(19)
(11)EP 3 030 126 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
03.08.2022 Bulletin 2022/31

(21)Application number: 14833646.4

(22)Date of filing:  07.08.2014
(51)International Patent Classification (IPC): 
B62B 1/20(2006.01)
A47L 5/36(2006.01)
A47L 9/22(2006.01)
A47L 9/00(2006.01)
A47L 7/00(2006.01)
(52)Cooperative Patent Classification (CPC):
A47L 5/36; A47L 7/0019; A47L 9/22; B62B 1/204; B62B 2202/50; A47L 7/0023; A47L 7/0028; E01H 1/0827; A47L 7/0004; A47L 7/0042; B62B 2501/065; B08B 2215/00
(86)International application number:
PCT/US2014/050132
(87)International publication number:
WO 2015/021268 (12.02.2015 Gazette  2015/06)

(54)

VACUUM PLATE AND VACUUM SYSTEM

VAKUUMPLATTE UND VAKUUMSYSTEM

PLAQUE DE MISE SOUS VIDE ET SYSTÈME DE MISE SOUS VIDE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 07.08.2013 US 201361863144 P
06.08.2014 US 201414453168

(43)Date of publication of application:
15.06.2016 Bulletin 2016/24

(73)Proprietors:
  • Sickler, Perry
    Endicott, New York 13760 (US)
  • Calafut, Edward
    Vestal, New York 13850 (US)

(72)Inventors:
  • Sickler, Perry
    Endicott, New York 13760 (US)
  • Calafut, Edward
    Vestal, New York 13850 (US)

(74)Representative: Mewburn Ellis LLP 
Aurora Building Counterslip
Bristol BS1 6BX
Bristol BS1 6BX (GB)


(56)References cited: : 
EP-A1- 1 920 698
DE-A1-102008 044 674
KR-A- 20040 034 390
US-A- 4 222 145
US-A1- 2010 294 867
WO-A1-2013/108095
DE-U1- 29 909 163
US-A- 3 869 265
US-A1- 2004 088 817
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    FIELD OF THE INVENTION



    [0001] The invention pertains to the field of vacuum cleaners. More particularly, the invention pertains to dual use wet and dry vacuum cleaners for liquid, particulate matter, or a combination of both, and use of an apparatus for converting a wheelbarrow for use as a wet and dry vacuum cleaner.

    DESCRIPTION OF RELATED ART



    [0002] Dual use wet/dry vacuum cleaners have been available for both home and commercial use for some time. Home use models are oriented toward small cleaning tasks, such as collecting spilled fluids, and as a result include one form of canister or another ranging from 22 liter (6 gallon) to 75 liter (20 gallon) capacities. Industrial grade wet/dry vacuum cleaners are also available, with similar specifications as home use models, but higher grade components directed toward the rigors of harsh use in janitorial, construction, and other similar uses. Further, truck mounted vacuum systems are available for commercial carpet cleaning, for example. Still larger truck mounted vacuum systems are available and employed in a variety of applications.

    [0003] Large truck mounted systems may be used for removing water and debris after severe flooding, or as a result of fire damage to structures, for example. In other uses, truck mounted vacuum systems are employed in a number of construction related tasks. In one example, slot trenching, and hydro-excavation in general, pressurized water is used to loosen and remove soils in locations that digging tools, such as shovels or backhoes, cannot easily access. Similarly, hydro-excavation may be used to create narrow trenches that would be inconvenient to dig with conventional tools, for example when trenching for installation of lawn sprinkler systems.

    [0004] High pressure water is used to loosen soil, and the resulting slurry of soil, small rocks, and water is immediately collected through a vacuum nozzle connected via a hose to a truck mounted vacuum system for removal. Similarly, post holes may be excavated in this manner by directing the high pressure water and a vacuum nozzle vertically downward into the ground to excavate a hole; underground utilities may thus be exposed without fear of damage to wires or piping; catch basins, drains and other sensitive structures may be rapidly and easily cleaned; and excavations may be performed remotely, in a basement for example, with the advantages of heavy equipment but in locations not readily accessible to heavy equipment.

    [0005] However, home use wet/dry vacuum cleaners are limited in both their collection capacity and vacuum capacity. A large home use wet/dry vacuum cleaner with a 75 liter (20 gallon) capacity canister would weigh more than 72.5 kg (160 lbs.) when filled only with water. Even when the canister is mounted on wheels, this weight is unwieldy to move and empty, particularly when moving the filled canister from a basement location to an outdoor location, for example. Consumer systems are also generally not designed for outdoor use in landscaping or construction projects. Additionally, the vacuum pumps of home use wet/dry vacuum cleaners are of limited power, and thus are more appropriate for cleaning small fluid spills or small debris, and are generally not effective with lengthy hoses.

    [0006] On the other end of the spectrum, large commercial truck mounted vacuum systems are costly to operate, and although they may use long hoses to reach locations remote from the actual truck they are mounted on, the trucks involved are heavy and may damage lawns and other access ways when attempting to get close to the job site they are to be used on.

    [0007] German utility model DE 299 09 163 U1 (2000-01-05) proposes a vacuum cleaner adaptor which is specifically sized and shaped to fit over a specific wheelbarrow. The edges of the adaptor fit directly on top of the edges of the wheelbarrow tray. The vacuum cleaner adaptor has an intake port, an exhaust port, and a resilient gasket on its lower surface to mate with the upper perimeter of the wheelbarrow tray.

    [0008] US Published Application 2010/294867 A1 (2010-11-25) proposes another vacuum cleaner adaptor in the form of a flat plate exactly the same size and shape as the volume it is placed on.

    [0009] PCT Published Application WO 2013/108095A1 (2013-07-25) proposes a milking apparatus which incorporates some of the parts of a vacuum cleaner and is mounted on wheels.

    SUMMARY OF THE INVENTION



    [0010] A vacuum plate system converts a conventional wheelbarrow into a wet/dry dual purpose vacuum system and collection volume. Collection of fluids, solids, or a combination of both, directly into a wheelbarrow simplifies larger cleaning tasks, small flood remediation, transport of bulk particulate materials such as sand, pea stone, and mulch, and allows hydro-excavation to be carried out in home improvement and small scale professional landscaping projects. A fluid level sensor prevents the wheelbarrow from overflowing when collecting large quantities of fluid, and a sump pump allows fluids to be drained from collected slurries, leaving only solids in the wheelbarrow for reuse or independent disposal.

    [0011] The present invention provides a use of a vacuum plate system for converting wheelbarrows according to claim 1. Preferred embodiments are defined in the dependent claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0012] 
    FIG. 1
    shows a perspective view of a vacuum plate system and a conventional wheelbarrow which together form a wet/dry vacuum with a collection volume.
    FIG. 2
    shows a midline cross sectional view of a wet/dry vacuum plate system with a planar vacuum plate body.
    FIG. 3
    shows a midline cross sectional view of a wet/dry vacuum plate system with a planar vacuum plate body and an elastic skirt for coupling to a wheelbarrow.
    FIG. 4
    shows a midline cross sectional view of a wet/dry vacuum plate system with a raised vacuum plate body.
    FIG. 5
    shows a midline cross sectional view of a planar vacuum plate system for use with an external vacuum pump.
    FIG. 6
    shows a midline cross sectional view of a raised vacuum plate system for use with an external vacuum pump.
    FIG. 7
    shows a top view of a raised vacuum plate system formed from multiple planar sections approximating a dome.
    FIG. 8
    shows a bottom view of a vacuum plate system having mating surfaces and elastic skirts configured for both a wheelbarrow and a standard 208 liter (55 gallon) drum.
    FIG. 9
    shows a side view of a raised vacuum plate system formed from multiple planar sections approximating a dome.
    FIG. 10A
    shows a cross section of a raised vacuum plate body formed from a foam core approximating a dome with a sealant coating and flat bottom.
    FIG. 10B
    shows a cross section of a raised vacuum plate body formed from a foam core approximating a dome with a sealant coating and a dome shaped lower surface.
    FIG. 11
    shows a ball and cage float valve of a vacuum pump.
    FIG. 12
    shows a cross section of a flow deflector coupled to an inlet port of a vacuum plate body.
    FIG. 13
    shows a vacuum plate with a vacuum hose, hydraulic hose, and a water pump.
    FIG. 14
    shows a vacuum plate coupled to an industrial 208 liter (55 gallon) drum.

    DETAILED DESCRIPTION OF THE INVENTION



    [0013] The vacuum plate system 100, 200, 300, 400, 500, 600, 700, 1000 described herein, and shown for example in FIG. 1, is designed to form a wet/dry vacuum cleaner when combined with a conventional wheelbarrow 105, where the conventional wheelbarrow 105 tray 10 defines a collection volume 201 for collected fluids and solids. Generally a wheelbarrow 105 includes at least one front wheel 105A, two handles 105B for moving the wheelbarrow 105 and also forming a support structure for the tray 10, and a pair of supports 105C at the rear of the wheelbarrow 105 supporting the rear of the wheelbarrow 105 when it is in a parked position. This representation of a wheelbarrow 105 is illustrative only, and any configuration of wheelbarrow 105 having a tray 10 known in the art may be used, and this representation should not be considered limiting of the vacuum plate systems 100, 200, 300, 400, 500, 600, 700, 1000 described herein.

