(19)
(11)EP 3 029 734 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 14831797.7

(22)Date of filing:  16.06.2014
(51)Int. Cl.: 
H01L 23/051  (2006.01)
H01L 29/08  (2006.01)
H01L 29/66  (2006.01)
H01L 29/739  (2006.01)
H01L 29/417  (2006.01)
H01L 29/06  (2006.01)
(86)International application number:
PCT/CN2014/079932
(87)International publication number:
WO 2015/014166 (05.02.2015 Gazette  2015/05)

(54)

IGBT DEVICE AND METHOD FOR PACKAGING WHOLE-WAFER IGBT CHIP

IGBT-VORRICHTUNG UND VERFAHREN ZUM VERKAPSELN VON GANZWAFER-IGBT-CHIPS

DISPOSITIF IGBT ET PROCÉDÉ DE MISE SOUS BOÎTIER DE PUCE IGBT SUR PLAQUETTE ENTIÈRE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 01.08.2013 CN 201310331846

(43)Date of publication of application:
08.06.2016 Bulletin 2016/23

(73)Proprietor: Zhuzhou CSR Times Electric Co., Ltd.
Shifeng District Zhuzhou Hunan 412001 (CN)

(72)Inventors:
  • LI, Jilu
    Zhuzhou, Hunan 412001 (CN)
  • WU, Yudong
    Zhuzhou, Hunan 412001 (CN)
  • PENG, Yongdian
    Zhuzhou, Hunan 412001 (CN)

(74)Representative: Eisenführ Speiser 
Patentanwälte Rechtsanwälte PartGmbB Postfach 31 02 60
80102 München
80102 München (DE)


(56)References cited: : 
EP-A2- 0 702 406
CN-A- 102 270 640
JP-A- H0 737 914
JP-A- H08 186 258
US-A- 4 734 755
US-B1- 6 303 974
CN-A- 1 362 744
CN-A- 103 390 642
JP-A- H0 758 235
JP-A- H10 107 051
US-A1- 2004 256 691
US-B2- 6 649 973
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD



    [0001] The present disclosure relates to the technical field of semiconductor device fabrication, and in particular to an IGBT device and a method for packaging a whole-wafer IGBT chip.

    BACKGROUND



    [0002] An insulated gate bipolar transistor (Insulated Gate Bipolar Transistor, abbreviated as IGBT) has the advantages of an MOSFET device such as a high input impedance and the advantages of a giant transistor (i.e., Giant Transistor, abbreviated as GTR) such as a high-speed switching characteristic, and is widely applied to an alternating current motor, a frequency converter, a switching power supply, a lighting circuit and traction drive or other fields.

    [0003] In fabricating the IGBT device, multiple separate IGBT cellular zones (each of the IGBT cellular zones includes multiple IGBT cells) are generally formed on a wafer firstly, and are cut into multiple single-grained IGBT chips. Each of the IGBT chips includes a separate cellular emitter, a separate cellular collector and a separate cellular gate. Then, qualified IGBT chips are interconnected and packaged, to form an IGBT device. However, the IGBT device fabricated by the method described above has a low utilization rate of package size since the IGBT device is formed through interconnection and packaging of multiple IGBT chips, thereby leading to a low utilization rate of current-carrying area in the device and a weak current-carrying capacity; the IGBT chips may come from different wafers, which results in that the IGBT chips have different thickness and electrical parameters, the IGBT chips are under different pressure when being packaged, and it is difficult to control the electrical parameters of the IGBT device after packaging.

    [0004] In diagram of this, an IGBT device formed through packaging a whole-wafer IGBT chip emerges. In the whole-wafer IGBT chip, multiple interconnected IGBT cellular zones are formed on a wafer, and the whole-wafer IGBT chip can be packaged directly without cutting, to form the IGBT device. The IGBT cellular zones have high integration and a strong current-carrying capacity. In addition, the whole wafer is packaged, thus package pressure is uniform, and it is easy to control the electrical parameters.

    [0005] A failure cellular zone exists in the cellular zones of the whole-wafer IGBT chip, and the failure cellular zone may have a harmful effect on the performance of the IGBT device. To avoid the harmful effect of the failure cellular zone on the performance of the IGBT device is an urgent issue in fabricating the IGBT device.

    [0006] JP H08 186258 A discloses a semiconductor device including a plurality of semiconductor elements having an insulated gate, which is configured to control a current by applying a voltage between a gate electrode and an emitter electrode, and to provide a breakdown voltage between the emitter electrode and the collector electrode. In the case that there is a semiconductor element which is electrically defective between the gate electrode and the emitter electrode or between the emitter electrode and the collector electrode, the thickness of the emitter electrode of the defective semiconductor element is made smaller than the thickness of the defective semiconductor element so as not to be in contact with external emitter electrodes.

    [0007] US 4,734,755 A discloses a semiconductor device element, switchable and stable against alternating loads, that is provided as an intermediate product which can be stored, can be applied universally, has a semiconductor wafer disposed between two annular insulating bodies and is stabilized on its surface. The semiconductor wafer is connected on two sides via soldering to a contact piece of molybdenum. The contact pieces are provided on their outer surface in each case with a metallization for providing pressure contacting. The semiconductor wafer is covered with a protecting, that is, passivating and stabilizing, covering in the edge zone up to the jacket face of the contact pieces. The edge zone of the semiconductor is immersed in an additional surface stabilizing material in the edge zone between the insulating bodies. The adhesive properties of the surface stabilizing substance mutually connect the insulating bodies and the semiconductor wafer. The contact pieces and the insulating bodies form a sealed enclosure of the semiconductor wafer, and the control electrode of the semiconductor is pressure contacted by a control current conductor held in one of the insulating bodies, which control electrode is formed as a leaf spring.

    [0008] JP H10 107051 A discloses a semiconductor substrate being in contact thermally and electrically with buffer electrode plates. The plates are pressed by pressing units and the like, which are provided on the outside of a semiconductor element, through pressing electrodes reduction in the contact resistance between the electrode plates is contrived. The electrodes in this case consist of two materials, the first materials respectively form the vicinities of the shapes of the outlines of the electrodes and the second materials respectively form sites other than the vicinities of the shapes of the outlines of the electrodes. By applying an even pressing force to the thyristor, an even heat dissipation within the surfaces of the substrate and the even electrical contact within the surfaces of the substrate can be contrived and a reduction in pressing stresses from the electrodes that a semiconductor device results in being broken due to an insufficient pressing to the substrate can be prevented.

    [0009] JP H07 37914 A discloses a pressurized contact type flat semiconductor device. An element that is made by stacking a semiconductor substrate and a supporting board is assembled in a flat package that is constituted of terminal electrode bodies and a ceramic outer cylinder and then with pressure applied from outside, the element is pressurized and brought into contact with the terminal electrode bodies, a ring-shaped guide body for positioning is put between an outer end face of the semiconductor substrate and an inner face of the ceramic outer cylinder. At the same time, a ring-shaped elastic shock absorber made of silicon rubber or other substance is put in the compressed state between an outer surface of the supporting board and a staged flange that is formed on an outer surface of an anode terminal electrode body that faces the supporting board. With resiliency 'f' of the ring-shaped shock absorber, the element is pressed and held at the specified place in the package.

