(19)
(11)EP 3 032 083 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
22.05.2019 Bulletin 2019/21

(21)Application number: 15197419.3

(22)Date of filing:  02.12.2015
(51)Int. Cl.: 
F02K 1/48  (2006.01)
F02K 1/38  (2006.01)
F02K 1/34  (2006.01)
F02K 1/80  (2006.01)
F02C 3/32  (2006.01)

(54)

CMC OXIDE-OXIDE MIXER DESIGN

CMC-OXID-OXID-MISCHERDESIGN

CONCEPTION DE MÉLANGEUR OXYDE-OXYDE CMC


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 09.12.2014 US 201462089452 P

(43)Date of publication of application:
15.06.2016 Bulletin 2016/24

(73)Proprietor: Rolls-Royce Corporation
Indianapolis, Indiana 46225-1103 (US)

(72)Inventor:
  • Sokhey, Jagdish S.
    INDIANAPOLIS, IN Indiana 46234 (US)

(74)Representative: Ström & Gulliksson AB 
P O Box 4188
203 13 Malmö
203 13 Malmö (SE)


(56)References cited: : 
EP-A1- 1 797 310
US-A1- 2014 053 563
US-A1- 2009 064 681
US-A1- 2014 241 863
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF TECHNOLOGY



    [0001] An improved exhaust mixing system is disclosed. Although the improvements are applicable to exhaust mixing systems for turbine engines used for propulsive power in air, the improvements are also applicable to exhaust mixing systems for turbine engines employed in marine, underwater, and land applications.

    BACKGROUND



    [0002] It has become increasingly desirable to improve the overall system, design, and operation of exhaust mixing systems for jet turbines such as turbofan engines. In an exhaust mixing system coupled to a typical turbofan engine, the exhaust mixing system may serve to increase thrust and decrease engine noise. As such, engine operation may be improved and/or engine wear may be minimized. An inefficient or ineffective exhaust mixing system, however, can lead to decreased engine efficiency and increased noise. EP1797310 and US2014241863 disclose prior art mixing systems.

    [0003] Accordingly, there is room for further improvements in this area.

    [0004] According to the present disclosure, there is provided an exhaust mixing system according to the features of claim 1, and a method of manufacturing an exhaust mixing system according to the method steps of claim 9.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0005] While the claims are not limited to a specific illustration, an appreciation of the various aspects is best gained through a discussion of various examples thereof. Referring now to the drawings, exemplary illustrations are shown in detail. Although the drawings represent the illustrations, the drawings are not necessarily to scale and certain features may be exaggerated to better illustrate and explain an innovative aspect of an example. Further, the exemplary illustrations described herein are not intended to be exhaustive or otherwise limiting or restricted to the precise form and configuration shown in the drawings and disclosed in the following detailed description. Exemplary illustrations are described in detail by referring to the drawings as follows:

    FIG. 1 illustrates an exemplary turbine engine having an exhaust mixing system, according to an embodiment;

    FIG. 2A illustrates an exemplary exhaust mixing system according to another embodiment;

    FIG. 2B is a cross-sectional view of a portion of the exemplary exhaust mixing system of Figure 2A, according to an embodiment;

    FIG. 3A is a perspective view of a portion of an exhaust mixing system, according to an embodiment;

    FIG. 3B is a cross-sectional view taken along A-A of the exhaust mixing system of Figure 3A, according to an embodiment; and

    FIG. 4 is a flowchart representing an exemplary method of manufacturing an exhaust mixing system, according to an embodiment.


    DETAILED DESCRIPTION



    [0006] An exemplary gas turbine having an improved exhaust mixing system is disclosed. The mixing system includes an attachment system for securing a lobed mixer to an engine interface. A novel method of manufacturing an exhaust mixing system is further disclosed.

    [0007] Figure 1 illustrates an exemplary gas turbine engine 10, which includes a fan 12, a low pressure compressor and a high pressure compressor, 14 and 16, a combustor 18, and a high pressure, mid pressure and low pressure turbine, 20, 21 and 22, respectively. The high pressure compressor 16 is connected to a first rotor shaft 24 while the low pressure compressor 14 is connected to a second rotor shaft 26. The low pressure turbine 22 is connected to another shaft 27. The shafts extend axially and are parallel to a longitudinal center line axis 28. Figure 1 illustrates a three shaft engine, it will be appreciated that exemplary embodiments further contemplate two shaft and/or single shaft configurations.

    [0008] Ambient air 30 enters the fan 12 and is directed across a fan rotor 32 in an annular duct 34, which in part is circumscribed by fan case 36. The bypass airflow 38 provides a large fraction of engine thrust while the primary gas stream 40 (a.k.a. core airflow) is directed to the combustor 18 and the turbines 20, 21, 22, and then exhausted through a nozzle generating thrust. The engine 10 includes an improved exhaust mixing system 44. The system 44 may include a lobed mixer 46 which can be coupled to an engine interface or support 48 (e.g., rear turbine support). The exhaust mixing system 44 enhances the mixing of the core airflow 40 that passes through the low pressure turbine 22 with the bypass airflow 38 that passes over the lobed mixer 46, thus increasing thrust. The mixing of the core airflow 40 and the bypass airflow 38, while each pass over a tail cone 50 and exit at exhaust nozzle 52, may also reduce turbine noise.