    [0014] The vacuum plate system 100 generally includes a vacuum plate body 102 having at least an upper surface 104 and a perimeter 110 shaped to generally match and mate to the perimeter 108 of a wheelbarrow 105 tray 10. The vacuum plate system 100 may have an integrated vacuum pump 130 and at least one intake port 120 passing through the vacuum plate body 102 from the upper surface 104 of the vacuum plate body 102. The intake port 120 may typically have a 50 mm (2 inch) diameter, a 100 mm (4 inch) diameter, or other standard vacuum coupling dimension, or may alternatively have any diameter that is advantageous for a given configuration.

    [0015] The vacuum plate body 102 may be attached to the wheelbarrow 105 tray 10 in some systems through the use of straps 140 that clip to the perimeter 108 of the wheelbarrow 105 tray 10. Thus, when the vacuum plate system 100 is connected to the wheelbarrow 105 tray 10, the inner volume of the wheelbarrow 105 tray 10 forms and defines an evacuated collection volume 201 when the vacuum pump 130 is activated. Material collected through a vacuum hose (not shown in this figure) attached to the inlet port 120 may then be drawn into the evacuated collection volume 201.

    [0016] Because of the large collection volume 201 and high mobility of the wheelbarrow 105, collected fluids and solids may be conveniently moved after collection in the wheelbarrow 105 to a disposal area without having to make intermediate transfers between a vacuum cleaner canister and a transport receptacle.

    [0017] Intermediate transfers are time consuming, add unnecessary labor, and extend the time needed to perform certain operations, where large amounts of fluid and/or solids are to be removed for disposal, and may often result in spillage during transfer and transport. Conventional home use or commercial wet/dry vacuum cleaners have only limited volume canisters that rapidly fill and must frequently be emptied, further complicating their use in collecting large volumes of debris or fluid. For example, a typical home use wet/dry vacuum canister generally has a maximum capacity of less than 75 liters (20 gallons), and a typical commercial wet/dry vacuum may have a maximum capacity of about 113.5 liters (30 gallons). A commercially available wheelbarrow, on the other hand, may have a capacity of between 166.6 liters (44 gallons) and 284 liters (75 gallons). Tests of the vacuum plate system 100, 200, 300, 400, 500, 600, 700, 1000 described herein have shown capabilities of filling a wheelbarrow 105 tray 10 in less than one minute.

    [0018] Some examples of operations for which the vacuum plate systems 100, 200, 300, 400, 500, 600, 700, 1000 described herein may be suited include, but are not limited to:
    Landscaping Architecture- Constructing landscaping features, such as brick patios, planting beds, and other features, often requires the use of large quantities of topsoil, sand, crushed stone, mulch, wood chips, and other materials that are either particulate, pelletized, granular, or other small geometries. In practice, these materials are ordered by the cubic yard, delivered in dump trucks from a supplier, and dumped in piles at a home owner's property. These bulk materials may be dumped a large distance from where they are needed due to limited access of delivery trucks to job site locations.

    [0019] This practice requires landscapers and home owners to expend time and manpower to shovel the bulk materials into wheelbarrows at the delivery location, and move them to the location of the project, such as a brick patio building site, for example. With the vacuum plate system 100 described herein, bulk materials may be vacuumed directly into a wheelbarrow 105 for transport. Thus, hours of time consuming and backbreaking shoveling of bulk materials from delivery piles to wheelbarrows for transport to a location where they are needed may be saved.

    [0020] Basement Flooding - Basement flooding is not uncommon as a result of heavy rain, malfunctions of washing machines, sump pump malfunctions, failure of basement wall seals, or catastrophic flooding of rivers and streams. Many homes do not have drains located in their basements, and the water infiltrating basements may need to be pumped out by a professional remediation service. The vacuum plate system 100 described herein may be easily located near a basement window and a vacuum hose introduced to the below ground space, so that flood water may be suctioned out into the wheelbarrow 105 tray 10. The large collection volume 201 and mobility of the wheelbarrow 105 allows relatively large quantities of water, often contaminated with solids, oils, or other detritus, to be removed and easily transported to a location distant from the home for disposal.

    [0021] A conventional home wet/dry vacuum cleaner would potentially require many trips for this purpose and would not necessarily have the suction power compatible with using a lengthy hose. As a result, a conventional wet/dry vacuum may need to be carried through the home when full, potentially resulting in spillage in other areas of the home. Alternatively, the cost and logistics of hiring a professional using a truck mounted system to remove smaller quantities flood waters may be disproportionately large compared to the amount of water or debris to be removed.

    [0022] Post Hole Digging - Farmers, landscape professionals, and home owners routinely dig post holes for a variety of purposes. Often this requires that they purchase or rent relatively expensive gas powered auger type post hole diggers that are independent devices or attachable to the three point hitches on farm equipment. The vacuum plate system 100 described herein makes small scale hydro-excavation available for even small jobs in residential or farming environments. Attaching a high pressure water pump to a secondary high pressure water hose in parallel with a vacuum hose connected to the vacuum plate system 100 described herein provides both high pressure water and high vacuum necessary for hydro-excavation. The high pressure water breaks up soils near the vacuum nozzle, and the resulting slurry is collected directly into a wheelbarrow 105 tray 10. Subsequently to, or during the hydro-excavation, the water may be removed from the collected slurry, and the soil collected from the slurry may be returned to the post hole after a post has been set in place. Unneeded soils may be conveniently transported to another location for reuse or disposal as appropriate without excessively spreading soil on lawns around the post hole for example.

    [0023] Lawn Sprinkler Installation - Installation of automatic lawn sprinkler systems requires digging holes for sprinkler heads, as well as a network of slot trenches to accommodate buried plastic water pipes that feed the sprinkler heads and connect them to a distribution manifold, control system, and water main supply. To avoid frost heaving and damage to the buried components of sprinkler systems, the slot trenches must be dug to at least a minimum depth. This task is time consuming and manpower intensive using spades or other manual tools, and may risk damaging buried utilities, particularly near homes. While gas powered trenching equipment is available, such equipment merely removes soil from the trench and deposits it in furrows on the lawn on either side of the trench. Mechanical trenching equipment may therefore leave residues on the lawn after pipe installation and extend the time required for the trenches to regrow grass and fit in with the pre-existing lawn cover. Either method of trenching also risks damaging buried utilities such as power lines and water services.

    [0024] Once overlying sod has been removed to define slot trench pathways, the vacuum plate systems 100, 200, 300, 400, 500, 600, 700, 1000 described herein may be used in hydro-excavation to rapidly create slot trenches and collect soils removed from these trenches into a wheelbarrow 105 tray 10 so the materials removed from the trenches may be stored and used to back fill the trenches after piping is installed, with minimal residues remaining on the surrounding lawn, and without risk of damaging pre-existing underground utility wires or piping.

    [0025] Catchment and Drain Cleaning - Gutters, driveway drains, and other similar water collection structures often require annual cleaning to remove leaves, tree seeds, dried mud, and other forms of debris. Cleaning must often be done by hand and requires collected materials to be carried off in buckets or other receptacles for disposal or composting. The vacuum plate systems 100, 200, 300, 400, 500, 600, 700, 1000 described herein may be used, with or without fluids supplied from a pressure washer nozzle or garden hose, to remove debris rapidly and non-destructively, and directly collect them in large collection volumes 201 in a wheelbarrow 105 tray 10 for immediate transport to a disposal area or compost heap.

    [0026] Referring further to FIG. 1, the vacuum plate system 100 is shown in perspective view along with a conventional wheelbarrow 105 that is commonly available from a number of sources. An outer perimeter 110 of the vacuum plate body 102 is at least as large as the upper perimeter 108 of the wheelbarrow 105 tray 10 to which it is to be mated. It will be appreciated that this system is only used for illustrative purposes only, and since wheelbarrows 105 are available in various sizes and shapes, the outer perimeter 110 of the vacuum plate body 102 may be arranged accordingly: for example, shaped and sized to match the upper perimeter 108 of a given type or class of commercially available wheelbarrow 105 tray 10. Alternatively, a more generic shape that will accommodate the upper perimeters 108 of a wide range of wheelbarrow 105 tray 10 geometries may be used.

    [0027] Referring now to FIG. 2, the vacuum plate body 102 has an upper surface 104 and a lower surface 106, and in this system 200 an outer perimeter 110 which corresponds to, but is at least slightly larger than, the upper perimeter 108 of the wheelbarrow 105 tray 10. The vacuum plate body 102 includes one of more inlets 120, 121, with covers 122 sealing ports that may not be in use at any given time.

    [0028] The vacuum plate body 102 may also include an integrated vacuum pump 130. In this example, a single stage vacuum pump 130 that exhausts air evacuated from the evacuated collection volume 201 through the vacuum pump 130 for cooling of drive components is shown. However, a dual stage vacuum pump 130 with independent pumping stages for collection volume 201 evacuation and motor cooling may also be used.

