approach to a Printable Silver Conductor for Printed Electronics", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 129, no. 7, 1 February 2007 (2007-02-01), pages 1862-1863, XP055013718, ISSN: 0002-7863, DOI: 10.1021/ja067596w
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

Field of the Invention



[0001] The present invention pertains to the technical field of electrically conductive ink preparation, in particular to a nano-silver powder, a preparation method and an application of the same in preparation of electrically conductive ink of the same, and an electrically conductive ink.

Background of the Invention



[0002] In recent years, the printing electronics technology has been developed quickly, and has covered the domains including printed circuits, organic electronic elements/components, transistors, display panels, sensors, photoelectric tubes, batteries, illuminators, conductors, and semiconductors, etc.. A critical material in the printing electronics technology is electronic ink, in which electrically conductive ink is the most common and fundamental electronic ink, and the quality of electrically conductive ink has a decisive influence on the performance of printed electronic components. As an important electrically conductive packing material at present, nano-silver has become one of the hot spots in the research and development in the electrically conductive ink field globally.

[0003] At present, most nano-silver electrically conductive ink products that have been developed and are available in the market are water-based electrically conductive ink products and solvent-type electrically conductive ink products. Since the principal ingredient in water-based electrically conductive ink is water, the volatilization rate of the water-based electrically conductive ink is very low, and circuits printed with water-based electrically conductive ink are not easy to dry. Consequently, the bearing medium must have special coating; electronic circuits prepared with water-based electrically conductive ink have poor weather resistance, and it is difficult to maintain long-term performance stability of such electronic circuits in humid environments. Solvent-type nano-silver electrically conductive ink products mainly employ long-chain alkyl acids (e.g., dodecyl acid, hexadecyl acid), long-chain alkylamines (e.g., laurylamine, hexadecylamine), and long-chain alkyl benzene sulfonic acids (e.g., dodecylbenzene sulfonic acid) as the coating agent. Such electrically conductive ink products prepared with nano-silver as the electrically conductive packing material mainly employ benzenes (e.g., methyl benzene, dimethyl benzene) and alkanes (n-hexane, cyclohexane, and tetradecane, etc.) as the solvent. However, the most severe drawback among such electrically conductive ink products is severe environmental pollution, because the volatile organic content in the ink is very high. In view of environmental protection, the application of such electrically conductive ink products will be restricted gradually; in addition, since an Xaar or Spectra inkjet head is used in the printing process, most circuits prepared with such solvent-type electrically conductive ink products have low accuracy.

[0004] Therefore, it is of great research significance and potential market value to develop an environment-friendly, highly accurate, and weather-resistant nano-silver dispersible in weak solvent (eco-solvent), and an electrically conductive ink prepared from the same.

[0005] The article by JIN ZHINA ET AL: "Alkylamine-effected formation of PVB-capped silver nanoparticles in alcohol solution at room temperature", MICRO AND NANO LETTERS, THE INSTITUTION OF ENGINEERING AND TECHNOLOGY, MICHAEL FARADAY HOUSE, SIX HILLS WAY, STEVENAGE, HERTS. SG1 2AY, UK, vol. 7, no. 5, 31 May 2012 (2012-05-31), pages 496-500, discloses a method for preparing silver nanoparticles, the reaction system used according to the article comprises silver acetate as silver precursor, alkylamine as ligand, polyvinyl butyral as capping agent and isobutyraldehyde as reductant.

[0006] CN 103 258 584 A discloses an electric conductive silver paste and a manufacturing method of the electric conductive silver paste. The electric conductive silver paste comprises the following components: 35-65% silver micron, 1-20% nanometer silver powder, 25-60% organic carrier, 2-15% lead-free glass powder, wherein the nanometer silver powder is prepared by chemical reduction including the following steps: A) mix 5-30% silver salt solution with 2-25% ammonium into silver ammonium complex ion solution, and then dissolve the cooperated metal salt in water to prepare a solution; B) feed additive solution comprising dispersing agent, surfactant into reaction vessel; C) feed the silver ammonium complex ion solution and the metal salt solution prepared in step A into the reaction vessel with a preparing rate in a range of 2-50% by volume per minute into the reaction vessel, while adding while stirring, then slowly adding a reducing agent, stop stirring after completion of the reaction; D) wash the precipitate repeatedly after completion of the reaction, filtered and dried to give the desired nanometer silver powder.

[0007] EP 2 773 477 A1 discloses a method for preparing a nano-silver powder from a silver salt in an aqueous dispersion with an ammonium polyacrylate-based disperser, BYK-154, using a reducing agent, formaldehyde, in solution.

Summary of the Invention



[0008] In view of the drawbacks in existing electrically conductive ink products in the prior art, that is, poor weather resistance of water-based electrically conductive ink products, and severe environmental pollution of solvent-type electrically conductive ink products, the present invention provides a nano-silver powder dispersible in environment friendly weak solvents and an electrically conductive ink prepared with the same.

[0009] The present invention employs a disperser dissoluble in both water and weak solvents (eco-solvent) and an alcohol amine as reducing agent to prepare monodispersed nano-silver, and employs ultrafiltration for purification and spray drying process to obtain a nano-silver powder dispersible in weak solvents, and thereby obtain an eco-solvent nano-silver electrically conductive ink.

[0010] In accordance with the first aspect of the invention, the present invention intends to provide a method for preparing a nano-silver powder, comprising:
  1. (1) dispersing 1 g to 15 g silver salt precursor in 10 mL to 120 mL solvent, to obtain a silver salt dispersion;
  2. (2) dissolving 1 g to 60 g disperser in 10 mL to 200 mL solvent, to obtain a disperser solution, the disperser being an acrylic-modified polyurethane-based disperser for water and weak solvents, the weak solvents being one or more selected from the group consisting of ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, di-propylene glycol monomethyl ether acetate, di-propylene glycol monoethyl ether acetate, di-propylene glycol monobutyl ether acetate, propylene glycol monoethyl ether acetate, di-ethylene glycol monomethyl ether acetate, di-ethylene glycol monoethyl ether acetate, di-ethylene glycol monobutyl ether acetate, ethylene glycol monophenyl ether acetate, and propylene glycol monophenyl ether acetate;
  3. (3) dissolving 0.5 g to 20 g reducing agent in 10 mL to 200 mL solvent, to obtain a reducing agent solution, the reducing agent is alcohol amine-based reducing agent;
  4. (4) homogeneously mixing the disperser solution obtained in the step (2) with the silver salt dispersion obtained in the step (1) with stirring at a constant speed in a range of 100 rpm to 500 rpm, to obtain a mixed solution;
  5. (5) adding the reducing agent solution obtained in the step (3) in droplets at a constant rate into the mixed solution obtained in the step (4) with stirring and then reacting for a period of 120 min to 600 min at a temperature of 20 °C to 90 °C, to obtain a nano-silver particles dispersion;
  6. (6) treating the nano-silver particles dispersion obtained in the step (5) by cycling separation through ultrafiltration membranes, and then drying by centrifugal spray drying, to obtain a nano-silver powder.