    [0009] With reference now to Figure 2A, a perspective view of an exemplary exhaust mixing system 200 coupled to an engine interface or rear turbine support 202 is illustrated. The exhaust mixing system 200 includes a lobed exhaust mixer 204 and coupling attachment or flange 206, which couples the lobed exhaust mixer 200 to the engine interface 202. The lobed exhaust mixer 204 may, for example, be comprised of a single unit that circumscribes 360 degrees. Alternatively, though not shown, the lobed exhaust mixer 204 may be comprised of two or more semi-annular components that together circumscribe 360 degrees.

    [0010] The lobed exhaust mixer 204 is fabricated from, for example, ceramic matrix composite (CMC) materials, such as high strength ceramics alumina fibers in an alumina oxide composite matrix. Alternate embodiments may include other CMC materials such as alumino-silicate fibers in a ceramic matrix. Regardless of the CMC materials employed, the CMC lobed exhaust mixer 204 includes a plurality of lobes 208 that enhance mixing of core airflow and bypass airflow in such a manner to increase thrust and decrease engine noise. According to alternate embodiments, the number of lobes of the CMC lobed exhaust mixer may be more or less than the number of lobes illustrated in Figure 2A.

    [0011] The CMC lobed exhaust mixer 204 is configured to mix generally warm or hot core airflow (e.g., primary gas stream 40 of Figure 1) with cooler bypass flow (e.g., bypass airflow 38 of Figure 1) via the plurality of lobes 208, Figure 2A. The mixing of the two airflows by the CMC lobed exhaust mixer 204 generally increases thrust when compared to exhaust systems (not shown) that are not configured to mix, or to enhance the mixture of, core airflow and bypass airflow. In addition to increasing jet thrust, the mixing of the core and bypass airflows enhanced by the plurality of lobes 208 may decrease jet induced noise.

    [0012] Structures comprised of CMC materials generally weigh less than similar structures comprised of metallic materials. Further, structures comprised of CMC materials also tend to outperform many comparable metallic structures in their ability to maintain structural shape at higher temperatures. As such, the CMC lobed exhaust mixer 204 generally weighs less and is more durable than comparable mixers comprised of metallic materials. The reduction of weight, in turn, generally enhances fuel efficiencies of the turbofan engine (e.g., gas turbine engine 10 of Figure 1).

    [0013] As illustrated in Figure 2A, the coupling attachment or flange 206 of the exhaust system 200 includes an annulus or coupling ring 210 having a plurality of projections (a.k.a. finger couplings) 212 extending linearly therefrom. The coupling attachment 206 may, for example, be comprised of a metal alloy or super alloy such as Inconel® 625. Further, the coupling attachment 206 may be a single fabricated unit circumscribing 360 degrees or, alternatively, the coupling attachment 206 may be comprised of a plurality of semi-annular components that together circumscribe 360 degrees.

    [0014] The plurality of projections 212 of the coupling attachment 206 project from the annulus 210 in a first direction 214 that is substantially parallel to a central axis 216 of the annulus 210. The coupling attachment 206 couples the CMC lobed exhaust mixer 204 to an engine support or interface 202 of a turbofan engine (alternatively see, e.g., support 48 of engine 10 illustrated in Figure 1). That is, as illustrated in Figure 2A, the annulus 210 of the coupling attachment 206 couples to the engine interface 202, while the plurality of projections 212 of the coupling attachment 206 couples to the CMC lobed exhaust mixer 204. Each projection of the plurality of projections 212 has the ability to flex. As such, the plurality of projections or finger couplings 212 maintain integrity when the CMC lobed exhaust mixer 204 is subjected to a range aerodynamic or thermal loads.

    [0015] It is contemplated that the quantity of projections in the plurality of projections 212 is proportional to the quantity of lobes in the CMC lobed exhaust mixer 204. For example, there may be two to four times as many projections 212 as there are lobes 208. It is noted, however, that there need not be a 2:1, 3:1, or 4:1 relationship between the number of projections and the number of lobes. For example, based on weight and/or size factors of the CMC lobed mixer (e.g., CMC lobed exhaust mixer 204), fewer or more projection may be employed.

    [0016] In addition to coupling the CMC lobed exhaust mixer 204 to the engine (e.g., engine 10 of Figure 1), the coupling attachment 206 also serves to reduce stress on the system minimizing structural deflections to the mixer lobes. That is, load is able to pass from the support 202, through coupling attachment 206, and to CMC lobed exhaust mixer 204 without causing (or at least by minimizing) local or structural stresses on the system. Since the coupling attachment 206 has the ability to flex, it serves as an intermediary between the rear turbine support 202 and the CMC lobed exhaust mixer 204.