    [0029] The vacuum pump 130 may be driven by an electric motor or a gasoline engine. In contrast to conventional wet/dry vacuum systems that have vacuum pump 130 power ratings of approximately 5KW (6.5 horsepower) or less, the vacuum pump 130 used in conjunction with the vacuum plate body 102 systems described herein may be capable of supporting significantly higher vacuum pump 130 power ratings, in excess of 7.5KW (10 horsepower).

    [0030] As shown in FIG. 2, a flange 112 is optionally provided extending downward from the lower surface 106 of the vacuum plate body 102 and, together with the lower surface 106 of the vacuum plate body 102 and gasket 205, forms a mating surface to mate with and seal to the perimeter 108 of the wheelbarrow 105 tray 10. The vacuum plate body 102 may be completely separable from the wheelbarrow 105, or as shown in FIG. 2, may be permanently attached to the wheelbarrow 105 by means of a hinge 11 or similar mechanism that allows the vacuum plate body 102 to mate to the wheelbarrow 105 tray 10, and alternatively be opened to allow emptying of the tray 10. Although the flange 112 is shown as forming a mating surface with the wheelbarrow tray 10 in FIG. 2, in some systems, the flange 112 is located outside the perimeter 108 of the wheelbarrow tray 10 and does not contact the wheelbarrow tray 10 during operation of the vacuum plate but instead serves to prevent the vacuum plate from sliding off the wheelbarrow tray 10 during transport, when the vacuum pump is off.

    [0031] The vacuum created within the collection volume 201 formed inside the wheelbarrow 105 tray 10 when the vacuum plate body 102 is in place on the wheelbarrow 105 tray 10, and the vacuum pump 130 is activated, may be significant and sufficient to firmly seal the vacuum plate body 102 to the wheelbarrow upper perimeter 108. Thus, the flange 112 may be omitted in some systems as the mating surface formed by the gasket 205 on the lower side 106 of the vacuum plate body 102 may sufficiently seal the vacuum plate body 102 to the wheelbarrow 105 tray 10 perimeter 108. The gasket 205 may be formed of any resilient material, such as rubber, cork, closed cell polyethylene foam sheeting, or other similar materials.

    [0032] In some systems 300, as shown in FIG. 3, an elastic skirt 113 may be included along the lower surface 106 of the vacuum plate body 102, extending downwardly adjacent the perimeter 110 of the vacuum plate body 102. The elastic skirt 113 may be included in addition to, or alternatively to, the flange 112 of FIG. 2. The elastic skirt 113 may be formed of a continuous loop of elastic material, including but not limited to silicon rubber, vulcanized rubber, or any other elastic sheet material capable of expanding to allow the elastic skirt 113 to be stretched when the vacuum plate body 102 is being positioned on the wheelbarrow 105 tray 10 perimeter 108, and then contracting to seal the vacuum plate body 102 to the wheelbarrow 105 tray 10 perimeter 108 once the vacuum plate body 102 and gasket 205 are in contact with the wheelbarrow 105 tray 10 perimeter 108.

    [0033] The elastic skirt 113 thus holds the vacuum plate body 102 in place on the wheelbarrow 105 tray 10 perimeter 108 regardless of whether the vacuum pump 130 is activated or not, and provides an additional vacuum seal that actively conforms to the wheelbarrow 105 tray 10 perimeter 108 in the event irregularities in the perimeter 108 of the wheelbarrow 105 tray 10 exist and do not firmly mate and seal with the gasket 205 on the lower side 106 of the vacuum plate body 102. Additionally, the elastic skirt 113 may inhibit spillage of fluids from the collection volume 201, when the wheelbarrow 105 is being moved from one location to another location.

    [0034] As shown for example in FIG. 10A, the elastic skirt 113 preferably has a downward extension, "w", such that it covers a substantial portion of the wheelbarrow 105 tray 10 perimeter 108 when the vacuum plate 102 is in place. The lower side 106 of the vacuum plate 102 may have a channel 113B for holding one edge 113A of the elastic skirt 113 firmly to the vacuum plate 102. In one system, the channel 113B may be a simple slot into which one edge 113A of the elastic skirt 113 is inserted, and held in place by adhesives, or through surface features on the edge 113A, creating friction with the channel 113B so that the elastic skirt may be removed and replaced if necessary.

    [0035] In another system, shown in FIG. 10B, the channel 113B has a semi-circular profile in cross-section, and the edge 113A of the elastic skirt 113 has a circular profile. Thus, the edge 113A may be forced into the semi-circular channel 113B, being compressed to pass through the open section of the semi-circular profile of the channel 113B. Once pressed into the semi-circular profile of the channel 113B, the circular profile of the elastic skirt 113 edge 113A re-expands and holds the elastic skirt 113 to the bottom 106 of the vacuum plate body 102 until the elastic skirt 113 is forcibly pulled from the channel 113B.

    [0036] The vacuum plate body 102, as shown in FIGS. 1 - 6 may be manufactured from of one or more of a variety of materials, including but not limited to, stamped sheet steel or aluminum, exterior grade plywood sealed with exterior water-proofing, or structural plastic such as acrylonitrile butadiene styrene (ABS), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyether ether ketone (PEEK), mixtures of various engineering plastics, resin embedded fiberglass, and other structural materials. Structural features such as ribs on the upper side 104 or lower side 106 of the vacuum plate body 102 may also be added for stiffening and mechanical stability as needed. The vacuum plate body 102 may be manufactured using any technique known in the art, including but not limited to, blow molding, injection molding, vacuum molding, and other similar manufacturing techniques.

    [0037] A rim of a stiffer material may be added within or on the perimeter 110 of the vacuum plate body 102, for additional strength, and stiffeners such as metallic rods or meshes may be incorporated within the structure of the vacuum plate body 102 for added strength while minimizing added weight to the vacuum plate body 102. While the vacuum plate body 102 may be constructed as a planar body, as shown for example in FIGS. 1, 2, 3, and 5, atmospheric pressure may exert extreme downforces on the vacuum plate body 102, particularly when high capacity vacuum pumps 130 are employed and create a large pressure differential between the evacuated collection volume 201 and the ambient environment. Thus, planar vacuum plate bodies 102 may require constructions of more robust materials that may be more costly to use, and result in a heavier, unwieldy vacuum plate body 102. In other systems, shown for example in FIGS 4, 6, and 10A - 10B a raised or dome-like vacuum plate body 102 may more evenly distribute atmospheric pressure, and minimize or prevent deformation of the vacuum plate body 102 in operation.

    [0038] In some systems, shown in FIGS. 7 and 9 - 10B, the vacuum plate body 102 is constructed of a structural foam core 700A, 700B, including but not limited to cores made of rigid polystyrene foam, rigid polyurethane foams, and others. As shown in FIGS. 7 and 10A - 10B, a cross section of vacuum plate body 102 generally may have a geodesic shape formed by discreet planar segments (104A - 1041, FIG 7) approximating a dome-like shape. A dome-like or geodesic structure may be selected as it provides the greatest structural resistance to ambient air pressure pressing downwardly on vacuum plate body 102 when the vacuum pump 130, shown for example in FIG. 7, is activated and lowers the pressure in the collection volume 201. For the purposes of this description, a "geodesic" structure is understood to be any set of connected planar elements approximating a continuously arcuate surface, such as a continuously arcuate dome.

    [0039] In some systems, the vacuum plate 102 is cut from a monolithic block of foam, using either computer numerical control (CNC) machining or hot wire cutting methods, for example. In other systems, the foam core 700A, 700B may be molded in its desired geometry using, for example, reaction injection molding techniques. Approximation of the dome shape with planar segments (104A - 1041, FIG. 7) as a geodesic may simplify this process; however other structural geometries may also be suitable.

    [0040] In some systems, shown in FIG. 10A, the vacuum plate body 102 has a flat bottom 106 that results in a very thick vacuum plate body 102. This thick foam core 700A may provide enough strength that it may not deflect downwardly or fracture when the collection volume 201 below the vacuum plate body 102 is evacuated by the vacuum pump 130 and atmospheric pressure presses downwardly on the vacuum plate body 102.

    [0041] The foam core 700A, 700B may also be coated 510 with a low cost spray-on sealant, such as a water-based latex coating, an acrylic spray, shrink-wrap plastic films, or any other material suitable for application to the foam core in a thin film that will effectively seal pores in the foam core 700A, 700B. Thus, the combination of the self-supporting foam core 700A, 700B and a coating 510 that only acts as a surface sealant results in a very low cost, disposable vacuum plate body 102. Preformed apertures in the vacuum plate body 102 that enable rapid installation or removal of other components, including but not limited to, vacuum pumps 130 and inlet ports 120, make these systems ideal for hazardous waste collection, disaster relief operations, or other collection operations where materials being collected may contain chemical, biological, radiological, or other contamination, and secondary contamination is to be avoided. In other words, the vacuum plate body 102 may be disposed along with collected hazardous materials after use, requiring only minimum decontamination of other components such as vacuum pumps 130 and inlet ports 120. If desired, a high efficiency particular air (HEPA) filter or other similar filter may be added to an exhaust port 410 to also prevent ambient air contamination by the vacuum pump 130 exhaust.