[0011] The silver salt precursor may be one or more selected from the group consisting of silver nitrate, silver acetate, silver sulfate, silver oxalate, silver laurate, and silver malate.

[0012] Specifically, the reducing agent may be one or more selected from the group consisting of iso-propanolamine, n-butanolamine, ethanolamine, diethanolamine, triethanolamine, methanolamine, n-propanolamine, diisopropanolamine, diphenylpropanolamine, diglycolamine, iso-butanolamine, and triisobutanolamine.

[0013] In the steps (1), (2), and (3), the solvent may be one or more selected from the group consisting of deionized water, ethanol, isopropanol, propanol, ethylene glycol, and glycerol, and preferably is deionized water. The solvent respectively used in the steps (1), (2), and (3) may be same or different, and preferably is same.

[0014] The ultrafiltration membrane may be ceramic filter membrane or cellulosic filter membrane. The ultrafiltration membrane may have a pore size in a range of 10 kDa to 500 kDa.

[0015] In accordance with a second aspect of the invention, the present invention provides use of nano-silver powder obtainable by the method in accordance with the first aspect of the invention in preparing electrically conductive ink, the nano-silver powder is dispersible in weak solvents, the weak solvents being one or more selected from the group consisting of ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, di-propylene glycol monomethyl ether acetate, di-propylene glycol monoethyl ether acetate, di-propylene glycol monobutyl ether acetate, propylene glycol monoethyl ether acetate, di-ethylene glycol monomethyl ether acetate, di-ethylene glycol monoethyl ether acetate, di-ethylene glycol monobutyl ether acetate, ethylene glycol monophenyl ether acetate, and propylene glycol monophenyl ether acetate, and the electrically conductive ink comprises the nano-silver powder, optional at least one adhesive, at least one weak solvent and optional at least one additive.

[0016] In accordance with a third aspect of the invention, the present invention provides a nano-silver powder obtainable by the method in accordance with the first aspect of the invention, the nano-silver powder being dispersible in weak solvents, the weak solvents being one or more selected from the group consisting of ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, di-propylene glycol monomethyl ether acetate, di-propylene glycol monoethyl ether acetate, di-propylene glycol monobutyl ether acetate, propylene glycol monoethyl ether acetate, di-ethylene glycol monomethyl ether acetate, di-ethylene glycol monoethyl ether acetate, di-ethylene glycol monobutyl ether acetate, ethylene glycol monophenyl ether acetate, and propylene glycol monophenyl ether acetate.

[0017] The electrically conductive ink may comprise the nano-silver powder, optional at least one adhesive, at least one weak solvent and optional at least one additive. Based on the electrically conductive ink, the nano-silver powder may be in a content of 10% to 80% by weight, the adhesive may be in a content of 0% to 20% by weight, the weak solvent may be in a content of 15% to 90% by weight, and the balance of additive, and the weak solvent is one or more selected from the group consisting of ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, di-propylene glycol monomethyl ether acetate, di-propylene glycol monoethyl ether acetate, di-propylene glycol monobutyl ether acetate, propylene glycol monoethyl ether acetate, di-ethylene glycol monomethyl ether acetate, di-ethylene glycol monoethyl ether acetate, di-ethylene glycol monobutyl ether acetate, ethylene glycol monophenyl ether acetate, and propylene glycol monophenyl ether acetate.

[0018] The adhesive may be one or more selected from the group consisting of polyurethane resin, polyester resin, vinyl chloride-vinyl acetate resin, phenolic resin, polyvinyl alcohol, polyacrylate, and epoxy resin.

[0019] The weak solvent may be one or more selected from the group consisting of ethylene glycol monobutyl ether acetate, propylene glycol mono methyl ether acetate, di-propylene glycol monomethyl ether acetate, di-propylene glycol monoethyl ether acetate, di-propylene glycol monobutyl ether acetate, propylene glycol monoethyl ether acetate, di-ethylene glycol monomethyl ether acetate, di-ethylene glycol monoethyl ether acetate, di-ethylene glycol monobutyl ether acetate, ethylene glycol monophenyl ether acetate, propylene glycol monophenyl ether acetate, and di-glycol monobutyl ether acetate.

[0020] The additive is additive for ink, and may be one or more selected from the group consisting of humectant, anti-foaming agent, pH conditioning agent, thickening agent, adhesion promoting agent, thixotropic agent, flatting agent, and curing agent.

Brief Description of the Drawings



[0021] 

Figure 1 is an ultraviolet-visible absorption spectrogram of the dispersed solution of nano-silver particles prepared by Example 1 of the present invention obtained by ultraviolet-visible spectrophotometer Shimadzu UV-2600 (Japan).

Figure 2 is a scanning electronic microscope (SEM) image of the nano-silver powder prepared by Example 1 of the present invention obtained by JSM-7500F (Japan).


Detailed Description of the Embodiments


Example 1



[0022] 10 g silver nitrate is dissolved in 100 mL deionized water to obtain a silver nitrate solution. 25 g disperser (Disperser W-S90 from PARTNER) is dissolved in 150 mL deionized water with stirring, and the obtained solution is added into the silver nitrate solution with stirring at a constant speed of 100 rpm, to obtain a mixed solution. 5 g n-butanolamine as reducing agent is dissolved in 100 mL deionized water with stirring, to obtain an n-butanolamine solution. The n-butanolamine solution is added into the mixed solution in droplets at a constant rate of 50 mL/min with stirring at room temperature (25 °C) to obtain a reaction mixture. Then, the reaction mixture is reacted at room temperature for 480 min, so as to obtain a dispersed solution of nano-silver particles.

[0023] The dispersed solution of nano-silver particles is subjected to cycling separation through ultrafiltration membranes by using a ceramic filter membrane with a pore size of 30 kDa, to retain the nano-silver particles, and the excessive disperser and other reaction by-products is disposed as waste filtrate. The residual dispersed solution of nano-silver particles is dried by centrifugal spray drying, to obtain nano-silver powder. Based on the nano-silver powder, the content of nano-silver is 98% by weight, and the balance is the disperser coated on the surfaces of the nano-silver particles. The particle size of the nano-silver particles in the nano-silver powder is 30.0±5.0 nm, and the conversion ratio of silver nitrate is 95%.