    SUMMARY



    [0010] In view of this, an IGBT device and a method for packaging a whole-wafer IGBT chip are provided in the present disclosure, to prevent the failure cellular zone in the whole-wafer chip from adversely affecting the performance of the IGBT device. According to the present invention an IGBT device as defined in claim 1 and a method of packaging a whole-wafer IGBT chip as defined in claim 5 are provided.

    [0011] Preferably, in the IGBT device, the collector electrode includes a loading platform carrying the collector gasket, the loading platform is in a shape of cylinder, the diameter of the cylinder is the same as the diameter of the collector gasket, and both the loading platform and the collector gasket are fixed in the lower opening of the outer ring.

    [0012] Preferably, in the IGBT device, where a via hole is provided at a central position of the emitter gasket, a groove is provided on a bottom surface of the emitter electrode, the gate leading wire is connected to the central gate connection zone through the via hole and is extended outside through the groove.

    [0013] Preferably, in the IGBT device, where the gate leading wire is connected to the central gate connection zone through soldering; or

    [0014] the gate leading wire is fixed through a spring provided in the via hole, and is connected to the central gate connection zone under pressure of the spring.

    [0015] Preferably, in the method, a loading platform is provided on the collector electrode, the loading platform is in a shape of cylinder, a diameter of the cylinder is the same as the diameter of the collector gasket, to carry the collector gasket, and both the loading platform and the collector gasket are fixed inside the lower opening of the outer ring.

    [0016] Preferably, in the method, the collector gasket and the emitter gasket are fixed and limited through the locating collar in the following steps:

    [0017] forming a collar in an integrated structure surrounding a side face of the chip on the side face of the chip, where an upper opening of the collar is matched with the emitter gasket, and a lower opening of the collar is matched with the collector gasket;

    [0018] fixing the collector gasket onto the bottom surface of the chip through the lower opening; and
    fixing the emitter gasket onto the top surface of the chip through the upper opening.

    [0019] Preferably, in the method, the emitter connection zone of the failure cellular zone of the chip is thinned through laser etching or mechanical grinding.

    [0020] It can be seen from the technical solution described above that, the IGBT device provided in the present disclosure is formed through packaging the whole-wafer IGBT chip. The emitter connection zone on the surface of the failure cellular zone of the chip is thinned, therefore, through the process of thinning, the emitter connection zone on the surface of the failure cellular zone may be lower than a common plane where other emitter connection zones are located, or the emitter connection zone on the surface of the failure cellular zone may be removed. Since no emitter connection zone (the emitter connection zone is thinned to be removed) is provided on the surface of the failure cellular zone , or the emitter connection zone on the surface of the failure cellular zone is lower than the common plane where other emitter connection zones are located, the failure cellular zone is disconnected to the emitter gasket, thereby avoiding the harmful effect of the failure cellular zone on the performance of the IGBT device, and achieving the reliability of the IGBT device.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0021] 

    Figure 1 is a structural diagram of a whole-wafer IGBT chip;

    Figure 2 is a structural diagram of another whole-wafer IGBT chip;

    Figure 3a is an explosion diagram of an IGBT device that is useful for understanding the present invention;

    Figure 3b is a sectional view of an IGBT device that is useful for understanding the present invention;

    Figure 4 is a diagram of a principle of fixing and limiting of a locating collar that is useful for understanding the present invention;

    Figure 5 is a diagram of a principle of fixing and limiting for a locating collar according to another example that is useful for understanding the present invention;

    Figure 6 is a diagram of a principle of fixing and limiting for a locating collar according to a first embodiment of the present disclosure; and

    Figure 7 is a flowchart of a method for packaging a whole-wafer IGBT chip that may incorporate an embodiment of the present invention.


    DETAILED DESCRIPTION OF THE EMBODIMENTS



    [0022] As described in the background, there is a failure cellular zone in cellular zones of a conventional whole-wafer IGBT chip, and the failure cellular zone has a harmful effect on the IGBT device. To avoid the harmful effect of the failure cellular zone on the performance of the IGBT device is an urgent problem in fabricating the IGBT device.

    [0023] The failure cellular zone occurs for two reasons. A first reason is a too large gate leakage current in the failure cellular zone, and a second reason is a too large leakage current between the collector and the emitter of the failure cellular zone.

    [0024] In fabricating the whole-wafer IGBT chip, a gate of a failure cellular zone caused by the first reason is disconnected to a central gate connection zone of the whole-wafer IGBT chip through laser ablation or other processes, thereby avoiding the harmful effect of the failure cellular zone on the performance of the IGBT device.

    [0025] For a failure cellular zone caused by the second reason, an emitter gasket with a set structure may be provided, and the failure cellular zone may be aligned with a set zone of the emitter gasket, so that the failure cellular zone is disconnected to the emitter electrode, thereby avoiding the harmful effect of the failure cellular zone on the performance of the IGBT device. However, in this processing mode, it is required to label the failure cellular zone and make the failure cellular zone strictly correspond to the set zone of the emitter gasket, which requires a high operation accuracy and complex process for aligning the failure cellular zone with the emitter gasket.

    [0026] The inventor finds that, the emitter connection zone of the failure cellular zone caused by the second reason may be thinned, to disconnect the failure cellular zone to the emitter gasket, thereby disconnecting the failure cellular zone to the emitter electrode.

    [0027] Based on the research described above, an IGBT device is provided in the present disclosure. The IGBT device includes:

    a whole-wafer IGBT chip, where an top surface of the whole-wafer IGBT chip includes a central gate connection zone and multiple emitter connection zones surrounding the central gate connection zone, and a bottom surface of the whole-wafer IGBT chip includes a collecting zone, where an emitter connection zone located on a surface of a failure cellular zone of the chip is thinned;

    a collector gasket fixed on the bottom surface of the chip, and an emitter gasket fixed on the top surface of the chip, where a radius of the collector gasket is less than a radius of the chip, the collector gasket covers the collecting zone, a radius of the emitter gasket is less than a radius of the chip, and the emitter gasket covers the emitter connection zones and does not cover a terminal zone of the chip;

    a collector electrode in electrical contact with the collector gasket and an emitter electrode in electrical contact with the emitter gasket; and

    a gate leading wire connected to the central gate connection zone, where the gate leading wire is insulated from the emitter gasket and the emitter electrode.



    [0028] In the technical solution described above, the emitter connection zone on the surface of the failure cellular zone of the chip is thinned, therefore, through the process of thinning, the emitter connection zone on the surface of the failure cellular zone may be lower than a common plane where other emitter connection zones are located, or the emitter connection zone on the surface of the failure cellular zone may be removed. Since no emitter connection zone (the emitter connection zone is thinned to be removed) is provided on the surface of the failure cellular zone , or the emitter connection zone on the surface of the failure cellular zone is lower than the common plane where other emitter connection zones are located, the failure cellular zone is disconnected to the emitter gasket, thereby avoiding the harmful effect of the failure cellular zone on the performance of the IGBT device, and achieving the reliability of the IGBT device.

    [0029] The foregoing is a core idea of the present disclosure. Technical solutions according to embodiments of the present disclosure will be described clearly and completely hereinafter in conjunction with drawings.

    [0030] Specific details will be set forth in the following description to sufficiently understand the present disclosure, however, the present disclosure can also be implemented in other ways different from the way described here. Therefore the present disclosure is not limited to specific embodiments disclosed hereinafter, but is defined solely by the appended claims.