    [0017] Referring now to Figure 2B, a cross-sectional view of a portion 218 of the exemplary exhaust mixing system 200 of Figure 2A is illustrated. According to an embodiment, and as illustrated in Figure 2B, the annulus 210 is coupled to the engine interface or rear turbine support 202 via a plurality of annulus mounting hardware 220. Further, each projection of the plurality of projections 212 couples to the CMC lobed exhaust mixer 204 via a plurality of projection mounting hardware 222. The mounting means or hardware 220, 222 may, for example, include machined bolts and nuts or other fasteners (not shown).

    [0018] With reference now to Figure 3A, a perspective view of a portion of an exemplary exhaust mixing system 300 is illustrated. The portion of the exhaust mixing system 300 includes a portion of a coupling means or attachment 302 (a.k.a. attachment flange) and a portion of a CMC lobed exhaust mixer 304. The partial coupling attachment 302 includes a portion of an annulus 306 having a finger coupling 308 projecting linearly therefrom along a first direction 310. The annulus 306 affixes to an engine interface 312 and the finger coupling 308 affixes to the CMC lobed exhaust mixer 304, thus coupling the exhaust mixing system 300 to the turbine engine (e.g., engine 10 of Figure 1).

    [0019] The annulus 306 includes a first leg 314 in union with a second leg 316. The second leg 316 is substantially perpendicular to the first leg 314, while the first leg 314 is substantially parallel with the first direction 310.

    [0020] The finger coupling 308 includes a void 318 that aligns with a void 320 in the CMC lobed exhaust mixer 304. As such, a fastener or mounting hardware (e.g., the plurality of projection mounting hardware 222 of Figure 2B) can pass through each void 318, 320 to couple the CMC lobed exhaust mixer 304 to the coupling attachment 302. Additionally, the annulus 306 includes a plurality of voids (see exemplary annulus void 332), which allow mounting hardware (e.g., plurality of annulus mounting hardware 220 of Figure 2B) to pass therethrough so that the annulus 306 may be coupled to the engine interface 312. As such, via the engine interface 312, the exhaust mixing system 300 is coupled to an engine (e.g., engine 10 of Figure 1).

    [0021] Due to the geometry of the finger couplings (e.g., finger coupling 308) and the manner in which the CMC lobed exhaust mixer 304 is coupled to the engine interface 312, loads due to aerodynamic pressure and thermal growth are reduced and substantially in shear.

    [0022] According to the embodiment illustrated in Figure 3A, the finger coupling 308 has a finger length 324 of L1, a head length 326 of L2, a shaft width 328 of W1, a head width 330 of W2, a shaft thickness 332 of T1, and a head thickness 334 of T2. According to an embodiment, finger coupling dimensions may fall within the following guidelines: finger length 324 (L1) is four to six times the dimension of the shaft width 328 (W1); the head thickness 334 (T2) is two to three times the dimension of the shaft thickness 332 (T1); the shaft width 328 is one to 1.3 times the dimension of the head width 330 (W2); and the shaft thickness 332 (T1) is approximately 0.10 times the dimension of the shaft width 328 (W1). Finger couplings manufactured within these guidelines enhance the couplings ability to flex, thus enhancing the coupling attachment's 302 ability to operate through a range of aerodynamic or thermal loads. This ability to flex increases the opportunity for loads to pass from support 312, through coupling attachment 302, and to lobed exhaust mixer 304 without causing undo local or structural stresses. It is noted that alternate guidelines for the manufacture of attachment flanges may be employed while still allowing the coupling attachment 302 to serve as an intermediary between support 312 and lobed exhaust mixer 304.

    [0023] Referring now to Figure 3B, a cross-sectional view taken along line A-A of the exhaust mixing system 300 of Figure 3A is illustrated, according to an embodiment. The exhaust mixing system 300 of Figure 3B includes a set of finger mounting hardware 336 (a.k.a. projection mounting hardware). The finger mounting hardware 336 includes a flat head bolt 338 that passes through the CMC lobed exhaust mixer 304 and a head 340 of the finger coupling 308. The finger mounting hardware 336 also includes a nut 342 that, in conjunction with the flat head bolt 338, affixes the finger coupling 308 to the CMC lobed exhaust mixer 304. Though the finger mounting hardware 336 depicted in Figure 3B includes the nut 342 and the flat head bolt 338, embodiments (not shown) employing other mounting hardware or fastening systems are envisioned.

    [0024] As illustrated in Figure 3B, there is a gap 344 between the second leg 316 of the annulus 306 and the CMC lobed exhaust mixer 304. This gap 344 allows for thermal growth of the annulus 306 and/or the CMC lobed exhaust mixer 304 during operation at increasing temperatures. As such, the potential for binding between a first edge 346 of the CMC lobed exhaust mixer 304 and the annulus 306 is at least minimized when the exhaust mixing system 300 is operating at increasing temperatures. Since the CMC lobed exhaust mixer 304 and support 312 are generally manufactured from different materials, the coupling attachment 302 (with its annulus 306 and plurality of finger couplings 308) serves as an intermediary that reduces local or structural stresses on the system.