[0024] 35% by weight nano-silver powder prepared, 3% by weight polyacrylate adhesive (ZB-25 from Fengyuan Chemical Co. Ltd. (Zibo, China)), 55% by weight propylene glycol mono methyl ether acetate and 6% by weight diethylene glycol monobutyl ether acetate as weak solvent, and 1% by weight anti-foaming agent BYK-141 from BYK are mixed homogeneously, to obtain nano-silver electrically conductive ink that can be used for spray printing.

[0025] The obtained nano-silver electrically conductive ink has a surface tension of 29 mN/m and a square resistance (measured by four-point probe method) of 37 mΩ/□/mil by coating on PET-film substrate, wherein the surface tension is obtained on fully automatic surface tension meter (K100SF from KRUSS), and the square resistance is obtained on semiconductor parameter measuring instrument (Keithley 4200 from Keithley Instruments, Inc.).

Comparative Example 1



[0026] The nano-silver particles are prepared by the method same to Example, but the difference is in that the disperser is lack, and the procedure is shown as below.

[0027] 10 g silver nitrate is dissolved in 100 mL deionized water to obtain a silver nitrate solution. 5 g n-butanolamine as reducing agent is dissolved in 100 mL deionized water with stirring, to obtain an n-butanolamine solution. The n-butanolamine solution is added into the silver nitrate solution in droplets at a constant rate with stirring at room temperature (25 °C) to obtain a reaction mixture. Then, the reaction mixture is reacted at room temperature for 480 min. But no nano-silver powder is obtained.

Example 2



[0028] 12 g silver acetate is dispersed in 120 mL deionized water to obtain a silver acetate dispersion. 40 g disperser (Disperser HLD-8 from Silcona (Gernamy)) is dissolved in 200 mL deionized water with stirring, and the obtained solution is added into the silver acetate dispersion with stirring at a constant speed of 500 rpm, to obtaine a mixed dispersion. 7 g iso-propanolamine as reducing agent is dissolved in 120 mL deionized water with stirring, to obtain an iso-propanolamine solution. The iso-propanolamine solution is added into the mixed dispersion in droplets at a constant rate of 50 mL/min with stirring at a temperature of 40 °C to obtain a reaction mixture. Then, the reaction mixture is reacted at 40 °C for 360 min, so as to obtain a dispersed solution of nano-silver particles.

[0029] The dispersed solution of nano-silver particles is subjected to cycling separation through ultrafiltration membranes by using a ceramic filter membrane with a pore size of 80 kDa, to retain the nano-silver particles, and the excessive disperser and other reaction by-products is disposed as waste filtrate. The residual dispersed solution of nano-silver particles is dried by centrifugal spray drying, to obtain nano-silver powder. Based on the nano-silver powder, the content of nano-silver is 96% by weight, and the balance is the disperser coated on the surfaces of the nano-silver particles. The particle size of the nano-silver particles in the nano-silver powder is 50.0±5.0 nm, and the conversion ratio of silver acetate is 88%.

[0030] 55% by weight nano-silver powder prepared, 2.5% by weight vinyl chloride-vinyl acetate resin (CP-430 from Hanwha, Korea) and 2% by weight polyester resin (DB3500 from Canada Nadar Chemical (Heshan) Co. Ltd.), 35% by weight diethylene glycol monobutyl ether acetate and 4% by weight di-propylene glycol monobutyl ether acetate as weak solvent, and 1.5% by weight adhesion promoting agent BYK-4512 from BYK are mixed homogeneously, to obtain nano-silver electrically conductive ink that can be used for intaglio printing.

[0031] The obtained nano-silver electrically conductive ink has a surface tension of 26 mN/m and a square resistance (measured by four-point probe method) of 45 mΩ/□/mil by coating on PET-film substrate, wherein the surface tension is obtained on fully automatic surface tension meter (K100SF from KRUSS), and the square resistance is obtained on semiconductor parameter measuring instrument (Keithley 4200 from Keithley Instruments, Inc.).

Example 3



[0032] 11 g silver laurate is dispersed in 80 mL deionized water to obtain a silver laurate dispersion. 20 g disperser (Disperser EL-W604 from EONLEO) is dissolved in 120 mL deionized water with stirring, and the obtained solution is added into the silver laurate dispersion with stirring at a constant speed of 200 rpm, to obtain a mixed dispersion. 9 g ethanolamine as reducing agent is dissolved in 80 mL deionized water with stirring, to obtain an ethanolamine solution. The ethanolamine solution is added into the mixed dispersion in droplets at a constant rate of 50 mL/min with stirring at a temperature of 50 °C to obtain a reaction mixture. Then, the reaction mixture is reacted at 50 °C for 300 min, so as to obtain a dispersed solution of nano-silver particles.

[0033] The dispersed solution of nano-silver particles is subjected to cycling separation through ultrafiltration membranes by using a ceramic filter membrane with a pore size of 10 kDa, to retain the nano-silver particles, and the excessive disperser and other reaction by-products is disposed as waste filtrate. The residual dispersed solution of nano-silver particles is dried by centrifugal spray drying, to obtain nano-silver powder. Based on the nano-silver powder, the content of nano-silver is 97% by weight, and the balance is the disperser coated on the surfaces of the nano-silver particles. The particle size of the nano-silver particles in the nano-silver powder is 20.0±5.0 nm, and the conversion ratio of silver laurate is 83%.

[0034] A nano-silver electrically conductive ink is obtained by using the nano-silver particles prepared in Example 3 through the method same to Example 2. The obtained nano-silver electrically conductive ink has a surface tension of 32 mN/m and a square resistance (measured by four-point probe method) of 40 mΩ/□/mil by coating on PET-film substrate, wherein the surface tension is obtained on fully automatic surface tension meter (K100SF from KRUSS), and the square resistance is obtained on semiconductor parameter measuring instrument (Keithley 4200 from Keithley Instruments, Inc.).

Example 4



[0035] 15 g silver malate is dispersed in 120 mL deionized water to obtain a silver malate dispersion. 40g disperser (Disperser 904 from DEUCHEM) is dissolved in 200 mL deionized water with stirring, and the obtained solution is added into the silver malate dispersion with stirring at a constant speed of 300 rpm, to obtain a mixed dispersion. 12 g diethanolamine as reducing agent is dissolved in 70 mL deionized water with stirring, to obtain a diethanolamine solution. The diethanolamine solution is added into the mixed dispersion in droplets at a constant rate of 50 mL/min with stirring at a temperature of 70 °C to obtain a reaction mixture. Then, the reaction mixture is reacted at 70 °C for 200 min, so as to obtain a dispersed solution of nano-silver particles.