    [0042] In other systems, the foam core 700A, 700B of FIGS. 10A and 10B is coated 510 with resin or resin blend to improve structural integrity, provide damage resistance, and protect against fluid and vapor penetration into the foam core 700A, 700B. In one system, polyurea provides a coating 510 that may be sprayed on, cures rapidly, has a very high tensile strength, and high elasticity. However, other elastomeric resins, resin impregnated fiberglass, one or two part epoxy resins, or other structural coatings 510 may alternatively be used.

    [0043] As shown in FIGS. 1 - 6, the vacuum plate body 102 has an intake port 120 passing through the vacuum plate body 102 for connection of a vacuum hose that will be used to collect solid and fluid materials for transfer to the wheelbarrow 105. It will be appreciated that the shown location of the intake port in FIGS. 1 - 6 is only for illustrative purposes, and that the intake port 120 may be located at any desired location on the vacuum plate body 102. Similarly, one or more additional ports 121 having a removable air tight cap 122 may be located at various locations through the vacuum plate body 102 to allow attachment of hoses or other accessories at various locations on the vacuum plate body 102. The ports 120, 121 may be designed to be operationally couplable to one or more conventional vacuum cleaner accessories or one or more custom vacuum plate system accessories to provide improved vacuum suction for one or more specific purposes.

    [0044] As shown in FIGS. 1 - 4 and 7 - 9, a vacuum pump 130 may also be mounted through the vacuum plate body 102 to remove air from the collection volume 201 formed by the combination of the wheelbarrow 105 tray 10 and vacuum plate body 102 and create a vacuum at the intake port 120. In some systems 500, 600, shown in FIGS. 5 - 6, the vacuum pump 130 may be an independent vacuum source, and operatively coupled to an exhaust port 410 by, for example, a vacuum hose. It will be understood that the shown location of the exhaust port 410 in these figures is for illustrative purposes only, and that one or more exhaust ports 410 may be located at any useful location through the vacuum plate body 102. In the event that more than one exhaust port 410 is incorporated, air tight caps 122, as shown in use with additional intake ports 121, may be used to seal un-used exhaust ports 410.

    [0045] The bold arrows in FIG. 2 through 5 illustrate the direction of air flow in through the intake port 120, and ultimately exhausted through a single stage vacuum pump 130 or exhaust port 410. In the event that a two stage vacuum pump 130 with a motor cooling stage and a vacuum stage is used, as illustrated in FIG. 13, the output of the vacuum stage may be connected to an exhaust port 410 to evacuate the collection volume 201. It will be appreciated that the vacuum pump 130 may be of a variety of configurations using methods such as fans, squirrel cage impellers, turbine impellers and other mechanical methods to remove air from the collection volume 201, whether as part of a single stage vacuum pump or as a stage of a dual stage vacuum pump. It will also be appreciated that the vacuum pump 130 may be powered by an electric motor or gasoline powered engines.

    [0046] When the vacuum pump 130 is in operation, the vacuum generated within the evacuated collection volume 201 may be more than sufficient to seal and hold the vacuum plate system 100 firmly in place on the wheelbarrow 105 tray 10 perimeter 108. However, in some systems it may be desirable to provide additional fixation of the vacuum plate body 102 to the wheelbarrow 105 tray 10 perimeter 108. As previously described herein, an elastic skirt 113 may serve this purpose.

    [0047] Additionally or alternatively, as shown in FIG. 1, a plurality of attachment clips 140 may be added to the vacuum plate body 102 in some systems to hold the vacuum plate system 100 in place, particularly when the vacuum pump 130 is turned off and the wheelbarrow 105 is being moved. The clips 140 shown in FIG. 1 may be rubber straps with lever action fittings on one end that snap under the perimeter 108 of the wheelbarrow 105 tray 10. Alternatively, a two ply strap 20 including one or more magnets, such as the rare earth type, fixed between the two plies may have one end fixed to the vacuum plate body 102, and another end containing the magnets placed in contact with a metal wheelbarrow 105 tray 10 or other metallic elements of the wheelbarrow 105.

    [0048] It will be appreciated that a wide variety of mechanisms may be used for connecting the wheelbarrow 105 tray 10 to the vacuum plate body 102, including but not limited to bungee cords with hooks on one end to hook onto the wheelbarrow, formed wire clips with lever actions hooking under the perimeter 108 of the wheelbarrow 105 tray 10, ratchet straps passing from one location on the perimeter 110 of the vacuum plate body 102 and under the wheelbarrow 105 tray 10 to another location on the perimeter 110 of the vacuum plate body 102, and other similar fixation devices. When the vacuum body plate 102 is securely fastened to the wheelbarrow 105 tray 10, the vacuum pump 130 may also be operated in a reverse mode, to generate a stream of high pressure air at the inlet 120 for use as, for example, a leaf blower.

    [0049] As shown in FIG. 2 and FIG 8, a resilient gasket 205 formed, for example, of rubber, closed cell foam, cork, or other deformable air tight resilient material, is located adjacent the perimeter 110 of the vacuum plate body 102 on the lower side 106 of the vacuum plate body 102. The gasket 205 covers an area of the lower side 106 of the vacuum plate body 102 and accommodates a wide range of wheelbarrow 105 tray 10 perimeters 108, thereby forming a mating surface for mating with the perimeter 108 of the wheelbarrow 105 tray 10.

    [0050] The gasket 205 also helps ensure a tight seal is formed with the perimeter 108 of the wheelbarrow 105 tray 10 in the event small dents or deformations occur with use of the wheelbarrow 105 over time. In other systems, shown in FIG. 8, the bottom 106 of the vacuum plate body 102 may include multiple gasket 205 locations. In this figure, a gasket 205 and skirt 113 form a mating surface for a wheelbarrow 105 tray 10 perimeter 108, and a second gasket 206 with a second skirt 114 form a mating surface for a standard 208 liter (55 gallon) drum 30 or similar drums commonly used as packaging for industrial fluids and bulk liquids for human consumption. The combination of the vacuum plate body 102 and a 208 liter (55 gallon) drum 30 is shown in FIG. 14, where the bottom 106 of the vacuum plate body 102 includes a circular mating surface with a diameter of approximately 610 mm (24 inches), the industry standard for a wide variety of drums and barrels in commercial use.

    [0051] In some systems, the vacuum plate system 100, 200, 300, 400, 500, 600, 700, 1000 may use a lengthy vacuum hose to collect fluids at a substantial distance from the vacuum plate system 100. As a result, the operator may not be able to easily determine when the wheelbarrow 105 tray 10 is filled with fluids and debris. To avoid overflowing the wheelbarrow 105 tray 10, or drawing fluids into the vacuum pump 130, a float valve 210 and a vacuum pump 130 cut off switch 220 may be included in the vacuum plate system 100, as shown in FIGS. 2 - 3. As the fluid level rises in the wheelbarrow 105 tray 10 collection volume 201, the fluid eventually reaches the level of the float valve 210 and carries it upward toward the vacuum pump 130. At a pre-determined level, the float valve 210 both blocks an intake to the vacuum pump 130 so that it cannot ingest fluid, and also actuates the cutoff switch 220 which stops power to the vacuum pump 130. In some systems, the float 210 moves in a cage 135 attached to the vacuum pump 130. In other systems, as shown in FIG. 11, a ball float 210 and cage may be used attached to the lower surface 106 of the vacuum plate body 102.

    [0052] In some collection operations, it may be desirable to separate collected solids from collected fluids, and drain the collected fluids away. For this reason, as shown in FIGS. 2 - 3, in some systems a sump pump 230 and one-way valve 240 may be integrated with the vacuum plate body 102. The one-way valve 240 ensures that vacuum integrity is maintained and no air leaks into the evacuated collection space 201 through the sump pump 230. A one-way valve 240 that only allows fluids to exit the evacuated collection volume 201 may be incorporated in some systems for this reason.

    [0053] Depending on the type of sump pump 230 used, the one-way valve 240 may be located either upstream or downstream from the sump pump 230. A first sensor 250, which may be a float operated switch or other sensor capable of sensing the presence of fluids, may be located on the sump pump 230 assembly at a level below the vacuum pump 130 float valve 210 at the highest allowable fluid level. Thus, when the fluid level in the evacuated collection volume 201 reaches a certain level, the first sensor 250 activates the sump pump 230, drawing fluids through a filter 260, and expelling them from the wheelbarrow 105 tray 10 through a sump exit port 270. The sump exit port may include any type hydraulic fitting known in the art, for example, for attachment to a common garden hose that will carry the waste water to a separate location, such as a drain, a collection barrel, or a garden. Operation of the sump pump 230 may occur while the vacuum pump 130 is operation, or actuation of the sump pump 230 may temporarily suspend operation of the vacuum pump 130 until fluids have been drained to a pre-determined level recognized by a second sensor 251 located below the first sensor 250.

    [0054] In another vacuum plate system 400, shown in FIG. 4, the vacuum plate body 102 has a domed central section 350 and an outer flange section 360. This configuration provides more space within the collection volume 201, which may be desirable when collecting particulate material such as sand, pea stone, mulch, or other materials that would be preferably piled higher in the evacuated collection volume 201.