    [0025] It is noted that, according to the embodiment depicted in Figure 3B, a thickness 348 (T3) at a mounting region 350 of the CMC lobed exhaust mixer 304 is greater than a thickness 352 (T4) at the first edge 354 of the CMC lobed exhaust mixer 304. The increased thickness 348 (T3) adds integrity to the CMC lobed exhaust mixer 304 where the mounting region 350 meets the head 340 of the finger coupling 308.

    [0026] With reference now to Figure 4, a flowchart 400 represents an exemplary method of manufacturing an exhaust mixing system, (e.g., exhaust mixing system 44 of Figure 1, exhaust mixing system 200 of Figures 2A-2B, and/or exhaust mixing system 300 of Figures 3A-3B).

    [0027] Process control begins at block 402, where the method includes forming a ring having a first leg and a second leg substantially perpendicular to the first leg. Process control then proceeds to block 404, where the method further includes forming a plurality of coupling fingers projecting from the second leg of the ring in a direction substantially parallel to the first leg. Together, the ring and the plurality of coupling fingers form an annular lobed mixer attachment flange. It is contemplated that the ring and coupling fingers may be formed as separate features and then later joined. As such, forming of the coupling fingers may occur prior to, or at the same time as, the forming of the ring. Alternatively, a mold may be employed to fabricate the attachment flange with the ring and coupling fingers as a single unit (or a plurality of semi-annular units).

    [0028] After fabricating the attachment flange (i.e., blocks 402, 404), process control proceeds to block 406, where the method of manufacturing includes fabricating a CMC lobed mixer. It is noted that, though the flowchart 400 depicts the fabrication of the CMC lobed mixer (i.e., block 406) occurring prior to the fabrication of the attachment flange (i.e., block 402, 404), alternate methods of manufacture may fabricate the CMC mixer prior to, or at the same time as, the fabrication off the attachment flange. For example, the Oxide-Oxide CMC mixer may be formed or shaped as a laminate. The laminate process is similar to a process that employs polymer composites, except it is sintered at high temperature and trimmed to design.

    [0029] With continued reference to the flowchart 400 of Figure 4, after fabrication of the CMC lobed mixer, process control proceeds to block 408, where the method includes affixing the CMC lobed mixer to each coupling finger of the plurality of coupling fingers. According to an embodiment, the CMC lobed mixer is coupled to each coupling finger in such a manner to ensure that the CMC lobed mixer does not come in contact with the ring of the attachment flange. That is, the CMC lobed mixer is affixed to the attachment flange such that there is a gap between an upstream end of the CMC lobed mixer and the ring of the attachment flange. It is contemplated that this gap allows for thermal growth of the lobed mixer and/or attachment flange. Accordingly, the possibility of the CMC lobed mixer coming in contact with the ring of the attachment flange during normal high temperature operation is at least minimized.

    [0030] After the CMC lobed mixer is affixed to the attachment flange, process control proceeds to block 410, where the method includes affixing the second leg of the attachment flange ring to an engine interface (e.g., a rear turbine support). The engine interface is an interface employed to couple the exhaust mixer system (i.e., the CMC lobed mixer and the attachment flange) to the turbofan engine. In other words, the CMC lobed mixer and attachment flange are coupled to a turbofan engine via the engine interface. The attachment flange serves as an intermediary between the engine interface and the CMC lobed mixer and, as such, allows loads to pass through the system while minimizing local stresses. It is noted that rivets, nuts and bolts, and/or another type of fastener may be used to fasten the attachment flange to the engine interface.

    [0031] Process control then proceeds to an end after affixing the ring to the engine interface.

    [0032] It is noted that, according to an alternate embodiment, the attachment flange may be attached to the engine interface prior to, or at the same time as, attachment of the CMC lobed mixer to the attachment flange.

    [0033] With regard to the processes, systems, methods, heuristics, etc. described herein, it should be understood that, although the steps of such processes, etc. have been described as occurring according to a certain ordered sequence, such processes could be practiced with the described steps performed in an order other than the order described herein. It further should be understood that certain steps could be performed simultaneously, that other steps could be added, or that certain steps described herein could be omitted. In other words, the descriptions of processes herein are provided for the purpose of illustrating certain embodiments, and should in no way be construed so as to limit the claims.

    [0034] All terms used in the claims are intended to be given their broadest reasonable constructions and their ordinary meanings as understood by those knowledgeable in the technologies described herein unless an explicit indication to the contrary in made herein. In particular, use of the singular articles such as "a," "the," "said," etc. should be read to recite one or more of the indicated elements unless a claim recites an explicit limitation to the contrary.