[0036] The dispersed solution of nano-silver particles is subjected to cycling separation through ultrafiltration membranes by using a ceramic filter membrane with a pore size of 100 kDa, to retain the nano-silver particles, and the excessive disperser and other reaction by-products is disposed as waste filtrate. The residual dispersed solution of nano-silver particles is dried by centrifugal spray drying, to obtain nano-silver powder. Based on the nano-silver powder, the content of nano-silver is 95% by weight, and the balance is the disperser coated on the surfaces of the nano-silver particles. The particle size of the nano-silver particles in the nano-silver powder is 60.0±5.0nm, and the conversion ratio of silver malate is 72%.

[0037] 75% by weight nano-silver powder prepared, 6% by weight epoxy resin as adhesive (E-51 from Sanmu (Jiangsu, China)), 12% by weight propylene glycol monophenyl ether acetate and 4% by weight di-ethylene glycol monobutyl ether acetate as weak solvent, 2% by weight thixotropic agent (MOK7010 from Merck) and 1% by weight flatting agent (BYK-333 from BYK) are mixed homogeneously, to obtain nano-silver electrically conductive ink that can be used for intaglio printing.

[0038] The obtained nano-silver electrically conductive ink has a surface tension of 30 mN/m and a square resistance (measured by four-point probe method) of 55 mΩ/□/mil by coating on PET-film substrate, wherein the surface tension is obtained on fully automatic surface tension meter (K100SF from KRUSS), and the square resistance is obtained on semiconductor parameter measuring instrument (Keithley 4200 from Keithley Instruments, Inc.).

Example 5



[0039] 12 g silver sulfate is dispersed in 100 mL deionized water to obtain a silver sulfate dispersion. 30 g disperser (Dispersers B-180 from BYK) is dissolved in 180 mL deionized water with stirring, and the obtained solution is added into the silver sulfate dispersion with stirring at a constant speed of 400 rpm, to obtain a mixed dispersion. 18 g methanolamine as reducing agent is dissolved in 110 mL deionized water with stirring, to obtain a methanolamine solution. The methanolamine solution is added into the mixed dispersion in droplets at a constant rate of 50 mL/min with stirring at a temperature of 50 °C to obtain a reaction mixture. Then, the reaction mixture is reacted at 50 °C for 450 min, so as to obtain a dispersed solution of nano-silver particles.

[0040] The dispersed solution of nano-silver particles is subjected to cycling separation through ultrafiltration membranes by using a ceramic filter membrane with a pore size of 200 kDa, to retain the nano-silver particles, and the excessive disperser and other reaction by-products is disposed as waste filtrate. The residual dispersed solution of nano-silver particles is dried by centrifugal spray drying, to obtain nano-silver powder. Based on the nano-silver powder, the content of nano-silver is 96% by weight, and the balance is the disperser coated on the surfaces of the nano-silver particles. The particle size of the nano-silver particles in the nano-silver powder is 75.0±5.0 nm, and the conversion ratio of silver sulfate is 84%.

[0041] A nano-silver electrically conductive ink is obtained by using the nano-silver particles prepared in Example 5 through the method same to Example 4. The obtained nano-silver electrically conductive ink has a surface tension of 28 mN/m and a square resistance (measured by four-point probe method) of 48 mΩ/□/mil by coating on PET-film substrate, wherein the surface tension is obtained on fully automatic surface tension meter (K100SF from KRUSS), and the square resistance is obtained on semiconductor parameter measuring instrument (Keithley 4200 from Keithley Instruments, Inc.).

Example 6



[0042] 14 g silver oxalate is dispersed in 100 mL deionized water to obtain a silver oxalate dispersion. 60 g disperser (Dispersers 12B from from Sanzheng (Shanghai, China)) is dissolved in 200 mL deionized water with stirring, and the obtained solution is added into the silver oxalate dispersion with stirring at a constant speed of 350 rpm, to obtain a mixed dispersion. 4 g diphenylpropanolamine as reducing agent is dissolved in 80 mL deionized water with stirring, to obtain a diphenylpropanolamine solution. The diphenylpropanolamine solution is added into the mixed dispersion in droplets at a constant rate of 50 mL/min with stirring at a temperature of 80 °C to obtain a reaction mixture. Then, the reaction mixture is reacted at 80 °C for 500 min, so as to obtain a dispersed solution of nano-silver particles.

[0043] The dispersed solution of nano-silver particles is subjected to cycling separation through ultrafiltration membranes by using a ceramic filter membrane with a pore size of 300 kDa, to retain the nano-silver particles, and the excessive disperser and other reaction by-products is disposed as waste filtrate. The residual dispersed solution of nano-silver particles is dried by centrifugal spray drying, to obtain nano-silver powder. Based on the nano-silver powder, the content of nano-silver is 95% by weight, and the balance is the disperser coated on the surfaces of the nano-silver particles. The particle size of the nano-silver particles in the nano-silver powder is 90.0±10.0 nm, and the conversion ratio of silver oxalate is 90%.

[0044] 40% by weight nano-silver powder prepared, 4% by weight polyurethane resin as adhesive (GM 8208 from Comens Material (Beijing, China)), 40% by weight propylene glycol monomethyl ether acetate and 16% by weight di-ethylene glycol mono methyl ether acetate as weak solvent are mixed homogeneously, to obtain nano-silver electrically conductive ink that can be used for imprinting.

[0045] The obtained nano-silver electrically conductive ink has a surface tension of 26 mN/m and a square resistance (measured by four-point probe method) of 50 mΩ/□/mil by coating on PET-film substrate, wherein the surface tension is obtained on fully automatic surface tension meter (K100SF from KRUSS), and the square resistance is obtained on semiconductor parameter measuring instrument (Keithley 4200 from Keithley Instruments, Inc.).


Claims

1. A method for preparing a nano-silver powder, characterized by comprising:

(1) dispersing 1 g to 15 g silver salt precursor in 10 mL to 120 mL solvent, to obtain a silver salt dispersion;

(2) dissolving 1 g to 60 g disperser in 10 mL to 200 mL solvent, to obtain a disperser solution, the disperser being an acrylic-modified polyurethane-based disperser for water and weak solvents, the weak solvents being one or more selected from the group consisting of ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, di-propylene glycol monomethyl ether acetate, di-propylene glycol monoethyl ether acetate, di-propylene glycol monobutyl ether acetate, propylene glycol monoethyl ether acetate, di-ethylene glycol monomethyl ether acetate, di-ethylene glycol monoethyl ether acetate, di-ethylene glycol monobutyl ether acetate, ethylene glycol monophenyl ether acetate, and propylene glycol monophenyl ether acetate;

(3) dissolving 0.5 g to 20 g reducing agent in 10 mL to 200 mL solvent, to obtain a reducing agent solution, the reducing agent is alcohol amine-based reducing agent;

(4) homogeneously mixing the disperser solution obtained in the step (2) with the silver salt dispersion obtained in the step (1) with stirring at a constant speed in a range of 100 rpm to 500 rpm, to obtain a mixed solution;

(5) adding the reducing agent solution obtained in the step (3) in droplets at a constant rate into the mixed solution obtained in the step (4) with stirring and then reacting for a period of 120 min to 600 min at a temperature of 20 °C to 90 °C, to obtain a nano-silver particles dispersion;

(6) treating the nano-silver particles dispersion obtained in the step (5) by cycling separation through ultrafiltration membranes, and then drying by centrifugal spray drying, to obtain a nano-silver powder.