    [0055] In this system, the intake port 120 may be located through a position on the domed portion 350 of the vacuum plate body 102 so that incoming material is directed toward the center of the wheelbarrow 105 tray 10. However, this shown location is only for illustrative purposes, and the intake port 120 may be positioned at any desirable location on the vacuum plate 102. Similarly, one or more additional ports 121 having a removable air tight cap 122 may be located at any convenient location through the vacuum plate body 102 to allow attachment of hoses at various locations on the vacuum plate body 102.

    [0056] As shown in FIG. 4, the vacuum pump 130 may be elevated well above the perimeter 108 of the wheelbarrow 105 tray 10, and a float valve may not be necessary in this system, since fluids will not reach the vacuum pump 130, and conventional vacuum filters (not shown) may be employed on the vacuum pump 130. However, in this system, a sump pump 230 as described herein may still be desirable to remove fluids, while increasing the volume of solids that may be collected. The fluid level sensor 250 may also be incorporated in this system to stop the vacuum pump 130 when fluid levels reach a point of potentially overflowing the collection volume 201 of the wheelbarrow 105 tray 10.

    [0057] In alternative systems of the vacuum plate system 500, 600, shown in FIG. 5 and FIG. 6, the integrated vacuum pump 130, associated components, and sump pump may be omitted. In these systems, an external vacuum source, such as a conventional shop vacuum or industrial vacuum source, may be connected to the exhaust port 410 of the vacuum plate system 100. As in other systems, one or more additional ports 121 having a removable air tight cap 122 may be located at additional locations through the vacuum plate body 102 to allow attachment of vacuum hoses at multiple locations.

    [0058] In some operations, it may be desirable to directly bag collected materials. For example, construction debris, leaves, or materials collected during asbestos remediation efforts may be ultimately disposed of by municipal or commercial disposal services. In other operations, collected fluids or solids may contain oils, biological or chemical contaminants, or other elements that would demand the collection volume 201 of the wheelbarrow 105 tray 10 to be thoroughly cleaned or decontaminated after use.

    [0059] To facilitate these operations, as shown in FIGS. 10A - 10B, a collection volume 201 liner 550 may be coupled to the vacuum plate body 102 so that collected materials fill the liner 550 after collection by the vacuum plate system 100. The liner 550 may be of any geometry forming an internal volume with an open end having a circumference. The liner 550 may be constructed of a disposable plastic sheeting, similar to conventional trash can liners, or may be reusable and constructed of nylon, canvas, or other similar materials.

    [0060] As shown in FIG. 10A, a channel 520 may be formed in the lower side 106 of the vacuum plate body 102 adjacent the gasket 205, for example. In this system the channel 520 has a semi-circular profile. A mating retaining ring or strip 530 having a circular cross-section may be constructed of rubber or other elastic material, and may be pressed into the channel 520 when a portion of the liner 550 is placed over the channel 520. Thus the retaining strip 530 clamps the open end of the liner 550 into the channel 520 and holds the liner 550 in place on the vacuum plate body 102 until the retaining ring 530 is removed. Multiple pressure equalization ports 540 may be spaced along the channel 520 to allow air flow around the channel 520. Thus, when the vacuum plate body 102 is placed on the perimeter 108 of a wheelbarrow 105 tray 10, and the vacuum pump 130 is activated, the collection volume 201 is evacuated through the equalization ports 540, and the liner 550 is not drawn toward the vacuum pump 130.

    [0061] In an alternative system, shown in FIG. 10B, a retaining flange 560 may be formed along the lower side 106 of the vacuum plate body 102. The retaining flange 560 may have a trapezoidal cross section that mates with a retaining channel strip 570 that, when pressed over the retaining flange 560, grips the retaining flange 560 and may clamp a liner 550 between the retaining flange 560 and retaining channel strip 570. Multiple equalization ports 540 may also be provided to allow evacuation of the collection volume 201 without drawing the liner toward the vacuum pump 130 or an exhaust port 410.

    [0062] While the equalization ports 540 of FIGS. 10A - 10B are shown as discreet channels, any channel configuration that allows free air flow across a retaining channel 520 or retaining flange 560 may be used. For example, the lower side 106 of the vacuum plate body 102 may be provided with slots at various locations along the retaining channel 520 or retaining flange 560, so that when the liner 550 is affixed to the vacuum plate body 102, air may pass through the slots which are cut to a depth in the vacuum plate body 102, where they are not blocked by the retaining ring 530 or the retaining strip channel 570.

    [0063] Conventional vacuum systems in the prior art often use canisters or other regularly shaped collection volumes. As a result, distribution of collected material in the collection volume is of little consequence: material drawn into a port at the top of the canister forms a pile in the bottom of the canister and the pile simply accumulates against the walls of the canister as the pile grows higher. In contrast, a wheelbarrow 105 tray 10 often has a nonuniform shape, with a front of the wheelbarrow 105 tray 10 being shallower than the rear of the wheelbarrow 105 tray 10. Thus, when collecting particulate matter, it may be advantageous to bias the flow of material entering the collection volume 201 in a particular direction, for example with material entering from the inlet port 120 being directed in part toward the shallower front of the collection volume 201 and a greater part of the material being directed toward the back of the collection volume 201. In this way, maximum utilization of the collection volume 201 may be achieved by simultaneously filling the collection volume from front to center, and from rear to center, for example.

    [0064] FIG. 12 shows a flow deflector 800 that may direct material simultaneously toward opposite ends of the collection volume 201, and may also direct different amounts of collected material toward opposite ends of the collection volume. The flow deflector 800 includes a coupling 601 that mates to the inlet port 120 passing through the vacuum plate body 102. This coupling may be threaded, of a split tube and clamp design, or any other type of coupling known in the art that removably attaches the flow deflector 800 to the inlet port 120 and prevents the flow of collected material through the inlet port 120 from separating the flow deflector 800 from the inlet port 120.

    [0065] The flow deflector 800 includes two support plates 610, only one of which is shown in this cross section, extending downwardly from the coupling 601 with a space between them. A deflection plate 620 with two angled sides 620A, 620B and an apex 621 is located between the support plates 610 and below the coupling 601. Support rods 630 are affixed to the deflection plate 620 and pass through slots 640 in each of the support plates 610. The slots 640 enable the apex 621 of the deflection plate 620 to be translated laterally relative to the inlet port 120. Threads on the ends of the support rods 630 and nuts applied to the threaded ends of the support rods 630 may be used to fix the lateral position of the deflector plate 620 in the slots 640 by tightening the nuts against the support plates 610.

    [0066] As shown in FIG. 12, when the apex 621 of the deflector plate 620 is generally centered relative to the inlet port 120, material entering the collection volume 201 through the inlet port 120, represented by the large downward arrow, strikes the angled sides 620A, 620B of the deflector plate 620 in roughly equal quantities. Thus, roughly equal quantities of material, represented by the smaller horizontal arrows, are directed in opposite directions by the deflector plate 620. For example, equal amounts of sand passing through the inlet port 120 are directed toward the front (right horizontal arrow) and rear (left horizontal arrow) of the collection volume 201.

    [0067] However, if the rear of the collection volume 201 may accommodate more collected material than the front of the collection volume, translating the deflection plate to the right causes more material to strike the deflection plate 620 angled side 620A than deflection plate 620 angled side 620B. As a result of this change in position of the deflector plate 620, more material entering the collection volume 201 through the inlet port 120 is directed toward the back of the collection volume 201 (left horizontal arrow) than the front (right horizontal arrow) of the collection volume 201. Proper positioning of the deflector plate 620 may thus control the distribution of collected materials in the collection volume 201, ensuring uniform and efficient filling of the entire collection volume 201.

    [0068] Some vacuum plate systems 100, 200, 300, 400, 500, 600, 700, 1000 may include additional elements, including, but not limited to, one or more vacuum hoses and one or one or more vacuum hose accessories. For example, FIG. 13 illustrates a vacuum plate system 1000 configured for hydro-excavation and other similar operations. The wheelbarrow 105 tray 10 defining the collection volume 201 together with the vacuum plate system 100 forms the core elements of this system.

    [0069] The vacuum plate body 102 includes a two stage vacuum pump 130 with a first stage 130A having a motor, motor cooling system, and other associated components. A second stage 130B is internal to the vacuum plate body 102 and shown with dashed lines. The second stage 130B is coupled to the first stage 130A to drive the primary vacuum pump components, such as a fan, squirrel cage, or other type known in the art included in the second stage 130B. The second stage 130B is also coupled 130C to an exhaust port 410 that delivers air evacuated from the collection volume 201 to the ambient environment.

    [0070] A vacuum hose 900 of any type of construction known in the art has a first end coupled 701 to the inlet port 120 of the vacuum plate body 102. This coupling 701 may be of any type vacuum fitting known in the art, but is preferably of a type that requires intentional disconnection via threads, interlocks, or other elements that prevent the fitting from separating from the inlet port 120 when tension is placed on the vacuum hose 900. The vacuum hose 900 may be of any convenient length and has a second end with an accessory coupling 702. The accessory coupling 702 may be of any type know in the art, including, but not limited to, a friction fit coaxial tube type, a twist lock type, a threaded collar and threaded tube type, and others.