    Claims

    1. An exhaust mixing system (44, 200, 300) of a turbine engine (10), the exhaust mixing system (44, 200, 300) comprising:
    a lobed exhaust mixer (204, 304) and an attachment flange (206, 302) configured to couple the lobed exhaust mixer (204, 304) to the turbine engine (10), wherein the attachment flange (206, 302) comprises:

    an annulus (210, 306) configured to couple to the turbine engine (10); and

    a plurality of projections (212, 308) extending from the annulus (210, 306) along a first direction (214, 310) toward the lobed exhaust mixer (204, 304) and substantially parallel to a central axis (216) of the annulus (210, 306), wherein the plurality of projections (212, 308) each includes a shaft extending from the annulus (210, 306) and a head by which each of the plurality of projections (212, 308) is configured to couple to the lobed exhaust mixer (204, 304), the head having a head thickness (334) greater than a shaft thickness (332) of the shaft as measured in a radial direction of the annulus (210, 306); and

    wherein the lobed exhaust mixer (204, 304) is comprised of a ceramic matrix composite material.
     
    2. The exhaust mixing system (44, 200, 300) of claim 1, wherein the annulus (210, 306) comprises:

    a first leg (314) having the plurality of projections (212, 308) extending therefrom; and

    a second leg (316) in union with the first leg (314).


     
    3. The exhaust mixing system (44, 200, 300) of claim 2, wherein the first leg (314) is substantially perpendicular to the second leg (316).
     
    4. The exhaust mixing system (44, 200, 300) of any one of claims 1 to 3, wherein the annulus (210, 306) is comprised of a plurality of semi-annuluses.
     
    5. The exhaust mixing system (44, 200, 300) of any one of the preceding claims, wherein a total number of projections (212, 308) in the plurality of projections (212, 308) is at least twice as many as a total number of lobes (208) in the lobed exhaust mixer (204, 304).
     
    6. The exhaust mixing system (44, 200, 300) of any one of the preceding claims, wherein the attachment flange (206, 302) is comprised of a superalloy.
     
    7. The exhaust mixing system (44, 200, 300) of any one of the preceding claims, wherein at least one of:

    a length (324) of each of the plurality of projections (212, 308) is four to six times greater than a shaft width (328) of the shaft as measured in a circumferential direction of the annulus (210, 306);

    the head thickness (334) is two to three times greater than the shaft thickness (332);

    the shaft width (328) is one to 1.3 times greater than a head width (330) of the head as measured in a circumferential direction of the annulus (210, 306); and

    the shaft thickness (332) is approximately 0.10 times smaller than the shaft width (328).


     
    8. The exhaust mixing system (44, 200, 300) of any of the preceding claims, wherein each projection (212, 308) of the plurality of projections (212, 308) includes a void (318) at one end configured to allow mounting hardware (220, 222, 336) to pass therethrough to the lobed exhaust mixer (204, 304) to couple each projection (212, 308) to the lobed exhaust mixer (204, 304).
     
    9. A method (400) of manufacturing an exhaust mixing system (44, 200, 300) according to claim 1 comprising:
    fabricating (402, 404) the attachment flange (206, 302), wherein fabricating the attachment flange (206, 302) comprises:

    forming (402) the annulus (210, 306) having a first leg (314) and a second leg (316) substantially perpendicular to the first leg (314); and

    forming (404) the plurality of projections (212, 308) each having a shaft projecting from the second leg (316) in a direction (214, 310) substantially parallel to the first leg (314), and a head at an end of the shaft opposite the second leg, the head having a thickness (334) greater than a thickness (332) of the shaft.


     
    10. The method (400) of manufacturing of claim 9, further comprising fabricating (406) a lobed exhaust mixer (204, 304) configured to enhance mixing of bypass airflow (38) with core airflow (40), wherein the lobed exhaust mixer (204, 304) comprises a plurality of lobes (208).
     
    11. The method (400) of manufacturing of claim 10, further comprising affixing (410) the second leg (316) of the annulus (210, 306) to an engine interface (202, 312) to couple the attachment flange (206, 302) to a turbofan engine (10).
     
    12. The method (400) of manufacturing of claim 10 or 11, wherein forming (404) the projections (212, 308) comprises forming two to four times as many projections (212, 308) as there are lobes (208) in the plurality of lobes (208).
     
    13. The method (400) of any one of claims 10 to 12, wherein at least one of:

    a length (324) of each of the plurality of projections (212, 308) is four to six times greater than a shaft width (328) of the shaft as measured in a circumferential direction of the annulus (210, 306);

    the head thickness (334) is two to three times greater than the shaft thickness (332) as measured in a radial direction of the annulus (210, 306);

    the shaft width (328) is one to 1.3 times greater than a head width (330) of the head as measured in a circumferential direction of the annulus (210, 306); and

    the shaft thickness (332) is approximately 0.10 times smaller than the shaft width (328).