 
2. The method according to claim 1, characterized in that, the silver salt precursor is one or more selected from the group consisting of silver nitrate, silver acetate, silver sulfate, silver oxalate, silver laurate, and silver malate.
 
3. The method according to any one of claims 1 to 2, characterized in that the reducing agent is one or more selected from the group consisting of iso-propanolamine, n-butanolamine, ethanolamine, diethanolamine, triethanolamine, methanolamine, n-propanolamine, diisopropanolamine, diphenylpropanolamine, diglycolamine, iso-butanolamine, and triisobutanolamine.
 
4. The method according to any one of claims 1 to 3, characterized in that, the solvent is one or more selected from the group consisting of deionized water, ethanol, isopropanol, propanol, ethylene glycol, and glycerol;
the ultrafiltration membrane is ceramic filter membrane or cellulosic filter membrane with a pore size in a range of 10 kDa to 500 kDa.
 
5. Use of nano-silver powder obtainable by the method according to any one of claims 1 to 4 in preparation of electrically conductive ink, the nano-silver powder is dispersible in weak solvents, the weak solvents being one or more selected from the group consisting of ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, di-propylene glycol monomethyl ether acetate, di-propylene glycol monoethyl ether acetate, di-propylene glycol monobutyl ether acetate, propylene glycol monoethyl ether acetate, di-ethylene glycol monomethyl ether acetate, di-ethylene glycol monoethyl ether acetate, di-ethylene glycol monobutyl ether acetate, ethylene glycol monophenyl ether acetate, and propylene glycol monophenyl ether acetate, and the electrically conductive ink comprises the nano-silver powder, optional at least one adhesive, at least one weak solvent and optional at least one additive.
 
6. The use according to claim 5, characterized in that, the electrically conductive ink comprise the nano-silver powder, optional at least one adhesive, at least one weak solvent and optional at least one additive, based on the electrically conductive ink, the nano-silver powder is in a content of 10% to 80% by weight, the adhesive is in a content of 0% to 20% by weight, the weak solvent is in a content of 15% to 90% by weight, and balance of additives.
 
7. The use according to claim 6, characterized in that, the adhesive is one or more selected from the group consisting of polyurethane resin, polyester resin, vinyl chloride-vinyl acetate resin, phenolic resin, polyvinyl alcohol, polyacrylate, and epoxy resin.
 
8. The use according to any one of claims 7 to 8, characterized in that, the weak solvent is one or more selected from the group consisting of ethylene glycol monobutyl ether acetate, propylene glycol mono methyl ether acetate, di-propylene glycol monomethyl ether acetate, di-propylene glycol monoethyl ether acetate, di-propylene glycol monobutyl ether acetate, propylene glycol monoethyl ether acetate, di-ethylene glycol monomethyl ether acetate, di-ethylene glycol monoethyl ether acetate, di-ethylene glycol monobutyl ether acetate, ethylene glycol monophenyl ether acetate, propylene glycol monophenyl ether acetate, and di-glycol monobutyl ether acetate.
 
9. The use according to any one of claims 6 to 8, characterized in that, the additive is one or more selected from the group consisting of humectant, anti-foaming agent, pH conditioning agent, thickening agent, adhesion promoting agent, thixotropic agent, flatting agent, and curing agent.
 
10. A nano-silver powder obtainable by the method according to any one of claims 1 to 4, the nano-silver powder being dispersible in weak solvents, the weak solvents being one or more selected from the group consisting of ethylene glycol monobutyl ether acetate, propylene glycol mono methyl ether acetate, di-propylene glycol monomethyl ether acetate, di-propylene glycol monoethyl ether acetate, di-propylene glycol monobutyl ether acetate, propylene glycol monoethyl ether acetate, di-ethylene glycol monomethyl ether acetate, di-ethylene glycol monoethyl ether acetate, di-ethylene glycol monobutyl ether acetate, ethylene glycol monophenyl ether acetate, and propylene glycol monophenyl ether acetate.
 
11. An electrically conductive ink, characterized in that comprising nano-silver powder according to claim 10, optional at least one adhesive, at least one weak solvent and optional at least one additive, based on the electrically conductive ink, the nano-silver powder is in a content of 10% to 80% by weight, the adhesive is in a content of 0% to 20% by weight, the weak solvent is in a content of 15% to 90% by weight, and balance of additives, and the weak solvent is one or more selected from the group consisting of ethylene glycol monobutyl ether acetate, propylene glycol mono methyl ether acetate, di-propylene glycol monomethyl ether acetate, di-propylene glycol monoethyl ether acetate, di-propylene glycol monobutyl ether acetate, propylene glycol monoethyl ether acetate, di-ethylene glycol monomethyl ether acetate, di-ethylene glycol monoethyl ether acetate, di-ethylene glycol monobutyl ether acetate, ethylene glycol monophenyl ether acetate, and propylene glycol monophenyl ether acetate.
 
12. The electrically conductive ink according to claim 11, characterized in that, the adhesive is one or more selected from the group consisting of polyurethane resin, polyester resin, vinyl chloride-vinyl acetate resin, phenolic resin, polyvinyl alcohol, polyacrylate, and epoxy resin.
 
13. The electrically conductive ink according to claim 11 or 12, characterized in that, the weak solvent is one or more selected from the group consisting of ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, di-propylene glycol monomethyl ether acetate, di-propylene glycol monoethyl ether acetate, di-propylene glycol monobutyl ether acetate, propylene glycol monoethyl ether acetate, di-ethylene glycol monomethyl ether acetate, di-ethylene glycol monoethyl ether acetate, di-ethylene glycol monobutyl ether acetate, ethylene glycol monophenyl ether acetate, propylene glycol monophenyl ether acetate, and di-glycol monobutyl ether acetate.
 
14. The electrically conductive ink according to any one of claims 11 to 13, characterized in that, the additive is one or more selected from the group consisting of humectant, anti-foaming agent, pH conditioning agent, thickening agent, adhesion promoting agent, thixotropic agent, flatting agent, and curing agent.
 