    [0071] A hydraulic hose 710 is also provided with a first end having a hydraulic coupling 711 and a second end having a hydraulic coupling 712. The hydraulic couplings 711, 712 may be of any type known in the art, including, but not limited to, threaded couplings and quick disconnect couplings with or without double shut off capabilities. The hydraulic hose 710 may also include a valve 714 located near the second end coupling 712 of the hydraulic hose 710 so that an operator may control the amount of fluid delivered to the second end coupling 712 and/or the pressure of the fluid delivered to the second end coupling. For operator convenience, the vacuum hose 900 and hydraulic hose 710 are shown in a collinear arrangement that avoids tangling. The vacuum hose 900 and hydraulic hose 710 may be constructed individually and connected along at least a portion of their length by, for example, clips, adhesives, chemical bonding, an outer wrapper or sheath enveloping the two hoses 900, 710, or any other means known in the art. The two hoses 900, 710 may also, for example, be constructed as a single unit with two internal lumens. Alternatively, the vacuum hose 700 and hydraulic hose 710 may be separate elements.

    [0072] The hydraulic hose 710 first end coupling 711 may be connected to a conventional line pressure water source, or an independent high pressure pump of any type known in the art that has a mating coupling 711, including, but not limited to, pumps used in conventional pressure washer systems. In this system however, the hydraulic hose 710 first end coupling 711 is connected to a mating coupling 722 that is part of a high pressure water pump 720 integrated into the vacuum plate body 102. The high pressure water pump 720 may be electrically driven or driven by a gasoline engine, and has a second coupling 721 for connection of a hose to a water source 723, including, but not limited to, a conventional water tap, a naturally occurring body of water, or a portable water tank. In some systems, the water pump 721 may also be adapted to produce steam for distribution from the coupling 722.

    [0073] With the system shown in FIG. 13, a variety of accessories may be attached to the second end coupling 702 of the vacuum hose 900, and/or the second end coupling 712 of the hydraulic hose 710. Some examples include, but are not limited to, a vacuum pipe and a narrow angle water nozzle for hydro-excavation, or a broad head vacuum brush and wide angle water nozzle for cleaning floors, patios, vehicle exteriors, and other surfaces. In some systems, the vacuum hose 900 may be attached to the output of a leaf shredder to replace a bag otherwise used with a conventional leaf shredder.

    [0074] Other elements may be added to the vacuum plate body 102, including, but not limited to, an electrical cord wrapping cleat, a headlamp, or a vacuum accessory rack, for example.

    [0075] Accordingly, it is to be understood that the systems herein described are merely illustrative of the application of the principles of the invention. Reference herein to details of the illustrated systems is not intended to limit the scope of the claims, which themselves recite those features regarded as essential to the invention.


    Claims

    1. Use of a vacuum plate system for converting wheelbarrows (105), having open trays (10) defining internal volumes and with upper perimeters (108) in a range of sizes, to respective receptacles defining collection volumes (201) of wet and dry vacuum cleaners, wherein each wheelbarrow for conversion has a wheelbarrow body supporting the tray in an upright configuration on a support surface, the wheelbarrow body comprising at least one wheel (105A) and at least one support to contact the support surface, and at least one handle (105B) extending from the wheelbarrow body, the vacuum plate system comprising:

    a) a vacuum plate body (102) having an upper surface (104), a lower surface (106), and a resilient gasket (205) on the lower surface of the vacuum plate body, the resilient gasket forming a mating shape configured to mate with the upper perimeter (108) of the tray (10) of a wheelbarrow (105) for conversion;

    b) an intake port (120) communicating through the vacuum plate body from the upper surface of the vacuum plate body to the lower surface of the vacuum plate body and extending radially away from the upper surface of the vacuum plate body to allow connection of a vacuum hose to the intake port; and

    c) an exhaust port (410) communicating through the vacuum plate body from the lower surface of the vacuum plate body to the upper surface of the vacuum plate body,

    wherein:
    the resilient gasket extends around a perimeter of the vacuum plate body for forming a seal between the upper perimeter (108) of the tray (10) of the wheelbarrow and the lower surface of the vacuum plate body when the vacuum plate system is placed on the tray of the wheelbarrow, the resilient gasket covering an area of the lower surface of the vacuum plate body sufficient to accommodate a wide range of upper perimeters of a plurality of wheelbarrows having open trays in the range of sizes.
     
    2. The use of a vacuum plate system of claim 1, wherein the vacuum plate body comprises a flange (112) extending from the lower surface of the vacuum plate body outward of the resilient gasket, at a position located outside the upper perimeter of the wheelbarrow tray (10) when the vacuum plate system is placed on the body of the wheelbarrow.
     
    3. The use of a vacuum plate system of claim 1, wherein the vacuum plate body comprises an elastic skirt (113) extending from the lower surface of the vacuum plate body, the elastic skirt sealing around the upper perimeter of the wheelbarrow tray (10) when the vacuum plate system is placed on the tray (10) of the wheelbarrow.
     
    4. The use of a vacuum plate system of claim 1, wherein the vacuum plate system further comprises a vacuum pump (130) operating through the exhaust port, such that when the vacuum plate system is placed on the upper perimeter of the tray of the wheelbarrow, and the vacuum pump is activated, air is drawn from the collection volume, defined by the internal volume of the tray of the wheelbarrow and the vacuum plate body, through the exhaust port and air pressure within the volume is reduced relative to an ambient air pressure.
     
    5. The use of a vacuum plate system of claim 1, wherein the vacuum plate body is planar.
     
    6. The use of a vacuum plate system of claim 1, wherein the vacuum plate body comprises a central domed portion (350) and an outer flange (360) surrounding the domed portion, the outer flange being sized to fit over the upper perimeter of the open trays of the plurality of wheelbarrows with open trays in the range of sizes, and the resilient gasket being applied to a lower surface of the outer flange.
     
    7. The use of a vacuum plate system of claim 1, wherein the vacuum plate system further comprises a sump pump (230) with a first sensor (250) and a second sensor (251) located below the lower surface of the vacuum plate body, the sump pump communicating through the vacuum plate body such that, when the first sensor is activated by fluid, contained in a collection volume defined by the internal volume of the tray of the wheelbarrow and the vacuum plate body, reaching a level of the first sensor, fluid is pumped out of the collection volume through the vacuum plate body until the fluid reaches a level of the second sensor such that the second sensor does not detect fluid.
     
    8. The use of a vacuum plate system of claim 1, wherein the vacuum plate system further comprises a flow deflector (800) coupled to an end of the intake port inside a collection volume defined by the internal volume of the tray of the wheelbarrow and the vacuum plate body by a coupling (601) and two support plates (610) each having two slots (640); the flow deflector having two angled sides with an apex between them and support rods (630) having two ends passing through the two slots of the support plates, a position of the flow deflector being variable relative to a position of the end of the intake port by moving the flow deflector in the two slots of each of the two support plates, and the position of the flow detector being fixable by fasteners on the two ends of the support rods, such that a material entering the collection volume through the intake port strikes at least a portion of at least one angled side of the flow deflector, and a direction of flow of the material is changed.
     
    9. The use of a vacuum plate system of claim 1, wherein the vacuum plate system further comprises a water pump (720) having a low pressure intake coupling and a high pressure output coupling mounted on the upper surface of the vacuum plate body.
     
    10. The use of a vacuum plate system of claim 1, wherein the vacuum plate body comprises a foam core with an exterior surface and a coating applied to the exterior surface, preferably the foam core of the vacuum plate body being polystyrene foam and/or preferably the coating applied to the exterior surface of the foam core being cured polyurea.
     
    11. The use of a vacuum plate system of claim 1, wherein the vacuum plate system further comprises a collection volume liner (550) defining an internal volume with an open side having a perimeter, wherein the perimeter is held in a channel with a cross sectional shape formed in the lower surface of the vacuum plate body by an elastic retaining strip with a cross sectional shape mating with the cross sectional shape of the channel, such that the perimeter of the open side of the collection volume liner is held between an inner surface of the channel and an outer surface of the elastic retaining strip.
     
    12. The use of a vacuum plate system of claim 1, wherein the vacuum plate system further comprises a collection volume liner (550) having an internal volume with an open side having a perimeter, and the perimeter being held on a flange with a cross sectional shape on the lower surface of the vacuum plate body by a retaining strip with a cross sectional shape mating to the cross sectional shape of the flange, such that the perimeter of the open side of collection volume liner is held between an inner surface of the retaining strip and an outer surface of the flange.
     
    13. The use of a vacuum plate system of claim 1, in which the resilient gasket is formed of a material selected from a group consisting of rubber, closed cell foam and cork.
     