    [0031] In addition, the present disclosure is described in conjunction with diagrams. When the embodiments of the present disclosure are described in detail, for ease of illustration, a diagram showing a structure of a device is not enlarged partially in a regular scale, the diagrams are only examples, and are not intended to limit the protection scope of the present disclosure. Furthermore, in an actual manufacture process, three-dimensional space sizes, i.e. length, width and depth, should be considered.

    A first example



    [0032] Based on the above idea, an IGBT device with a whole-wafer IGBT chip package is provided. A top surface of the whole-wafer IGBT chip includes a central gate connection zone and multiple emitter connection zones surrounding the central gate connection zone, and a bottom surface of the whole-wafer IGBT chip includes a collecting zone. An emitter connection zone on a surface of a failure cellular zone of the chip is thinned.

    [0033] Referring to Figure 1, the whole-wafer IGBT chip includes: a whole-wafer substrate 11, a gate interconnection layer disposed on an top surface of the whole-wafer substrate 11, a central gate connection zone 13 disposed on an top surface of the gate interconnection layer and an emitter interconnection layer surrounding the central gate connection zone 13.

    [0034] The whole-wafer substrate 11 includes an active region and a terminal region 12 surrounding the active region. Multiple IGBT cellular zones are disposed within the active region.

    [0035] The gate interconnection layer is located on the top surface of the whole-wafer substrate 11 (i.e., a top surface of the active region). The gate interconnection layer includes: a conductive connection part for interconnecting gates of the multiple IGBT cellular zones, where the conductive connection part, as a common gate of respective IGBT cellular zones, is electrically connected to the central gate connection zone 13; and an insulation part, which is partitioned, by the conductive connection part, into multiple spaced regions.

    [0036] The conductive connection part includes: a circular connection zone located on the top surface of the whole-wafer substrate 11 and concentric with the whole-wafer substrate 11, where the central gate connection zone 13 is disposed on an top surface of the circular connection zone; multiple concentric ring gate connection zones 141 surrounding the circular connection zone, where the ring gate connection zones 141 are spaced; and radial gate connection zones 142 which connects the ring gate connection zones 141 and the circular connection zone. The ring gate connection zones 141 are concentric with the whole-wafer substrate 11. The number of the ring gate connection zones 141 and the number of the radial gate connection zones 142 may be set based on design parameters of the IGBT.

    [0037] The emitter interconnection layer is located on a top surface of the gate interconnection layer and surrounds the central gate connection zone 13. The emitter interconnection layer includes multiple emitter connection zones 15 in a shape of spaced partial ring, the emitter connection zones 15 are located on a top surface of the insulation part and have a one-to-one correspondence with the insulation part. Each of the emitter connection zones 15 is electrically connected to an emitter of the IGBT cellular zone below the gate interconnection layer via a via hole through the gate interconnection layer.

    [0038] The whole-wafer IGBT chip may be alternatively shown as Figure 2, the gate interconnection layer of the whole-wafer IGBT chip shown in Figure 2 includes an insulation part and a conductive connection part. The conductive connection part includes: a circular connection zone located on the top surface of the whole-wafer substrate 11 and concentric with the whole-wafer substrate 11, where the central gate connection zone 13 is disposed on a top surface of the circular connection zone; and multiple radial gate connection zones 24. The insulation part is in a sector structure and is located between two radial gate connection zones 24. An emitter connection zone 25 is disposed on a top surface of the insulation part.

    [0039] Black areas shown in Figure 2 and Figure 3 indicate that the emitter connection zone on a surface of the failure cellular zone of the chip is thinned, to remove the emitter connection zone on the surface of the failure cellular zone or make the emitter connection zone on the surface of the failure cellular zone lower than a common plane where other emitter connection zones are located. The thinning process is realized through laser etching, mechanical grinding or the like.

    [0040] Referring to Figure 3a and Figure 3b, an IGBT device is provided according to an example that is useful for understanding the present invention. The IGBT device includes: a whole-wafer IGBT chip 33, a collector gasket 32, an emitter gasket 34, a collector electrode 31, an emitter electrode 36 and a gate leading wire 37.

    [0041] The whole-wafer IGBT chip 33 is a whole-wafer IGBT chip in which the emitter connection zone of the failure cellular zone is thinned, where a top surface of the whole-wafer IGBT chip 33 includes a central gate connection zone and multiple emitter connection zones surrounding the central gate connection zone, and a bottom surface of the whole-wafer IGBT chip includes a collecting zone. For a structure of the whole-wafer IGBT chip 33, Figure 1 and Figure 2 may be referred to, but the disclosure is not limited to the structures shown in Figure 1 and Figure 2.

    [0042] Since no emitter connection zone (the emitter connection zone is thinned to be removed)is provided on the surface of the failure cellular zone of the chip, or the emitter connection zone on the surface of the failure cellular zone of the chip is lower than the common plane where other emitter connection zones are located, the failure cellular zone is disconnected to the emitter gasket, thereby avoiding the harmful effect of the failure cellular zone on the performance of the IGBT device, and achieving the reliability of the IGBT device.

    [0043] A shape of the emitter gasket 34 which is circular is matched with a shape of the active region of the whole-wafer IGBT chip 33, and a radius of the emitter gasket 34 is less than a radius of the whole-wafer IGBT chip 33. The emitter gasket 34 is fixed on the top surface of the whole-wafer IGBT chip 33 and covers the emitter connection zones of the whole-wafer IGBT chip 33, but does not cover the terminal zone of the whole-wafer IGBT chip 33.

    [0044] A shape of the collector gasket 32 which is circular is matched with a shape of the collecting zone of the whole-wafer IGBT chip 33, and a radius of the collector gasket 32 is less than the radius of the whole-wafer IGBT chip 33. The collector gasket 32 is fixed on the bottom surface of the whole-wafer IGBT chip 33 and covers the collecting zone of the whole-wafer IGBT chip 33.

    [0045] Preferably, the radius of the collector gasket 32 is the same as a radius of the collecting zone, and the radius of the emitter gasket 34 is the same as a radius of the active region.

    [0046] The collector electrode 31 is located on a bottom surface of the collector gasket 32, and the collector electrode 31 is in electrical contact with the collector gasket 32. The emitter electrode is located on a top surface of the emitter gasket 34, and the emitter electrode is in electrical contact with the emitter gasket 34.

    [0047] The gate leading wire 37 is connected to the central gate connection zone, and is insulated from the emitter gasket 34 and the emitter electrode.

    [0048] The above components may be packaged by a package housing 38. A shape of an upper opening of the package housing 38 is matched with a shape of the emitter electrode 36, and a shape of a lower opening of the package housing 38 is matched with a shape of the collector electrode 31.

    [0049] A via hole 341 is provided at a central position of the emitter gasket 34, a via hole 381 is provided on the package housing 38, a groove 361 is provided on the bottom surface of the emitter electrode 36, and the gate leading wire 37 is extended outside via the via hole 341, the via hole 381 and the groove 361. Preferably, a wire conduit may be provided in the via hole 381 to extend the gate leading wire 37 outside.

    [0050] A ceramic housing having good heat dissipation and mechanical strength may be used as the package housing 38. The upper opening and the lower opening of the package housing 38 are encapsulated by a skirt 39.

    [0051] The gate leading wire 37 and the central gate connection zone are fixed through a spring 362 provided between the emitter electrode 36 and the emitter gasket 34, and the gate leading wire 37 is electrically connected to the central gate connection zone under pressure of the spring 362, or alternatively, the gate leading wire 37 and the central gate connection zone can be permanently connected through soldering.