     
    14. The method (400) of manufacturing of claim 13, wherein affixing (408) the lobed exhaust mixer (204, 304) to each projection (212, 308) of the plurality of projections (212, 308) comprises affixing the lobed exhaust mixer (204, 304) to each projection (212, 308) such that there is a gap (344) between the lobed exhaust mixer (204, 304) and the second leg (316) of the annulus (210, 306).
     


    Ansprüche

    1. Abgasmischsystem (44, 200, 300) eines Turbinentriebwerks (10), wobei das Abgasmischsystem (44, 200, 300) umfasst:

    einen gelappten Abgasmischer (204, 304) und einen Befestigungsflansch (206, 302), der so ausgestaltet ist, dass er den gelappten Abgasmischer (204, 304) an das Turbinentriebwerk (10) koppelt, wobei der Befestigungsflansch (206, 302) umfasst:

    einen Ring (210, 306), der so ausgestaltet ist, dass er sich an das Turbinentriebwerk (10) koppelt; und

    eine Mehrzahl von Vorsprüngen (212, 308), die sich von dem Ring (210, 306) aus entlang einer ersten Richtung (214, 310) zu dem gelappten Abgasmischer (204, 304) hin und im Wesentlichen parallel zu einer Mittelachse (216) des Rings (210, 306) erstreckt, wobei jeder der Mehrzahl von Vorsprüngen (212, 308) einen Schaft, der sich von dem Ring (210, 306) aus erstreckt, und einen Kopf, mittels dessen jeder der Mehrzahl von Vorsprüngen (212, 308) so ausgestaltet ist, dass er sich an den gelappten Abgasmischer (204, 304) koppelt, beinhaltet, wobei der Kopf eine Kopfdicke (334) aufweist, die, gemessen in einer radialen Richtung des Rings (210, 306), größer als eine Schaftdicke (332) des Schaftes ist; und

    wobei der gelappte Abgasmischer (204, 304) aus einem Keramik-Matrix-Verbundwerkstoff zusammengesetzt ist.


     
    2. Abgasmischsystem (44, 200, 300) nach Anspruch 1, wobei der Ring (210, 306) umfasst:

    einen ersten Schenkel (314), von dem aus sich die Mehrzahl von Vorsprüngen (212, 308) erstreckt; und

    einen zweiten Schenkel (316) in Verbindung mit dem ersten Schenkel (314).


     
    3. Abgasmischsystem (44, 200, 300) nach Anspruch 2, wobei der erste Schenkel (314) im Wesentlichen lotrecht zu dem zweiten Schenkel (316) verläuft.
     
    4. Abgasmischsystem (44, 200, 300) nach einem der Ansprüche 1 bis 3, wobei der Ring (210, 306) aus einer Mehrzahl von Halbringen zusammengesetzt ist.
     
    5. Abgasmischsystem (44, 200, 300) nach einem der vorangehenden Ansprüche, wobei eine Gesamtzahl von Vorsprüngen (212, 308) in der Mehrzahl von Vorsprüngen (212, 308) mindestens das Doppelte einer Gesamtzahl von Lappen (208) in dem gelappten Abgasmischer (204, 304) beträgt.
     
    6. Abgasmischsystem (44, 200, 300) nach einem der vorangehenden Ansprüche, wobei der Befestigungsflansch (206, 302) aus einer Superlegierung zusammengesetzt ist.
     
    7. Abgasmischsystem (44, 200, 300) nach einem der vorangehenden Ansprüche, wobei:

    eine Länge (324) jedes der Mehrzahl von Vorsprüngen (212, 308) vier- bis sechsmal größer als eine Schaftbreite (328) des Schaftes, gemessen in einer Umfangsrichtung des Rings (210, 306), ist; oder/und

    die Kopfdicke (334) zwei- bis dreimal größer als die Schaftdicke (332) ist; oder/und

    die Schaftbreite (328) ein- bis 1,3-mal größer als eine Kopfbreite (330) des Kopfes, gemessen in einer Umfangsrichtung des Rings (210, 306), ist; oder/und

    die Schaftdicke (332) ca. 0,10-mal kleiner als die Schaftbreite (328) ist.


     
    8. Abgasmischsystem (44, 200, 300) nach einem der vorangehenden Ansprüche, wobei jeder Vorsprung (212, 308) der Mehrzahl von Vorsprüngen (212, 308) einen Hohlraum (318) an einem Ende beinhaltet, der so ausgestaltet ist, dass er ermöglicht, dass Montagekleinteile (220, 222, 336) durch ihn hindurch zu dem gelappten Abgasmischer (204, 304) gehen, um jeden Vorsprung (212, 308) an den gelappten Abgasmischer (204, 304) zu koppeln.
     