Ansprüche

1. Verfahren zum Herstellen eines Nanosilberpulvers, gekennzeichnet, indem es umfasst:

(1) Dispergieren von 1 g bis 15 g Silbersalzvorprodukt in 10 ml bis 120 ml Lösemittel, um eine Feinverteilung von Silbersalz zu erlangen;

(2) Auflösen von 1 g bis 60 g Dispergator in 10 ml bis 200 ml Lösemittel, um eine Dispersionslösung zu erlangen, wobei der Dispergator ein acrylmodifizierter, auf Polyurethan basierender Dispergator für Wasser und schwache Lösemittel ist, die schwachen Lösemittel eins oder mehrere sind, ausgewählt aus der Gruppe, die aus Ethylenglycolmonobutyletheracetat, Propylenglycolmonomethyletheracetat, Dipropylenglycolmonomethyletheracetat, Dipropylenglycolmonoethyletheracetat, Dipropylenglycolmonobuthyletheracetat, Propylenglycolmonoethyletheracetat, Diethylenglycolmonomethyletheracetat, Diethylenglycolmonoethyletheracetat, Diethylenglycolmonobutyletheracetat, Ethylenglycolmonophenyletheracetat, und Propylenglycolmonophenyletheracetat besteht;

(3) Auflösen von 0,5 g bis 20 g Reduktionsmittel in 10 ml bis 200 ml Lösemittel, um eine Reduktionsmittellösung zu erlangen, wobei das Reduktionsmittel ein auf Aminoalkohol basiertes Reduktionsmittel ist;

(4) Gleichmäßiges Mischen der im Schritt (2) erlangten Dispersionslösung mit der im Schritt (1) erlangten Silbersalzdispersion unter Rühren bei einer konstanten Drehzahl in einem Bereich von 100 U/min bis 500 U/min, um eine Mischlösung zu erlangen;

(5) Beimengen der im Schritt (3) erlangten Reduktionsmittellösung in Tröpfchen bei einem konstanten Fließrate zu der im Schritt (4) erlangten Mischlösung unter Rühren und anschließendem zur Reaktion bringen eine Dauer von 120 min bis 600 min lang bei einer Temperatur von 20 °C bis 90 °C, um eine Feinverteilung von Nanosilberpartikeln zu erlangen;

(6) Behandeln der im Schritt (5) erlangten Dispersion von Nanosilberpartikeln, indem eine Abscheidung durch Ultrafiltrationsmembranen durchlaufen wird, und anschließend durch Zentrifugalzerstäubungstrocknung getrocknet wird, um ein Nanosilberpulver zu erlangen.


 
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Silbersalzvorprodukt eins oder mehrere sind, ausgewählt aus der Gruppe, die aus Silbernitrat, Silberacetat, Silbersulfat, Silberoxalat, Silberlaurat, und Silbermalat besteht.
 
3. Verfahren nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet,
dass das Reduktionsmittel eins oder mehrere sind, ausgewählt aus der Gruppe, die aus Isopropanolamin, n-Butanolamin, Ethanolamin, Diethanolamin, Triethanolamin, Methanolamin, n-Propanolamin, Diisopropanolamin, Diphenylpropanolamin, Diglycolamin, Isobutanolamin und Triisobutanolamin besteht.
 
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Lösemittel eins oder mehrere sind, ausgewählt aus der Gruppe, die aus entionisiertem Wasser, Ethanol, Isopropanol, Propanol, Ethylenglycol und Glycerol besteht;
die Ultrafiltrationsmembran eine Keramikfiltermembran oder Zellulosefiltermembran mit einer Porengröße in einem Bereich von 10 kDa (Kilodalton) bis 500 kDa ist.
 
5. Einsatz von Nanosilberpulver, zu erlangen durch das Verfahren nach einem der Ansprüche 1 bis 4 bei Herstellung von elektrisch leitfähiger Tinte, wobei das Nanosilberpulver in schwachen Lösemitteln dispergierbar ist, die schwachen Lösemittel eins oder mehrere sind, ausgewählt aus der Gruppe, die aus Ethylenglycolmonobutyletheracetat, Propylenglycolmonomethyletheracetat, Dipropylenglycolmonomethyletheracetat, Dipropylenglycolmonoethyletheracetat, Dipropylenglycolmonobuthyletheracetat, Propylenglycolmonoethyletheracetat, Diethylenglycolmonomethyletheracetat, Diethylenglycolmonoethyletheracetat, Diethylenglycolmonobutyletheracetat, Ethylenglycolmonophenyletheracetat, und Propylenglycolmonophenyletheracetat besteht, und die elektrisch leitfähige Tinte das Nanosilberpulver, optional mindestens ein Haftmittel, mindestens ein schwaches Lösemittel und optional mindestens eine Beimengung enthält.
 
6. Einsatz nach Anspruch 5, dadurch gekennzeichnet, dass die elektrisch leitfähige Tinte das Nanosilberpulver, optional mindestens ein Haftmittel, mindestens ein schwaches Lösemittel und optional mindestens eine Beimengung enthält, wobei basierend auf der elektrisch leitfähigen Tinte der Anteil des Nanosilberpulvers 10 bis 80 Gew.-% beträgt, der Anteil des Haftmittels 0 bis 20 Gew.-% beträgt, der Anteil des schwachen Lösemittels 15 bis 90 Gew.-% beträgt, und Beimengungen ausgeglichen sind.
 
7. Einsatz nach Anspruch 6, dadurch gekennzeichnet, dass das Haftmittel eins oder mehrere sind, ausgewählt aus der Gruppe, die aus Polyurethanharz, Polyesterharz, Vinylchlorid-Vinylacetat-Harz, Phenolharz, Polyvinylalkohol, Polyacrylat und Epoxidharz besteht.
 
8. Einsatz nach einem der Ansprüche 7 bis 8, dadurch gekennzeichnet, dass das schwache Lösemittel eins oder mehrere sind, ausgewählt aus der Gruppe, die aus Ethylenglycolmonobutyletheracetat, Propylenglycolmonomethyletheracetat, Dipropylenglycolmonomethyletheracetat, Dipropylenglycolmonoethyletheracetat, Dipropylenglycolmonobuthyletheracetat, Propylenglycolmonoethyletheracetat, Diethylenglycolmonomethyletheracetat, Diethylenglycolmonoethyletheracetat, Diethylenglycolmonobutyletheracetat, Ethylenglycolmonophenyletheracetat, Propylenglycolmonophenyletheracetat, und Diglycolmonobutyletheracetat besteht.
 
9. Einsatz nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass die Beimengung eine oder mehrere sind, ausgewählt aus der Gruppe, die aus Befeuchtungsmittel, Entschäumer, pH-Konditionierungsmittel, Verdickungsmittel, Haftvermittler, Thixotropiermittel, Mattierungsmittel und Härtungsmittel besteht.
 