    [0052] The collector gasket 32, the whole-wafer IGBT chip 33 and the emitter gasket 34 can be fixed and limited by a locating collar 35.

    [0053] Referring to Figure 4, the locating collar 35 is a collar in an integrated structure surrounding a side face of the whole-wafer IGBT chip 33, and is formed through glue injection or other process. An upper opening of the locating collar 35 is matched with the emitter gasket 34, i.e., a radius of the upper opening is the same as a radius of the emitter gasket 34, and the emitter gasket 34 is fixed inside the upper opening. A lower opening of the locating collar 35 is matched with the collector gasket 32, i.e., a radius of the lower opening is the same as a radius of the collector gasket 32, and the collector gasket 32 is fixed inside the lower opening.

    [0054] Referring to Figure 5, the locating collar 35 may be alternatively a collar having a separable structure including an inner ring 351 and an outer ring 352.

    [0055] An upper opening of the outer ring 352 includes a circular groove having a same diameter as a diameter of the whole-wafer IGBT chip 33, so that the IGBT chip 33 can be fixed in the groove. A diameter of a lower opening of the outer ring 352 is the same as a diameter of the collector gasket 32, in order to fix the collector gasket 32.

    [0056] An outer diameter of the inner ring 351 is the same as the diameter of the whole-wafer IGBT chip 33, so that the inner ring 351 can be fixed in the groove in which the IGBT chip 33 is placed. An inner diameter of the inner ring 351 is equal to a diameter of the emitter gasket 33, in order to fix the emitter gasket 33.

    [0057] The locating collar 35 having the structure shown in Figure 5 may be improved, to locate and fix the collector electrode. As shown in a first embodiment of the present invention in Figure 6, a different groove structure is provided to prevent the IGBT chip from being squeezed by the inner ring.

    [0058] The locating collar 35 having a structure shown in Figure 6 includes an outer ring 353 and an inner ring 354.

    [0059] A diameter of a lower opening of the outer ring 353 is the same as a diameter of the collector gasket 32, in order to fix the collector gasket 32. An upper opening of the outer ring 353 includes a first circular groove and a second circular groove. A diameter of the first circular groove is equal to a diameter of the whole-wafer IGBT chip 33, so that the whole-wafer IGBT chip 33 is fixed in the first groove; a diameter of the second circular groove is greater than the diameter of the whole-wafer IGBT chip 33.

    [0060] An outside diameter of the inner ring 354 is equal to a diameter of the second groove so that the inner ring 354 can be fixed in the second groove, and an inside diameter of the inner ring 354 is equal to a diameter of the emitter gasket 34, so that the emitter gasket 34 may be fixed.

    [0061] The collector electrode 31 includes a loading platform 311. The loading platform is in a shape of a cylinder, a diameter of the cylinder is the same as a diameter of the collector gasket 32, and the loading platform 311 and the collector gasket 32 are both fixed inside the lower opening of the outer ring 353. A sum of a height of the loading platform 311 and a thickness of the collector gasket 32 is matched with a height from the bottom surface of the outer ring 353 to a bottom of the first groove (the sum of the height of the loading platform 311 and the thickness of the collector gasket 32 is equal to or is slightly greater than the height from the bottom surface of the outer ring 353 to the bottom of the first groove). Preferably, a sum of the height of the loading platform, the thickness of the collector gasket and a thickness of the IGBT chip is not greater than a distance from the bottom surface of the outer ring to a bottom surface of the second groove.

    [0062] In a case that the whole-wafer IGBT chip 33, the emitter gasket 34 and the collector electrode 31 are fixed and limited through the inner ring 354 and the outer ring 353, top surfaces of the inner ring 354, the outer ring 353 and the emitter gasket 34 are flush with each other (are located in a same plane), or the emitter gasket 34 is slightly higher than a plane in which the inner ring 354 and the outer ring 353 are located.

    [0063] The limit collars having the structures shown in Figure 4 and Figure 5 can also fix a collector having the loading platform. It is only required to set a depth of the lower opening of the limit collar so that the lower opening can fix both the collector gasket 32 and the loading platform.

    [0064] It can be known from the description that, the IGBT device according to the embodiment is formed through packaging the whole-wafer IGBT chip in which the emitter electrode of the failure cellular zone is thinned. In this case, only a simple circular emitter gasket is required. When the emitter gasket and the whole-wafer IGBT chip are fixed and limited, it is only required to align the centers of the emitter gasket and the whole-wafer IGBT chip, then the failure cellular zone is disconnected to the emitter gasket, thereby avoiding the harmful effect of the failure cellular zone on the performance of the IGBT device, and achieving the reliability of the IGBT device.

    [0065] In the IGBT device, the collector gasket, the whole-wafer IGBT chip and the emitter gasket are fixed and limited through a locating collar having a particular structure. Moreover, a collector electrode having a set structure can also be fixed and limited by the locating collar. The locating collar has a simple structure, and it is convenient to operate when fixing and limiting.

    A second embodiment



    [0066] A method for packaging a whole-wafer IGBT chip is provided according to the embodiment of the present disclosure. A top surface of the whole-wafer IGBT chip includes a central gate connection zone and multiple emitter connection zones surrounding the central gate connection zone, and a bottom surface of the whole-wafer IGBT chip includes a collecting zone.

    [0067] Referring to Figure 7, the method for packaging the whole-wafer IGBT chip includes step S11 to step S14.

    [0068] In step S11, an emitter connection zone on a failure cellular zone of the whole-wafer IGBT chip is thinned.

    [0069] In the conventional packaging process, in order to avoid an effect of the failure cellular zone on the performance of the IGBT device, an emitter gasket is generally processed, for example, hollowing is performed at a particular position of the emitter gasket. Then a hollowed position is provided correspondingly to the failure cellular zone in a process of packaging, so that the failure cellular zone is disconnected to the emitter electrode, thereby achieving the performance of the IGBT device. An operation of aligning the hollowed position with the failure cellular zone is difficult, and work efficiency is low.

    [0070] Firstly, the whole-wafer IGBT chip is detected to determine the failure cellular zone, and the emitter connection zone of the failure cellular zone is thinned, so that the emitter connection zone is lower than a common plane where other emitter connection zones are located, or the emitter connection zone is thinned to be removed. The thinning may be realized through processes such as laser etching or mechanical grinding. In this way, when the emitter gasket is disposed subsequently, the failure cellular zone is insulated from the emitter gasket since the emitter gasket in the failure cellular zone is thinned to be removed, or is lower than the common plane where other emitter connection zones are located. Only an emitter gasket in a shape matching the whole-wafer IGBT chip is required to cover an active region of the whole-wafer IGBT chip. When aligning the emitter gasket with the whole-wafer IGBT chip, operation is simple and work efficiency is high.

    [0071] In step S12, a collector gasket and the emitter gasket are fixed.

    [0072] The collector gasket is fixed on the bottom surface of the chip, a radius of the collector gasket is less than a radius of the chip, and the collector gasket covers the collecting zone. The emitter gasket is fixed on the top surface of the chip, a radius of the emitter gasket is less than a radius of the chip, and the emitter gasket covers the emitter connection zone and does not cover a terminal zone of the chip.