    9. Verfahren (400) zur Herstellung eines Abgasmischsystems (44, 200, 300) nach Anspruch 1, umfassend:
    Fertigen (402, 404) des Befestigungsflansches (206, 302), wobei das Fertigen des Befestigungsflansches (206, 302) umfasst:

    Bilden (402) des Rings (210, 306) mit einem ersten Schenkel (314) und einem zweiten Schenkel (316), der im Wesentlichen lotrecht zu dem ersten Schenkel (314) verläuft; und

    Bilden (404) der Mehrzahl von Vorsprüngen (212, 308), die jeweils einen Schaft, der von dem zweiten Schenkel (316) in einer im Wesentlichen parallel zu dem ersten Schenkel (314) verlaufenden Richtung (214, 310) vorspringt, und einen Kopf an einem dem zweiten Schenkel gegenüber liegenden Ende des Schaftes aufweisen, wobei der Kopf eine Dicke (334) aufweist, die größer als eine Dicke (332) des Schaftes ist.


     
    10. Verfahren (400) zur Herstellung nach Anspruch 9, ferner umfassend das Fertigen (406) eines gelappten Abgasmischers (204, 304), der so ausgestaltet ist, dass er das Mischen eines Nebenluftstroms (38) mit einem Kernluftstrom (40) verbessert, wobei der gelappte Abgasmischer (204, 304) eine Mehrzahl von Lappen (208) umfasst.
     
    11. Verfahren (400) zur Herstellung nach Anspruch 10, ferner umfassend das Befestigen (410) des zweiten Schenkels (316) des Rings (210, 306) an einer Triebwerksanschlussstelle (202, 312), um den Befestigungsflansch (206, 302) an ein Turbofantriebwerk (10) zu koppeln.
     
    12. Verfahren (400) zur Herstellung nach Anspruch 10 oder 11,
    wobei das Bilden (404) der Vorsprünge (212, 308) das Bilden von zwei- bis viermal so vielen Vorsprüngen (212, 308) umfasst, wie Lappen (208) in der Mehrzahl von Lappen (208) vorhanden sind.
     
    13. Verfahren (400) nach einem der Ansprüche 10 bis 12, wobei:

    eine Länge (324) jedes der Mehrzahl von Vorsprüngen (212, 308) vier- bis sechsmal größer als eine Schaftbreite (328) des Schaftes, gemessen in einer Umfangsrichtung des Rings (210, 306), ist; oder/und

    die Kopfdicke (334) zwei- bis dreimal größer als die Schaftdicke (332), gemessen in einer radialen Richtung des Rings (210, 306), ist; oder/und

    die Schaftbreite (328) ein- bis 1,3-mal größer als eine Kopfbreite (330) des Kopfes, gemessen in einer Umfangsrichtung des Rings (210, 306), ist; oder/und

    die Schaftdicke (332) ca. 0,10-mal kleiner als die Schaftbreite (328) ist.


     
    14. Verfahren (400) zur Herstellung nach Anspruch 13, wobei das Befestigen (408) des gelappten Abgasmischers (204, 304) an jedem Vorsprung (212, 308) der Mehrzahl von Vorsprüngen (212, 308) das Befestigen des gelappten Abgasmischers (204, 304) an jedem Vorsprung (212, 308) derart, dass eine Lücke (344) zwischen dem gelappten Abgasmischer (204, 304) und dem zweiten Schenkel (316) des Rings (210, 306) vorhanden ist, umfasst.
     


    Revendications

    1. Système de mélange d'échappement (44, 200, 300) d'un moteur à turbine (10), le système de mélange d'échappement (44, 200, 300) comprenant :

    un mélangeur d'échappement à lobes (204, 304) et une bride de fixation (206, 302) configurée pour relier le mélangeur d'échappement à lobes (204, 304) au moteur à turbine (10), dans lequel la bride de fixation (206, 302) comprend :

    une bague (210, 306) configurée pour être reliée au moteur à turbine (10) ; et

    une pluralité de saillies (212, 308) qui s'étendent depuis la bague (210, 306) le long d'une première direction (214, 310), vers le mélangeur d'échappement à lobes (204, 304) et sensiblement parallèle à un axe central (216) de la bague (210, 306), dans lequel les saillies (212, 308) comprennent chacune un axe qui s'étend depuis la bague (210, 306) et une tête grâce à laquelle chacune de la pluralité de saillies (212, 308) est configurée pour être reliée au mélangeur d'échappement à lobes (204, 304), la tête ayant une épaisseur de tête (334) supérieure à une épaisseur d'axe (332) de l'axe mesurée dans une direction radiale de la bague (210, 306) ; et

    dans lequel le mélangeur d'échappement à lobes (204, 304) est composé d'un matériau composite à matrice de céramique.


     
    2. Système de mélange d'échappement (44, 200, 300) selon la revendication 1, dans lequel la bague (210, 306) comprend :

    un premier montant (314) ayant la pluralité de saillies (212, 308) qui s'étendent depuis celui-ci ; et

    un second montant (316) uni au premier montant (314).


     
    3. Système de mélange d'échappement (44, 200, 300) selon la revendication 2, dans lequel le premier montant (314) est sensiblement perpendiculaire au second montant (316).
     