10. Nanosilberpulver, zu erlangen durch das Verfahren nach einem der Ansprüche 1 bis 4, wobei das Nanosilberpulver in schwachen Lösemitteln dispergierbar ist, die schwachen Lösemittel eins oder mehrere sind, ausgewählt aus der Gruppe, die aus Ethylenglycolmonobutyletheracetat, Propylenglycolmonomethyletheracetat, Dipropylenglycolmonomethyletheracetat, Dipropylenglycolmonoethyletheracetat, Dipropylenglycolmonobuthyletheracetat, Propylenglycolmonoethyletheracetat, Diethylenglycolmonomethyletheracetat, Diethylenglycolmonoethyletheracetat, Diethylenglycolmonobutyletheracetat, Ethylenglycolmonophenyletheracetat, und Propylenglycolmonophenyletheracetat besteht.
 
11. Elektrisch leitfähige Tinte, dadurch gekennzeichnet, dass Nanosilberpulver nach Anspruch 10, optional mindestens ein Haftmittel, mindestens ein schwaches Lösemittel und optional mindestens eine Beimengung enthalten ist, wobei basierend auf der elektrisch leitfähigen Tinte der Anteil des Nanosilberpulvers 10 bis 80 Gew.-% beträgt, der Anteil des Haftmittels 0 bis 20 Gew.-% beträgt, der Anteil des schwachen Lösemittels 15 bis 90 Gew.-% beträgt, und Beimengungen ausgeglichen sind, und das schwache Lösemittel eins oder mehrere sind, ausgewählt aus der Gruppe, die aus Ethylenglycolmonobutyletheracetat, Propylenglycolmonomethyletheracetat, Dipropylenglycolmonomethyletheracetat, Dipropylenglycolmonoethyletheracetat, Dipropylenglycolmonobuthyletheracetat, Propylenglycolmonoethyletheracetat, Diethylenglycolmonomethyletheracetat, Diethylenglycolmonoethyletheracetat, Diethylenglycolmonobutyletheracetat, Ethylenglycolmonophenyletheracetat, und Propylenglycolmonophenyletheracetat besteht.
 
12. Elektrisch leitfähige Tinte nach Anspruch 11, dadurch gekennzeichnet, dass das Haftmittel eins oder mehrere sind, ausgewählt aus der Gruppe, die aus Polyurethanharz, Polyesterharz, Vinylchlorid-Vinylacetat-Harz, Phenolharz, Polyvinylalkohol, Polyacrylat, und Epoxidharz besteht.
 
13. Elektrisch leitfähige Tinte nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass das schwache Lösemittel eins oder mehrere sind, ausgewählt aus der Gruppe, die aus Ethylenglycolmonobutyletheracetat, Propylenglycolmonomethyletheracetat, Dipropylenglycolmonomethyletheracetat, Dipropylenglycolmonoethyletheracetat, Dipropylenglycolmonobuthyletheracetat, Propylenglycolmonoethyletheracetat, Diethylenglycolmonomethyletheracetat, Diethylenglycolmonoethyletheracetat, Diethylenglycolmonobutyletheracetat, Ethylenglycolmonophenyletheracetat, Propylenglycolmonophenyletheracetat, und Diglycolmonobutyletheracetat besteht.
 
14. Elektrisch leitfähige Tinte nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass die Beimengung eine oder mehrere sind, ausgewählt aus der Gruppe, die aus Befeuchtungsmittel, Entschäumer, pH-Konditionierungsmittel, Verdickungsmittel, Haftvermittler, Thixotropiermittel, Mattierungsmittel, und Härtungsmittel besteht.
 


Revendications

1. Procédé de préparation d'une nano-poudre d'argent, caractérisé en ce qu'il comprend les étapes consistant à :

(1) disperser 1 g à 15 g de précurseur de sel d'argent dans 10 mL à 120 mL de solvant, pour obtenir une dispersion de sel d'argent ;

(2) dissoudre 1 g à 60 g de disperseur dans 10 mL à 200 mL de solvant, pour obtenir une solution de disperseur, le disperseur étant un disperseur à base de polyuréthane modifié par acrylique pour de l'eau et des solvants faibles, les solvants faibles étant un ou plusieurs choisi(s) dans le groupe comprenant acétate d'éther monobutylique d'éthylène glycol, acétate d'éther monométhylique de propylène glycol, acétate d'éther monométhylique de di-propylène glycol, acétate d'éther monoéthylique de di-propylène glycol, acétate d'éther monobutylique de di-propylène glycol, acétate d'éther monoéthylique de propylène glycol, acétate d'éther monoéthylique de di-éthylène glycol, acétate d'éther monoéthylique de di-éthylène glycol, acétate d'éther monobutylique de diéthylène glycol, acétate d'éther monophénylique d'éthylène glycol, et acétate d'éther monophénylique de propylène glycol ;

(3) dissoudre 0,5 g à 20 g d'agent de réduction dans 10 mL à 200 mL de solvant, pour obtenir une solution d'agent de réduction, l'agent de réduction étant un agent de réduction à base d'alcool aminé ;

(4) mélanger de manière homogène la solution de dispersion obtenue à l'étape (2) avec la dispersion de sel d'argent obtenue à l'étape (1) sous agitation à une vitesse constante dans une plage de 100 tr/min à 500 tr/min, pour obtenir une solution mixte ;

(5) ajouter la solution d'agent de réduction obtenue à l'étape (3) en gouttelettes à un débit constant dans la solution mixte obtenue à l'étape (4) sous agitation puis faire réagir pendant une durée de 120 min à 600 min à une température de 20°C à 90°C, pour obtenir une dispersion de nanoparticules d'argent ;

(6) traiter la dispersion de nanoparticules d'argent obtenue à l'étape (5) par cycle de séparation à travers des membranes d'ultrafiltration, puis sécher par séchage par vaporisation centrifuge, pour obtenir une nano-poudre d'argent.


 
2. Procédé selon la revendication 1, caractérisé en ce que le précurseur de sel d'argent est un ou plusieurs choisi(s) dans le groupe comprenant nitrate d'argent, acétate d'argent, sulfate d'argent, oxalate d'argent, laurate d'argent, et malate d'argent.
 
3. Procédé selon l'une quelconque des revendications 1 à 2, caractérisé en ce que
l'agent de réduction est un ou plusieurs choisi(s) dans le groupe comprenant iso-propanolamine, n-butanolamine, éthanolamine, diéthanolamine, triéthanolamine, méthanolamine, n-propanolamine, diisopropanolamine, diphénylpropanolamine, diglycolamine, iso-butanolamine et triisobutanolamine.
 
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le solvant est un ou plusieurs choisi(s) dans le groupe comprenant eau désionisée, éthanol, isopropanol, propanol, éthylène glycol et glycérol ;
la membrane d'ultrafiltration est une membrane filtrante en céramique ou une membrane filtrante cellulosique avec une taille de pore dans une plage de 10 kDa à 500 kDa.
 