    [0073] As described above, the emitter connection zone of the failure cellular zone of the whole-wafer IGBT chip is thinned, it is only required to align a center of the whole-wafer IGBT chip with a center of the emitter gasket in alignment, which is simple and fast.

    [0074] For quickness and accuracy, the emitter gasket, the whole-wafer IGBT chip and the collector gasket may be fixed and limited through a locating collar.

    [0075] The locating collar in the structure shown in Figure 4 may be used to perform fixing and limiting operation. Firstly, a collar in an integrated structure surrounding a side face of the thinned whole-wafer IGBT chip is formed at the side face of the thinned whole-wafer IGBT chip. The locating collar may be formed through glue injection. Then the emitter gasket is fixed on the top surface of the whole-wafer IGBT chip through the upper opening of the collar, and the collector gasket is fixed on the bottom surface of the whole-wafer IGBT chip through the lower opening of the collar.

    [0076] The locating collar in the structure shown in Figure 5 may also be used to perform fixing and limiting operation. Firstly, the thinned whole-wafer IGBT chip is placed in the groove of the upper opening of the outer ring 352, then is placed on the top surface of the whole-wafer IGBT chip through the inner ring 351 and fixed in the groove together with the inner ring 351. Finally, the emitter gasket is fixed on the top surface of the whole-wafer IGBT chip through the inner ring 352, and the collector gasket is fixed on the bottom surface of the whole-wafer IGBT chip through the lower opening of the outer ring 352.

    [0077] In accordance with the second embodiment of the invention, the locating collar in the structure shown in Figure 6 according to the embodiment described above is used to perform fixing and limiting operation. Firstly, the thinned whole-wafer IGBT chip is placed in the first groove of the outer ring 353, to be fixed. Then the inner ring 354 is fixed in the second groove of the outer ring 353. Finally, the emitter gasket is fixed on the top surface of the whole-wafer IGBT chip through the inner ring 354, and the collector gasket is fixed on the bottom surface of the whole-wafer IGBT chip through the lower opening of the outer ring 353.

    [0078] It can be seen that, for the implementation of fixing and limiting through the locating collar, the operation is simple and the work efficiency is improved.

    [0079] In step S13, the collector electrode and the emitter electrode are connected respectively.

    [0080] The collector electrode is located on the bottom surface of the collector gasket and is in electrical contact with the collector gasket; the emitter electrode is located on the top surface of the emitter gasket and is in electrical contact with the emitter gasket.

    [0081] As described in the embodiment, a loading platform may be provided for the collector electrode, so that both the collector electrode and the collector gasket may be fixed in the lower opening of the outer ring.

    [0082] In step S14, the gate leading wire is connected.

    [0083] The gate leading wire is connected to the central gate, and is insulated from the emitter gasket and the emitter electrode.

    [0084] As described in the above embodiment, a via hole may be provided at a central position of the emitter gasket, a groove is provided on the bottom surface of the emitter electrode, to extend the gate leading wire outside.

    [0085] After the above steps are performed, the components described above may be further packaged through a package housing. For the IGBT device formed through packaging the whole-wafer IGBT chip, structures shown in Figure 3a and Figure 3b may be referred to.

    [0086] It can be known from the description that, in the IGBT device fabricated based on the whole-wafer IGBT chip, the emitter connection zone of the failure cellular zone is thinned, and the failure cellular zone is disconnected to the emitter electrode of the device through a simple alignment in packaging, thereby achieving the reliability of the packaged device. The whole-wafer IGBT chip, the emitter gasket and the collector gasket can be fixed and limited by the locating collar in the structure described above, the operation is simple and convenient, and the work efficiency is improved.

    [0087] It should be noted that, the failure cellular zone according to the embodiments of the present disclosure refers to a failure cellular zone caused by a large leakage current between the collector and the emitter.

    [0088] The description of the embodiments herein enables those skilled in the art to implement or use the present disclosure. Numerous modifications to the embodiments are apparent to those skilled in the art.


    Claims

    1. An IGBT device, comprising:

    a whole-wafer IGBT chip (33), wherein a top surface of the whole-wafer IGBT chip (33) comprises a central gate connection zone (13) and a plurality of emitter connection zones (15) surrounding the central gate connection zone (13), the emitter connection zones (13) being formed on a plurality of cellular zones, one of the cellular zones being a failure cellular zone having a large leakage current between the collector and emitter; and a bottom surface of the whole-wafer IGBT chip (33) comprises a collector zone, wherein the emitter connection zone (15) located on the top surface of the failure cellular zone of the chip (33) is thinned to make the height of the emitter connection zone (15) on the surface of the failure cellular zone lower than that of a common plane where other emitter connection zones (15) are located so that the failure cellular zone is disconnected from an emitter gasket (34) formed on the top surface of the chip (33);

    a collector gasket (32) fixed on the bottom surface of the chip (33), wherein the radius of the collector gasket (32) is less than the radius of the chip (33), the collector gasket (32) covers the collector zone, the radius of the emitter gasket (34) is less than the radius of the chip (33), and wherein the emitter gasket (34) covers the emitter connection zones (15) but does not cover a terminal zone (12) surrounding the active region of the chip (33);

    a collector electrode (31) in electrical contact with the collector gasket (32) and an emitter electrode (36) in electrical contact with the emitter gasket (34);

    a gate leading wire (37) connected to the central gate connection zone (13), wherein the gate leading wire (37) is insulated from the emitter gasket (34) and the emitter electrode (36); and

    a locating collar (35), configured to fix and limit the collector gasket (32) and the emitter gasket (34), fix the collector gasket (32) on the bottom surface of the chip (33) and fix the emitter gasket (34) on the top surface of the chip (33),

    wherein the locating collar (35) comprises: an outer ring (353) having an upper opening and a lower opening, wherein the diameter of the lower opening of the outer ring (353) is the same as the diameter of the collector gasket (32), the lower opening of the outer ring (353) fixes the collector gasket (32), and the upper opening of the outer ring (353) comprises a first circular groove and a second circular groove, wherein the diameter of the first circular groove is equal to the diameter of the chip (33), the chip (33) is fixed in the first groove, and the diameter of the second circular groove is greater than the diameter of the chip (33); and

    an inner ring (354), wherein the outside diameter of the inner ring (354) is equal to the diameter of the second groove, the inner ring (354) is fixed in the second groove, the inside diameter of the inner ring (354) is equal to the diameter of the emitter gasket (34), and the emitter gasket (34) is fixed in the inner ring (354).


     
    2. The IGBT device according to claim 1, wherein the collector electrode (31) comprises a loading platform (311) carrying the collector gasket (32), the loading platform (311) is in a shape of cylinder, the diameter of the cylinder is the same as the diameter of the collector gasket (32), and both the loading platform and the collector gasket (32) are fixed in the lower opening of the outer ring (353).
     
    3. The IGBT device according to claim 1, wherein a via hole is provided at a central position of the emitter gasket (34), a groove is provided on a bottom surface of the emitter electrode (36), the gate leading wire (37) is connected to the central gate connection zone (13) through the via hole and is extended outside through the groove.
     
    4. The IGBT device according to claim 3, wherein the gate leading wire (37) is connected to the central gate connection zone (13) through soldering; or
    the gate leading wire (37) is fixed through a spring provided in the via hole, and is connected to the central gate connection zone (13) under pressure of the spring.
     