    Ansprüche

    1. Verwendung eines Vakuumplattensystems zum Umrüsten von Schubkarren (105), die offene Wannen (10) aufweisen, die Innenvolumina definieren und mit oberen Umfängen (108) in verschiedenen Größen, in entsprechende Behälter, die Sammelvolumina (201) von Nass- und Trockenstaubsaugern definieren, wobei jede Schubkarre zum Umrüsten einen Schubkarrenkörper aufweist, der die Wanne in einer aufrechten Konfiguration auf einer Stützfläche trägt, wobei der Schubkarrenkörper zumindest ein Rad (105A) und zumindest eine Stütze zum Kontakt mit der Stützfläche und zumindest einen Handgriff (105B) umfasst, der sich von dem Schubkarrenkörper erstreckt, wobei das Vakuumplattensystem Folgendes umfasst:

    a) einen Vakuumplattenkörper (102), der eine obere Oberfläche (104), eine untere Oberfläche (106) und eine elastische Dichtung (205) auf der unteren Oberfläche des Vakuumplattenkörpers aufweist, wobei die elastische Dichtung eine Dichtungsform ausbildet, die ausgelegt ist, um zum Umrüsten mit dem oberen Umfang (108) der Wanne (10) einer Schubkarre (105) zusammenzupassen;

    b) einen Ansauganschluss (120), der durch den Vakuumplattenkörper von der oberen Oberfläche des Vakuumplattenkörpers bis zur unteren Oberfläche des Vakuumplattenkörpers hindurch in Kommunikation steht und sich radial von der oberen Oberfläche des Vakuumplattenkörpers weg erstreckt, um die Verbindung eines Vakuumschlauchs mit dem Ansauganschluss zu ermöglichen; und

    c) einen Auslassanschluss (410), der durch den Vakuumplattenkörper von der unteren Oberfläche des Vakuumplattenkörpers bis zur oberen Oberfläche des Vakuumplattenkörpers hindurch in Kommunikation steht, wobei:

    sich die elastische Dichtung zum Ausbilden einer Dichtung zwischen dem oberen Umfang (108) der Wanne (10) der Schubkarre und der unteren Oberfläche des Vakuumplattenkörpers rund um einen Umfang des Vakuumplattenkörpers erstreckt, wenn das Vakuumplattensystem auf der Wanne der Schubkarre positioniert wird, wobei die elastische Dichtung einen Bereich der unteren Oberfläche des Vakuumplattenkörpers abdeckt, der ausreichend ist, um eine große Bandbreite an oberen Umfängen von einer Vielzahl von Schubkarren mit offenen Wannen in verschiedenen Größen zu berücksichtigen.
     
    2. Verwendung eines Vakuumplattensystems nach Anspruch 1, wobei der Vakuumplattenkörper einen Flansch (112) umfasst, der sich ausgehend von der unteren Oberfläche des Vakuumplattenkörpers außerhalb der elastischen Dichtung an einer Position erstreckt, die außerhalb des oberen Umfangs der Schubkarrenwanne (10) angeordnet ist, wenn das Vakuumplattensystem auf dem Körper der Schubkarre positioniert wird.
     
    3. Verwendung eines Vakuumplattensystems nach Anspruch 1, wobei der Vakuumplattenkörper eine elastische Schürze (113) umfasst, die sich ausgehend von der unteren Oberfläche des Vakuumplattenkörpers erstreckt, wobei die elastische Schürze rund um den oberen Umfang der Schubkarrenwanne (10) dichtend abschließt, wenn das Vakuumplattensystem auf der Wanne (10) der Schubkarre positioniert wird.
     
    4. Verwendung eines Vakuumplattensystems nach Anspruch 1, wobei das Vakuumplattensystem ferner eine Vakuumpumpe (130) umfasst, die durch den Auslassanschluss betrieben wird, sodass, wenn das Vakuumplattensystem auf dem oberen Umfang der Wanne der Schubkarre positioniert wird, und die Vakuumpumpe aktiviert ist, Luft aus dem Sammelvolumen, das durch das Innenvolumen der Wanne der Schubkarre und den Vakuumplattenkörper definiert wird, durch den Auslassanschluss angesaugt wird und der Luftdruck innerhalb des Volumens relativ zu einem Umgebungsluftdruck reduziert wird.
     
    5. Verwendung eines Vakuumplattensystems nach Anspruch 1, wobei der Vakuumplattenkörper flach ist.
     
    6. Verwendung eines Vakuumplattensystems nach Anspruch 1, wobei der Vakuumplattenkörper einen gewölbten Mittelabschnitt (350) und einen äußeren Flansch (360) umfasst, der den gewölbten Abschnitt umgibt, wobei der äußere Flansch so bemessen ist, dass er über den oberen Umfang der offenen Wannen der Vielzahl von Schubkarren mit offenen Wannen in verschiedenen Größen passt und die elastische Dichtung auf eine untere Oberfläche des äußeren Flanschs aufgebracht wird.
     
    7. Verwendung eines Vakuumplattensystems nach Anspruch 1, wobei das Vakuumplattensystem ferner eine Sumpfpumpe (230) mit einem ersten Sensor (250) und einem zweiten Sensor (251), der unterhalb der unteren Oberfläche des Vakuumplattenkörpers angeordnet ist, umfasst, wobei die Sumpfpumpe so durch den Vakuumplattenkörper kommuniziert, dass, wenn der erste Sensor durch Fluid, das in einem Sammelvolumen enthalten ist, das durch das Innenvolumen der Wanne der Schubkarre und den Vakuumplattenkörper definiert wird, das einen Pegel des ersten Sensors erreicht, aktiviert wird, Fluid aus dem Sammelvolumen durch den Vakuumplattenkörper gepumpt wird, bis das Fluid einen Pegel des zweiten Sensors erreicht, sodass der zweite Sensor kein Fluid detektiert.
     
    8. Verwendung eines Vakuumplattensystems nach Anspruch 1, wobei das Vakuumplattensystem ferner eine Strömungsablenkvorrichtung (800) umfasst, die innerhalb eines Sammelvolumens, das durch das Innenvolumen der Wanne der Schubkarre und den Vakuumplattenkörper definiert ist, durch eine Kopplung (601) und zwei Trägerplatten (610), die jeweils zwei Schlitze (640) aufweisen, an ein Ende des Ansauganschlusses gekoppelt ist; wobei die Strömungsablenkvorrichtung zwei abgeschrägte Seiten mit einem Scheitelpunkt dazwischen und Trägerstangen (630) mit zwei Enden aufweist, die durch die zwei Schlitze der Trägerplatten verlaufen, wobei eine Position der Strömungsablenkvorrichtung relativ zu einer Position des Endes des Ansauganschlusses durch Bewegen der Strömungsablenkvorrichtung in den zwei Schlitzen jeder der beiden Trägerplatten veränderbar ist und wobei die Position der Strömungsablenkvorrichtung durch Befestigungselemente auf den zwei Enden der Trägerstangen fixierbar ist, sodass ein Material, das durch den Ansauganschluss in das Sammelvolumen eintritt, zumindest auf einen Abschnitt von zumindest einer angeschrägten Seite der Strömungsablenkvorrichtung trifft und eine Strömungsrichtung des Materials verändert wird.
     
    9. Verwendung eines Vakuumplattensystems nach Anspruch 1, wobei das Vakuumplattensystem ferner eine Wasserpumpe (720) umfasst, die eine Niederdruck-Ansaugkopplung und eine Hochdruck-Ausgabekopplung auf der oberen Oberfläche des Vakuumplattenkörpers aufweist.
     
    10. Verwendung eines Vakuumplattensystems nach Anspruch 1, wobei der Vakuumplattenkörper einen Schaumkern mit einer Außenfläche und eine Beschichtung umfasst, die auf die Außenfläche aufgetragen ist, wobei der Schaumkern des Vakuumplattenkörpers vorzugsweise Polystyrolschaum ist und/oder die Beschichtung, die auf die Außenfläche des Schaumkerns aufgetragen ist, vorzugsweise gehärteter Polyharnstoff ist.
     
    11. Verwendung eines Vakuumplattensystems nach Anspruch 1, wobei das Vakuumplattensystem ferner eine Sammelvolumen-Innenauskleidung (550) umfasst, die ein Innenvolumen mit einer offenen Seite, die einen Umfang aufweist, definiert, wobei der Umfang in einem Kanal mit einer Querschnittsform gehalten wird, die in der unteren Oberfläche des Vakuumplattenkörpers durch einen elastischen Rückhaltestreifen mit einer Querschnittsform gebildet ist, die mit der Querschnittsform des Kanals zusammenpasst, sodass der Umfang der offenen Seite der Sammelvolumen-Innenauskleidung zwischen einer Innenfläche des Kanals und einer Außenfläche des elastischen Rückhaltestreifens gehalten wird.
     
    12. Verwendung eines Vakuumplattensystems nach Anspruch 1, wobei das Vakuumplattensystem ferner eine Sammelvolumen-Innenauskleidung (550) umfasst, die ein Innenvolumen mit einer offenen Seite aufweist, die einen Umfang aufweist, und wobei der Umfang durch einen Rückhaltestreifen mit einer Querschnittsform, die mit der Querschnittsform des Flanschs zusammenpasst, auf einem Flansch mit einer Querschnittsform auf der unteren Oberfläche des Vakuumplattenkörpers gehalten wird, sodass der Umfang der offenen Seite der Sammelvolumen-Innenauskleidung zwischen einer Innenfläche des Rückhaltestreifens und einer Außenfläche des Flanschs gehalten wird.
     