5. Utilisation d'une nano-poudre d'argent pouvant être obtenue par le procédé selon l'une quelconque des revendications 1 à 4 dans la préparation d'une encre électroconductrice, la nano-poudre d'argent pouvant être dispersée dans des solvants faibles, les solvants faibles étant un ou plusieurs choisi(s) dans le groupe comprenant acétate d'éther monobutylique d'éthylène glycol, acétate d'éther monométhylique de propylène glycol, acétate d'éther monométhylique de di-propylène glycol, acétate d'éther monoéthylique de di-propylène glycol, acétate d'éther monobutylique de di-propylène glycol, acétate d'éther monoéthylique de propylène glycol, acétate d'éther monométhylique de di-éthylène glycol, acétate d'éther monoéthylique de di-éthylène glycol, acétate d'éther monobutylique de diéthylène glycol, acétate d'éther monophénylique d'éthylène glycol, et acétate d'éther monophénylique de propylène glycol, et l'encre électroconductrice comprend la nano-poudre d'argent, facultativement au moins un adhésif, au moins un solvant faible et facultativement au moins un additif.
 
6. Utilisation selon la revendication 5, caractérisée en ce que l'encre électroconductrice comprend la nano-poudre d'argent, facultativement au moins un adhésif, au moins un solvant faible et facultativement au moins un additif, sur la base de l'encre électroconductrice, la nano-poudre d'argent étant présente à une teneur de 10 % à 80 % en poids, l'adhésif à une teneur de 0 % à 20 % en poids, le solvant faible à une teneur de 15 % à 90 % en poids, et le reste étant des additifs.
 
7. Utilisation selon la revendication 6, caractérisée en ce que l'adhésif est un ou plusieurs choisi(s) dans le groupe comprenant résine de polyuréthane, résine de polyester, résine de chlorure de vinyle-acétate de vinyle, résine phénolique, alcool polyvinylique, polyacrylate, et résine époxy.
 
8. Utilisation selon l'une quelconque des revendications 7 à 8, caractérisée en ce que le solvant faible est un ou plusieurs solvants choisi(s) dans le groupe comprenant acétate d'éther monobutylique d'éthylène glycol, acétate d'éther monométhylique de propylène glycol, acétate d'éther monométhylique de di-propylène glycol, acétate d'éther monoéthylique de di-propylène glycol, acétate d'éther monobutylique de di-propylène glycol, acétate d'éther monoéthylique de propylène glycol, acétate d'éther monométhylique de di-éthylène glycol, acétate d'éther monoéthylique de di-éthylène glycol, acétate d'éther monobutylique de di-éthylène glycol, acétate d'éther monophénylique d'éthylène glycol, acétate d'éther monophénylique de propylène glycol, et l'acétate d'éther monobutylique de di-glycol.
 
9. Utilisation selon l'une quelconque des revendications 6 à 8, caractérisée en ce que l'additif est un ou plusieurs additifs choisi(s) dans le groupe comprenant humectant, agent antimousse, agent de régulation de pH, agent épaississant, agent promoteur d'adhérence, agent thixotrope, agent de matité et agent de durcissement.
 
10. Nano-poudre d'argent pouvant être obtenue par le procédé selon l'une quelconque des revendications 1 à 4, la nano-poudre d'argent pouvant être dispersée dans des solvants faibles, les solvants faibles étant un ou plusieurs choisi(s) dans le groupe comprenant acétate d'éther monobutylique d'éthylène glycol, acétate d'éther monométhylique de propylène glycol, acétate d'éther monométhylique de di-propylène glycol, acétate d'éther monoéthylique de di-propylène glycol, acétate d'éther monobutylique de di-propylène glycol, acétate d'éther monoéthylique de propylène glycol, acétate d'éther monométhylique de di-éthylène glycol, acétate d'éther monoéthylique de di-éthylène glycol, acétate d'éther monobutylique de di-éthylène glycol, acétate d'éther monophénylique d'éthylène glycol, et acétate d'éther monophénylique de propylène glycol
 
11. Encre électroconductrice, caractérisée en ce qu'elle comprend une nano-poudre d'argent selon la revendication 10, facultativement au moins un adhésif, au moins un solvant faible et facultativement au moins un additif, sur la base de l'encre électroconductrice, la nano-poudre d'argent est présente à une teneur de 10 % à 80 % en poids, l'adhésif à une teneur de 0 % à 20 % en poids, le solvant faible à une teneur de 15 % à 90 % en poids, et le reste étant des additifs, et le solvant faible étant un ou plusieurs choisi(s) dans le groupe comprenant acétate d'éther monobutylique d'éthylène glycol, acétate d'éther monométhylique de propylène glycol, acétate d'éther monométhylique de di-propylène glycol, acétate d'éther monoéthylique de di-propylène glycol, acétate d'éther monobutylique de di-propylène glycol, acétate d'éther monoéthylique de propylène glycol, acétate d'éther monoéthylique de di-éthylène glycol, acétate d'éther monoéthylique de di-éthylène glycol, acétate d'éther monobutylique de di-éthylène glycol, acétate d'éther monophénylique d'éthylène glycol, et acétate d'éther monophénylique de propylène glycol.
 
12. Encre électroconductrice selon la revendication 11, caractérisée en ce que l'adhésif est un ou plusieurs choisi(s) dans le groupe comprenant résine de polyuréthane, résine de polyester, résine de chlorure de vinyle-acétate de vinyle, résine phénolique, alcool polyvinylique, polyacrylate et résine époxy.
 
13. Encre électroconductrice selon la revendication 11 ou 12, caractérisée en ce que le solvant faible est un ou plusieurs solvants choisi(s) dans le groupe comprenant acétate d'éther monobutylique d'éthylène glycol, acétate d'éther monométhylique de propylène glycol, acétate d'éther monométhylique de di-propylène glycol, acétate d'éther monoéthylique de di-propylène glycol, acétate d'éther monobutylique de di-propylène glycol, acétate d'éther monoéthylique de propylène glycol, acétate d'éther monométhylique de di-éthylène glycol, acétate d'éther monoéthylique de di-éthylène glycol, acétate d'éther monobutylique de di-éthylène glycol, acétate d'éther monophénylique d'éthylène glycol, l'acétate d'éther monophénylique de propylène glycol, et l'acétate d'éther monobutylique de di-glycol.
 
14. Encre électroconductrice selon l'une quelconque des revendications 11 à 13, caractérisée en ce que l'additif est un ou plusieurs additifs choisi(s) dans le groupe comprenant humectant, agent antimousse, agent de régulation de pH, agent épaississant, agent promoteur d'adhérence, agent thixotrope, agent de matité et agent de durcissement.
 




Drawing








Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description