    5. A method for packaging a whole-wafer IGBT chip, wherein a top surface of the chip comprises a central gate connection zone and a plurality of emitter connection zones surrounding the central gate connection zone, the emitter connection zones (13) being formed on a plurality of cellular zones, one of the cellular zones being a failure cellular zone having a large leakage current between the collector and emitter; and a bottom surface of the chip comprises a collector zone, and wherein the method for packaging the whole-wafer IGBT chip comprises:

    thinning (S11) an emitter connection zone of the failure cellular zone of the chip to make a height of the emitter connection zone on the surface of the failure cellular zone lower than that of a common plane where other emitter connection zones are located so that the failure cellular zone is disconnected from an emitter gasket to be fixed on the top surface of the chip;

    fixing (S12) a collector gasket and the emitter gasket, wherein the collector gasket is fixed on the bottom surface of the chip, the radius of the collector gasket is less than the radius of the chip, the collector gasket covers the collecting zone, the radius of the emitter gasket is less than the radius of the chip, and the emitter gasket covers the emitter connection zones but does not cover a terminal zone of the chip;

    connecting (S13) a collector electrode and connecting an emitter electrode respectively, wherein the collector electrode is in electrical contact with the collector gasket, and the emitter electrode is in electrical contact with the emitter gasket; and

    connecting (S14) a gate leading wire, wherein the gate leading wire is connected to the central gate, and is insulated from the emitter gasket and the emitter electrode,

    wherein the collector gasket and the emitter gasket are fixed and limited through a locating collar, the collector gasket is fixed on the bottom surface of the chip, and the emitter gasket is fixed on the top surface of the chip, and

    wherein the collector gasket and the emitter gasket are fixed and limited through a package collar in the following steps:

    fixing the collector gasket on the bottom surface of the chip through an outer ring, wherein an upper opening of the outer ring comprises a first circular groove and a second circular groove, wherein the diameter of the first circular groove is equal to the diameter of the chip, the chip is fixed in the first circular groove, the diameter of the second circular groove is greater than the diameter of the chip, the diameter of a lower opening of the outer ring is the same as the diameter of the collector gasket, the collector gasket is fixed inside the lower opening and is contacted with the bottom surface of the chip; and

    fixing the emitter gasket on the top surface of the chip through an inner ring, wherein the outside diameter of the inner ring is equal to the diameter of the second groove, the inner ring is fixed in the second groove, the inside diameter of the inner ring is equal to the diameter of the emitter gasket, and the emitter gasket is fixed inside the inner ring and is in contact with the top surface of the chip.


     
    6. The method for packaging the whole-wafer IGBT chip according to claim 5, wherein a loading platform is provided on the collector electrode, the loading platform is in a shape of cylinder, the diameter of the cylinder is the same as the diameter of the collector gasket, to carry the collector gasket, and both the loading platform and the collector gasket are fixed inside the lower opening of the outer ring.
     
    7. The method for packaging the whole-wafer IGBT chip according to claim 5, wherein the emitter connection zone of the failure cellular zone of the chip is thinned through laser etching or mechanical grinding.
     


    Ansprüche

    1. IGBT-Gerät, umfassend:

    einen Gesamtwafer-IGBT-Chip (33), wobei eine obere Oberfläche des Gesamtwafer-IGBT-Chips (33) eine zentrale Gate-Verbindungszone (13) und eine Mehrzahl von Emitter-Verbindungszonen (15), die die zentrale Gate-Verbindungszone (13) umgeben, umfasst, wobei die Emitter-Verbindungszonen (13) auf einer Mehrzahl von Zellenzonen gebildet sind, wobei eine der Zellenzonen eine Ausfallzellenzone ist, die einen großen Leckstrom zwischen dem Kollektor und dem Emitter aufweist; und eine untere Oberfläche des Gesamtwafer-IGBT-Chips (33) eine Kollektor-Zone umfasst, wobei die Emitter-Verbindungszone (15), die auf der oberen Oberfläche der Ausfallzellenzone des Chips (33) angeordnet ist, verdünnt ist, um die Höhe der Emitter-Verbindungszone (15) auf der Oberfläche der Ausfallzellenzone niedriger zu machen als die einer gemeinsamen Ebene, in der andere Emitter-Verbindungszonen (15) angeordnet sind, so dass die Ausfallzellenzone von einer Emitter-Dichtung (34), die auf der oberen Oberfläche des Chips (33) gebildet ist, getrennt ist;

    eine Kollektor-Dichtung (32), die an der unteren Oberfläche des Chips (33) fixiert ist, wobei der Radius der Kollektor-Dichtung (32) geringer ist als der Radius des Chips (33), wobei die Kollektor-Dichtung (32) die Kollektor-Zone bedeckt, wobei der Radius der Emitter-Dichtung (34) geringer ist als der Radius des Chips (33), und wobei die Emitter-Dichtung (34) die Emitter-Verbindungszonen bedeckt (15) aber nicht eine Terminal-Zone (12) bedeckt, die den aktiven Bereich des Chips (33) umgibt;

    eine Kollektor-Elektrode (31) in elektrischem Kontakt mit der Kollektor-Dichtung (32) und eine Emitter-Elektrode (36) in elektrischem Kontakt mit der Emitter-Dichtung (34);

    einen Gate-Vorsatzdraht (37), der mit der zentralen Gate-Verbindungszone (13) verbunden ist, wobei der Gate-Vorsatzdraht (37) von der Emitter-Dichtung (34) und der Emitter-Elektrode (36) isoliert ist; und

    einen Positionierungskragen (35), der so konfiguriert ist, dass er die Kollektor-Dichtung (32) und die Emitter-Dichtung (34) fixiert und begrenzt, die Kollektor-Dichtung (32) an der unteren Oberfläche des Chips (33) fixiert und die Emitter-Dichtung (34) an der oberen Oberfläche des Chips (33) fixiert,

    wobei der Positionierungskragen (35) umfasst:

    einen Außenring (353), der eine obere Öffnung und eine untere Öffnung aufweist, wobei der Durchmesser der unteren Öffnung des Außenrings (353) derselbe wie der Durchmesser der Kollektor-Dichtung (32) ist, wobei die untere Öffnung des Außenrings (353) die Kollektor-Dichtung (32) fixiert und die obere Öffnung des Außenrings (353) eine erste kreisförmige Nut und eine zweite kreisförmige Nut aufweist, wobei der Durchmesser der ersten kreisförmigen Nut gleich dem Durchmesser des Chips (33) ist, wobei der Chip (33) in der ersten Nut fixiert ist und der Durchmesser der zweiten kreisförmigen Nut größer als der Durchmesser des Chips (33) ist; und

    einen Innenring (354), wobei der Außendurchmesser des Innenrings (354) gleich dem Durchmesser der zweiten Nut ist, wobei der Innenring (354) in der zweiten Nut fixiert ist, wobei der Innendurchmesser des Innenrings (354) gleich dem Durchmesser der Emitter-Dichtung (34) ist und die Emitter-Dichtung (34) in dem Innenring (354) fixiert ist.


     
    2. IGBT-Gerät nach Anspruch 1, wobei die Kollektor-Elektrode (31) eine Ladeplattform (311) umfasst, die die Kollektor-Dichtung (32) trägt, wobei die Ladeplattform (311) die Form eines Zylinders hat, wobei der Durchmesser des Zylinders gleich dem Durchmesser der Kollektor-Dichtung (32) ist und sowohl die Ladeplattform als auch die Kollektor-Dichtung (32) in der unteren Öffnung des Außenrings (353) fixiert sind.
     