    4. Système de mélange d'échappement (44, 200, 300) selon l'une quelconque des revendications 1 à 3, dans lequel la bague (210, 306) est composée d'une pluralité de demi-bagues.
     
    5. Système de mélange d'échappement (44, 200, 300) selon l'une quelconque des revendications précédentes, dans lequel un nombre total de saillies (212, 308) de la pluralité de saillies (212, 308) est au moins deux fois supérieur au nombre total de lobes (208) du mélangeur d'échappement à lobes (204, 304).
     
    6. Système de mélange d'échappement (44, 200, 300) selon l'une quelconque des revendications précédentes, dans lequel la bride de fixation (206, 302) est composée d'un superalliage.
     
    7. Système de mélange d'échappement (44, 200, 300) selon l'une quelconque des revendications précédentes, dans lequel au moins l'un de :

    une longueur (324) de chacune de la pluralité de saillies (212, 308) est quatre à six fois supérieure à une largeur d'axe (328) de l'axe mesurée dans une direction circonférentielle de la bague (210, 306) ;

    l'épaisseur de tête (334) est deux à trois fois supérieure à l'épaisseur d'arbre (332) ;

    la largeur d'arbre (328) est une à 1,3 fois supérieure à une largeur de tête (330) de la tête mesurée dans une direction circonférentielle de la bague (210, 306) ; et

    l'épaisseur d'arbre (332) est environ 0,10 fois inférieure à la largeur d'arbre (328).


     
    8. Système de mélange d'échappement (44, 200, 300) selon l'une quelconque des revendications précédentes, dans lequel chaque saillie (212, 308) de la pluralité de saillies (212, 308) comprend un vide (318) à une extrémité, configuré pour permettre à un matériel de montage (220, 222, 336) de passer à travers, jusqu'au mélangeur d'échappement à lobes (204, 304), de façon à relier chaque saillie (212, 308) au mélangeur d'échappement à lobes (204, 304).
     
    9. Procédé (400) de fabrication d'un système de mélange d'échappement (44, 200, 300) selon la revendication 1, comprenant :
    la fabrication (402, 404) de la bride de fixation (206, 302), dans lequel la fabrication de la bride de fixation (206, 302) comprend :

    la formation (402) de la bague (210, 306) ayant un premier montant (314) et un second montant (316) sensiblement perpendiculaire au premier montant (314) ; et

    la formation (404) de la pluralité de saillies (212, 308) ayant chacune un axe qui se projette depuis le second montant (316) dans une direction (214, 310) sensiblement parallèle au premier montant (314), et une tête à une extrémité de l'axe opposée au second montant, la tête ayant une épaisseur (334) supérieure à une épaisseur (332) de l'axe.


     
    10. Procédé (400) de fabrication selon la revendication 9, comprenant en outre la fabrication (406) d'un mélangeur d'échappement à lobes (204, 304) configuré pour améliorer le mélange d'un flux d'air de dérivation (38) avec un flux d'air central (40), dans lequel le mélangeur d'échappement à lobes (204, 304) comprend une pluralité de lobes (208).
     
    11. Procédé (400) de fabrication selon la revendication 10, comprenant en outre la fixation (410) du second montant (316) de la bague (210, 306) sur une interface de moteur (202, 312) afin de relier la bride de fixation (206, 302) à un moteur à double flux (10).
     
    12. Procédé (400) de fabrication selon la revendication 10 ou 11, dans lequel la formation (404) des saillies (212, 308) comprend la formation de deux à quatre fois plus de saillies (212, 308) qu'il n'y a de lobes (208) dans la pluralité de lobes (208).
     
    13. Procédé (400) de fabrication selon l'une quelconque des revendications 10 à 12, dans lequel au moins l'un de :

    une longueur (324) de chacune de la pluralité de saillies (212, 308) est quatre à six fois supérieure à une largeur d'axe (328) de l'axe mesurée dans une direction circonférentielle de la bague (210, 306) ;

    l'épaisseur de tête (334) est deux à trois fois supérieure à l'épaisseur d'arbre (332) mesurée dans une direction radiale de la bague (210, 306) ;

    la largeur d'axe (328) est une à 1,3 fois supérieure à une largeur de tête (330) de la tête mesurée dans une direction circonférentielle de la bague (210, 306) ; et

    l'épaisseur d'arbre (332) est environ 0,10 fois inférieure à la largeur d'axe (328).


     
    14. Procédé (400) de fabrication selon la revendication 13, dans lequel la fixation (408) du mélangeur d'échappement à lobes (204, 304) sur chaque saillie (212, 308) de la pluralité de saillies (212, 308) comprend la fixation du mélangeur d'échappement à lobes (204, 304) sur chaque saillie (212, 308) de sorte qu'il y ait un espace (344) entre le mélangeur d'échappement à lobes (204, 304) et le second montant (316) de la bague (210, 306).
     




    Drawing


















    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description