    13. Verwendung eines Vakuumplattensystems nach Anspruch 1, bei der der elastische Dichtungsring aus einem Material ausgebildet ist, das aus der aus Gummi, dichtzelligem Schaum und Kork bestehenden Gruppe ausgewählt ist.
     


    Revendications

    1. Utilisation d'un système de plaque de mise sous vide permettant de transformer des brouettes (105), présentant des plateaux ouverts (10) définissant des volumes internes et avec des périmètres supérieurs (108) dans une plage de tailles, en des réceptacles respectifs définissant des volumes de collecte (201) d'aspirateurs eau et poussière, dans laquelle chaque brouette à transformer présente un corps de brouette supportant le plateau dans une configuration verticale sur une surface de support, le corps de brouette comprenant au moins une roue (105A) et au moins un support destiné à venir en contact avec la surface de support, et au moins une poignée (105B) s'étendant à partir du corps de brouette, le système de plaque de mise sous vide comprenant :

    a) un corps de plaque de mise sous vide (102) présentant une surface supérieure (104), une surface inférieure (106) et un joint élastique (205) sur la surface inférieure du corps de plaque de mise sous vide, le joint élastique formant une forme d'appariement configurée pour s'apparier avec le périmètre supérieur (108) du plateau (10) d'une brouette (105) pour une conversion ;

    b) un orifice d'admission (120) communiquant à travers le corps de plaque de mise sous vide à partir de la surface supérieure du corps de plaque de mise sous vide à la surface inférieure du corps de plaque de mise sous vide et s'étendant radialement à distance de la surface supérieure du corps de plaque de mise sous vide pour permettre une connexion d'un tuyau d'aspiration à l'orifice d'admission ; et

    c) un orifice d'échappement (410) communiquant à travers le corps de plaque de mise sous vide à partir de la surface inférieure du corps de plaque de mise sous vide vers la surface supérieure du corps de plaque de mise sous vide,

    dans laquelle :
    le joint élastique s'étend autour d'un périmètre du corps de plaque de mise sous vide pour former un joint d'étanchéité entre le périmètre supérieur (108) du plateau (10) de la brouette et la surface inférieure du corps de plaque de mise sous vide lorsque le système de plaque de mise sous vide est placé sur le plateau de la brouette, le joint élastique couvrant une zone de la surface inférieure du corps de plaque de mise sous vide suffisante pour s'adapter à une large plage de périmètres supérieurs d'une pluralité de brouettes présentant des plateaux ouverts dans la plage de tailles.
     
    2. Utilisation d'un système de plaque de mise sous vide selon la revendication 1, dans laquelle le corps de plaque de mise sous vide comprend une bride (112) s'étendant à partir de la surface inférieure du corps de plaque de mise sous vide vers l'extérieur du joint d'élastique, dans une position située à l'extérieur du périmètre supérieur du plateau de brouette (10) lorsque le système de plaque de mise sous vide est placé sur le corps de la brouette.
     
    3. Utilisation d'un système de plaque de mise sous vide selon la revendication 1, dans laquelle le corps de plaque de mise sous vide comprend une jupe élastique (113) s'étendant à partir de la surface inférieure du corps de plaque de mise sous vide, la jupe élastique étanchéifiant autour du périmètre supérieur du plateau de brouette (10) lorsque le système de plaque de mise sous vide est placé sur le plateau (10) de la brouette.
     
    4. Utilisation d'un système de plaque de mise sous vide selon la revendication 1, dans laquelle le système de plaque de mise sous vide comprend en outre une pompe à vide (130) fonctionnant à travers l'orifice d'échappement, de telle sorte que lorsque le système de plaque de mise sous vide est placé sur le périmètre supérieur du plateau de la brouette, et lorsque la pompe à vide est activée, de l'air est aspiré à partir du volume de collecte, défini par le volume interne du plateau de la brouette et le corps de plaque de mise sous vide, à travers l'orifice d'échappement, et la pression d'air à l'intérieur du volume est réduite par rapport à une pression d'air ambiant.
     
    5. Utilisation d'un système de plaque de mise sous vide selon la revendication 1, dans laquelle le corps de plaque de mise sous vide est plan.
     
    6. Utilisation d'un système de plaque de mise sous vide selon la revendication 1, dans laquelle le corps de plaque de mise sous vide comprend une partie centrale bombée (350) et une bride extérieure (360) entourant la partie bombée, la bride extérieure étant dimensionnée pour s'adapter au-dessus du périmètre supérieur des plateaux ouverts de la pluralité de brouettes avec des plateaux ouverts dans la plage de tailles, et le joint élastique étant appliqué sur une surface inférieure de la bride extérieure.
     
    7. Utilisation d'un système de plaque de mise sous vide selon la revendication 1, dans laquelle le système de plaque de mise sous vide comprend en outre une pompe de puisard (230) avec un premier capteur (250) et un second capteur (251) situés au-dessous de la surface inférieure du corps de plaque de mise sous vide, la pompe de puisard communiquant à travers le corps de plaque de mise sous vide de telle sorte que, lorsque le premier capteur est activé par un fluide, contenu dans un volume de collecte défini par le volume intérieur du plateau de la brouette et le corps de plaque de mise sous vide, atteignant un niveau du premier capteur, du fluide est pompé hors du volume de collecte à travers le corps de plaque de mise sous vide jusqu'à ce que le fluide atteigne un niveau du second capteur de telle sorte que le second capteur ne détecte pas de fluide.
     
    8. Utilisation d'un système de plaque de plaque de mise sous vide selon la revendication 1, dans laquelle le système de plaque de mise sous vide comprend en outre un déflecteur d'écoulement (800) couplé à une extrémité de l'orifice d'admission à l'intérieur d'un volume de collecte défini par le volume intérieur du plateau de la brouette et le corps de plaque de mise sous vide par un couplage (601) et deux plaques de support (610) présentant chacune deux fentes (640) ; le déflecteur d'écoulement présentant deux côtés inclinés avec un sommet entre eux et des tiges de support (630) présentant deux extrémités passant à travers les deux fentes des plaques de support, une position du déflecteur d'écoulement étant variable par rapport à une position de l'extrémité de l'orifice d'admission en déplaçant le déflecteur d'écoulement dans les deux fentes de chacune des deux plaques de support, et la position du détecteur d'écoulement pouvant être fixée par des fixations sur les deux extrémités des tiges de support, de telle sorte qu'un matériau entrant dans le volume de collecte à travers l'orifice d'admission heurte au moins une partie d'au moins un côté incliné du déflecteur d'écoulement, et une direction d'écoulement du matériau est modifiée.
     
    9. Utilisation d'un système de plaque de mise sous vide selon la revendication 1, dans laquelle le système de plaque de mise sous vide comprend en outre une pompe à eau (720) présentant un raccord d'admission basse pression et un raccord de sortie haute pression montés sur la surface supérieure du corps de plaque de mise sous vide.
     
    10. Utilisation d'un système de plaque de mise sous vide selon la revendication 1, dans laquelle le corps de plaque de mise sous vide comprend un noyau en mousse avec une surface extérieure et un revêtement appliqué sur la surface extérieure, de préférence le noyau en mousse du corps de plaque de mise sous vide étant de la mousse de polystyrène et/ou de préférence le revêtement appliqué sur la surface extérieure du noyau en mousse étant de la polyurée durcie.
     
    11. Utilisation d'un système de plaque de mise sous vide selon la revendication 1, dans laquelle le système de plaque de mise sous vide comprend en outre une doublure de volume de collecte (550) définissant un volume interne avec un côté ouvert présentant un périmètre, dans laquelle le périmètre est maintenu dans un canal avec une forme de section transversale formée dans la surface inférieure du corps de plaque de mise sous vide par une bande de retenue élastique avec une forme en coupe transversale s'adaptant à la forme en coupe transversale du canal, de telle sorte que le périmètre du côté ouvert de la doublure de volume de collecte est maintenu entre une surface intérieure du canal et une surface extérieure de la bande de retenue élastique.
     
    12. Utilisation d'un système de plaque de mise sous vide selon la revendication 1, dans laquelle le système de plaque de mise sous vide comprend en outre une doublure de volume de collecte (550) présentant un volume interne avec un côté ouvert présentant un périmètre, et le périmètre étant maintenu sur une bride avec une forme en coupe transversale sur la surface inférieure du corps de plaque de mise sous vide par une bande de retenue avec une forme en coupe transversale appariée à la forme en coupe transversale de la bride, de telle sorte que le périmètre du côté ouvert de la doublure de volume de collecte est maintenu entre une surface intérieure de la bande de retenue et une surface extérieure de la bride.
     
    13. Utilisation d'un système de plaque de mise sous vide selon la revendication 1, dans laquelle le joint d'étanchéité élastique est formé en un matériau choisi dans un groupe comprenant caoutchouc, mousse à cellules fermées et liège.
     




    Drawing












































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description