    3. IGBT-Gerät nach Anspruch 1, wobei ein Durchgangsloch an einer zentralen Position der Emitter-Dichtung (34) vorgesehen ist, wobei eine Nut an einer unteren Oberfläche der Emitter-Elektrode (36) vorgesehen ist, wobei der Gate-Vorsatzdraht (37) durch das Durchgangsloch mit der zentralen Gate-Verbindungszone (13) verbunden ist und sich durch die Nut nach außen erstreckt.
     
    4. IGBT-Gerät nach Anspruch 3, wobei der Gate-Vorsatzdraht (37) mit der zentralen Gate-Verbindungszone (13) durch Löten verbunden ist; oder
    wobei der Gate-Vorsatzdraht (37) durch eine in dem Durchgangsloch vorgesehene Feder fixiert ist und unter Druck von der Feder mit der zentralen Gate-Verbindungszone (13) verbunden ist.
     
    5. Verfahren zum Packen eines Gesamtwafer-IGBT-Chips, wobei eine obere Oberfläche des Chips eine zentrale Gate-Verbindungszone und eine Mehrzahl von Emitter-Verbindungszonen, die die zentrale Gate-Verbindungszone umgeben, umfasst, wobei die Emitter-Verbindungszonen (13) auf einer Mehrzahl von Zellenzonen gebildet sind, wobei eine der Zellenzonen eine Ausfallzellenzone ist, die einen großen Leckstrom zwischen dem Kollektor und dem Emitter aufweist; und eine untere Oberfläche des Chips eine Kollektor-Zone umfasst, und wobei das Verfahren zum Packen des Gesamtwafer-IGBT-Chips umfasst:

    Verdünnen (S11) einer Emitter-Verbindungszone der Ausfallzellenzone des Chips, um eine Höhe der Emitter-Verbindungszone auf der Oberfläche der Ausfallzellenzone niedriger zu machen als die einer gemeinsamen Ebene, in der andere Emitter-Verbindungszonen angeordnet sind, so dass die Ausfallzellenzone von einer Emitter-Dichtung, die auf der oberen Oberfläche des Chips zu fixieren ist, getrennt wird;

    Befestigen (S12) einer Kollektor-Dichtung und der Emitter-Dichtung, wobei die Kollektor-Dichtung an der unteren Oberfläche des Chips befestigt wird, wobei der Radius der Kollektor-Dichtung geringer als der Radius des Chips ist, wobei die Kollektor-Dichtung die Kollektor-Zone bedeckt, wobei der Radius der Emitter-Dichtung geringer ist als der Radius des Chips, und wobei die Emitter-Dichtung die Emitter-Verbindungszonen bedeckt aber nicht eine Terminal-Zone des Chips bedeckt;

    Verbinden (S13) einer Kollektor-Elektrode und Verbinden einer Emitter-Elektrode, jeweils, wobei die Kollektor-Elektrode in elektrischem Kontakt mit der Kollektor-Dichtung steht, und wobei die Emitter-Elektrode in elektrischem Kontakt mit der Emitter-Dichtung steht; und

    Verbinden (S14) eines Gate-Vorsatzdrahts, wobei der Gate-Vorsatzdraht mit dem zentralen Gate verbunden wird und von der Emitter-Dichtung und der Emitter-Elektrode isoliert wird,

    wobei die Kollektor-Dichtung und die Emitter-Dichtung durch einen Positionierungskragen fixiert und begrenzt werden, wobei die Kollektor-Dichtung an der unteren Oberfläche des Chips fixiert wird und die Emitter-Dichtung an der oberen Oberfläche des Chips fixiert wird, und wobei die Kollektor-Dichtung und die Emitter-Dichtung durch den Positionierungskragen in den folgenden Schritten fixiert und begrenzt werden:

    Fixieren der Kollektor-Dichtung an der unteren Oberfläche des Chips durch einen Außenring, wobei eine obere Öffnung des Außenrings eine erste kreisförmige Nut und eine zweite kreisförmige Nut umfasst, wobei der Durchmesser der ersten kreisförmigen Nut gleich dem Durchmesser des Chips ist, wobei der Chip in der ersten Nut fixiert wird, wobei der Durchmesser der zweiten kreisförmigen Nut größer als der Durchmesser des Chips ist, wobei der Durchmesser einer unteren Öffnung des Außenrings gleich dem Durchmesser der Kollektor-Dichtung ist, wobei die Kollektor-Dichtung in der unteren Öffnung fixiert wird und mit der unteren Oberfläche des Chips in Kontakt gebracht wird; und

    Fixieren der Emitter-Dichtung an der oberen Oberfläche des Chips durch einen Innenring, wobei der Außendurchmesser des Innenrings gleich dem Durchmesser der zweiten Nut ist, wobei der Innenring in der zweiten Nut fixiert wird, wobei der Innendurchmesser des Innenrings gleich dem Durchmesser der Emitter-Dichtung ist, und wobei die Emitter-Dichtung in dem Innenring fixiert wird und in Kontakt mit der oberen Oberfläche des Chips steht.


     
    6. Verfahren zum Packen des Gesamtwafer-IGBT-Chips nach Anspruch 5, wobei eine Ladeplattform auf der Kollektor-Elektrode bereitgestellt wird, wobei die Ladeplattform die Form eines Zylinders hat, wobei der Durchmesser des Zylinders gleich dem Durchmesser der Kollektor-Dichtung ist, um die Kollektor-Dichtung zu tragen, und wobei sowohl die Ladeplattform als auch die Kollektor-Dichtung in der unteren Öffnung des Außenrings fixiert werden.
     
    7. Verfahren zum Packen des Gesamtwafer-IGBT-Chips nach Anspruch 5, wobei die Emitter-Verbindungszone der Ausfallzellenzone des Chips durch Laser-Ätzen oder mechanisches Schleifen verdünnt wird.
     


    Revendications

    1. Dispositif IGBT, comportant :

    une puce (33) IGBT à tranche complète, dans lequel une surface supérieure de la puce (33) IGBT à tranche complète comporte une zone (13) centrale de connexion de grille et une pluralité de zones (15) de connexion d'émetteur entourant la zone (13) centrale de connexion de grille, les zones ((13) de connexion d'émetteur étant formées sur une pluralité de zones cellulaires, l'une des zones cellulaires étant une zone cellulaire de défaut ayant un grand courant de fuite entre le collecteur et l'émetteur ;
    et une surface de fond de la puce (33) IGBT à tranche complète comporte une zone de collecteur, dans lequel la zone (15) de connexion d'émetteur, située sur la surface supérieure de la zone cellulaire de défaut de la puce (33), est amincie pour rendre la hauteur de la zone (15) de connexion d'émetteur sur la surface de la zone cellulaire de défaut plus petite que celle d'un plan commun où d'autres zones (5) de connexion d'émetteur sont situées, de sorte que la zone cellulaire de défaut est déconnectée d'un joint (34) d'émetteur formé sur la surface supérieure de la puce (33) ;

    un joint (32) de collecteur fixé sur la surface de fond de la puce (33),
    dans lequel le rayon du joint (32) de collecteur est inférieur au rayon de la puce (33), le joint (32) de collecteur couvre la zone de collecteur, le rayon du joint (34) d'émetteur est inférieur au rayon de la puce (33), et dans lequel le joint (34) d'émetteur couvre les zones (15) de connexion d'émetteur mais ne couvre pas une zone (12) de borne entourant la région active de la puce (33) ;

    une électrode (31) de collecteur en contact électrique avec le joint (32) de collecteur et une électrode (36) d'émetteur en contact électrique avec le joint (34) d'émetteur ;

    un fil (37) conducteur de grille connecté à la zone (13) centrale de connexion de grille, dans lequel le fil (37) conducteur de grille est isolé du joint (34) d'émetteur et de l'électrode (36) d'émetteur ; et

    un collier (35) de localisation, configuré pour fixer et limiter le joint (32) de collecteur et le joint (34) d'émetteur, pour fixer le joint (32) de collecteur sur la surface de fond de la puce (33) et pour fixer le joint (34) d'émetteur sur la surface supérieure de la puce (33),

    dans lequel le collier (35) de localisation comporte :

    une bague (353) extérieure ayant une ouverture supérieure et une ouverture inférieure, dans lequel le diamètre de l'ouverture inférieure de la bague (353) extérieure est le même que le diamètre du joint (32) de collecteur, l'ouverture inférieure de la bague (353) extérieure fixe le joint (32) de collecteur et l'ouverture supérieure de la bague (353) extérieure comporte une première rainure circulaire et une deuxième rainure circulaire,

    dans lequel le diamètre de la première rainure circulaire est égal au diamètre de la puce (33), la puce (33) est fixée dans la première rainure, et le diamètre de la deuxième rainure circulaire est supérieur au diamètre de la puce (33) ; et

    une bague (354) intérieure, dans lequel le diamètre extérieur de la bague (354) intérieure est égal au diamètre de la deuxième rainure, la bague (354) intérieure est fixée dans la deuxième rainure,

    le diamètre intérieur de la bague (354) intérieure est égal au diamètre du joint (34) d'émetteur, et le joint (34) d'émetteur est fixé dans la bague (354) intérieure.


     
    2. Dispositif IGBT suivant la revendication 1, dans lequel l'électrode (31) de collecteur comporte une plateforme (311) de charge portant le joint (32) de collecteur, la plateforme (311) de charge est en forme de cylindre, le diamètre du cylindre étant le même que le diamètre du joint (32) de collecteur, et à la fois la plateforme de charge et le joint (32) de collecteur sont fixés dans l'ouverture inférieure de la bague (353) extérieure.
     
    3. Dispositif IGBT suivant la revendication 1, dans lequel un trou de traversée est disposé à une position centrale du joint (34) d'émetteur, une rainure est disposée sur une surface de fond de l'électrode (36) d'émetteur, le fil (37) conducteur de grille est connecté à la zone (13) centrale de connexion de grille par l'intermédiaire du trou de traversée et s'étend à l'extérieur par la rainure.
     
    4. Dispositif IGBT suivant la revendication 3, dans lequel le fil (37) conducteur de grille est connecté à la zone (13) centrale de connexion de grille par brasage ; ou
    le fil (37) conducteur de grille est fixé par l'intermédiaire d'un ressort disposé dans le trou de traversée, et est connecté à la zone (13) centrale de connexion de grille sous pression du ressort.
     
    5. Procédé pour emballer une puce IGBT à tranche complète, dans lequel une surface supérieure de la puce comporte une zone centrale de connexion de grille et une pluralité de zones de connexion d'émetteur entourant la zone centrale de connexion de grille, les zones (13) de connexion d'émetteur étant formées sur une pluralité de zones cellulaires, l'une des zones cellulaires étant une zone cellulaire de défaut ayant un grand courant de fuite entre le collecteur et l'émetteur ; et une surface de fond de la puce comporte une zone de collecteur, et dans lequel le procédé pour emballer la puce IGBT à tranche complète comporte :

    amincir (S11) une zone de connexion d'émetteur de la zone cellulaire de défaut de la puce pour faire en sorte qu'une hauteur de la zone de connexion d'émetteur sur la surface de la zone cellulaire de défaut soit inférieure à celle d'un plan commun où d'autres zones de connexion d'émetteur se trouvent, de sorte que la zone cellulaire de défaut est déconnectée d'un joint d'émetteur à fixer sur la surface supérieure de la puce ;

    fixer (S12) un joint de collecteur et le joint d'émetteur, dans lequel le joint de collecteur est fixé sur la surface de fond de la puce, le rayon du joint de collecteur étant inférieur au rayon de la puce, le joint de collecteur recouvre la zone de collecteur, le rayon du joint d'émetteur est inférieur au rayon de la puce, et le joint d'émetteur recouvre les zones de connexion d'émetteur mais ne recouvre pas une zone de borne de la puce ;

    connecter (S13) une électrode de collecteur et connecter une électrode d'émetteur respectivement, dans lequel l'électrode de collecteur est en contact électrique avec le joint de collecteur, et l'électrode d'émetteur est en contact électrique avec le joint d'émetteur ; et

    connecter (S14) un fil conducteur de grille, dans lequel le fil conducteur de grille est connecté à la grille centrale et est isolé du joint d'émetteur et de l'électrode d'émetteur,

    dans lequel le joint de collecteur et le joint d'émetteur sont fixés et l'unité par l'intermédiaire d'un collier de localisation, le joint de collecteur est fixé sur la surface de fond de la puce et le joint d'émetteur est fixé à la surface supérieure de la puce, et

    dans lequel le joint de collecteur et le joint d'émetteur sont fixés et limités par l'intermédiaire d'un collier d'emballage dans les étapes suivantes :

    on fixe le joint de collecteur sur la surface de fond de la puce par l'intermédiaire d'une bague extérieure, dans lequel une ouverture supérieure de la bague extérieure comporte une première rainure circulaire et une deuxième rainure circulaire, dans lequel le diamètre de la première rainure circulaire est égal au diamètre de la puce, la puce est fixée dans la première rainure circulaire, le diamètre de la deuxième rainure circulaire est supérieur au diamètre de la puce, le diamètre d'une ouverture inférieure de la bague extérieure est le même que le diamètre du joint collecteur, le joint collecteur est fixé à l'intérieur de l'ouverture inférieure et est en contact avec la surface de fond de la puce ; et

    on fixe le joint d'émetteur sur la surface supérieure de la puce par l'intermédiaire d'une bague intérieure,

    dans lequel le diamètre extérieur de la bague intérieure est égal au diamètre de la deuxième rainure, la bague intérieure est fixée dans la deuxième rainure, le diamètre intérieur de la bague intérieure est égal au diamètre du joint d'émetteur, et le joint d'émetteur est fixé à l'intérieur de la bague intérieure et est en contact avec la surface supérieure de la puce.


     
    6. Procédé pour emballer la puce IGBT à tranche complète suivant la revendication 5, dans lequel une plateforme de charge est disposée sur l'électrode de collecteur, la plateforme de charge ayant une forme de cylindre, le diamètre du cylindre étant le même que le diamètre du joint de collecteur, pour porter le joint de collecteur, et à la fois la plateforme de charge et le joint de collecteur sont fixés à l'intérieur de l'ouverture inférieure de la bague extérieure.
     
    7. Procédé pour emballer la puce IGBT à tranche complète suivant la revendication 5, dans lequel la zone de connexion d'émetteur de la zone cellulaire de défaut de la puce est amincie par gravure à laser ou polissage mécanique.
     




    Drawing















    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description