(19)
(11)EP 3 032 303 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
10.06.2020 Bulletin 2020/24

(21)Application number: 14307007.6

(22)Date of filing:  11.12.2014
(51)International Patent Classification (IPC): 
G02B 6/293(2006.01)
G02F 1/01(2006.01)
H01S 5/14(2006.01)
G02B 6/12(2006.01)
G02F 1/225(2006.01)

(54)

Optical device with integrated reflector(s) comprising a loop reflector integrating a mach-zehnder interferometer

Optische Vorrichtung mit integriertem/integrierten Reflektor(en) mit Schlaufenreflektor mit einem Mach-Zehnder-Interferometer

Dispositif optique avec réflecteur(s) intégré(s) comprenant un réflecteur de boucle intégrant un interféromètre de Mach-Zehnder


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
15.06.2016 Bulletin 2016/24

(73)Proprietors:
  • Alcatel Lucent
    91620 Nozay (FR)
  • Commissariat à l'Energie Atomique et aux Energies Alternatives
    75015 Paris (FR)
  • Thales
    92200 Neuilly Sur Seine (FR)

(72)Inventor:
  • Le Liepvre, Alban
    91460 MARCOUSSIS (FR)

(74)Representative: Novagraaf Technologies 
Bâtiment O2 2, rue Sarah Bernhardt CS90017
92665 Asnières-sur-Seine Cedex
92665 Asnières-sur-Seine Cedex (FR)


(56)References cited: : 
EP-A2- 1 024 378
US-A- 5 892 869
US-A1- 2003 235 367
US-A- 5 453 836
US-A1- 2003 202 743
  
  • MADSEN C K ET AL: "Integrated all-pass filters for tunable dispersion and dispersion slope compensation", IEEE PHOTONICS TECHNOLOGY LETTERS, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 11, no. 12, 1 December 1999 (1999-12-01), pages 1623-1625, XP011426069, ISSN: 1041-1135, DOI: 10.1109/68.806867
  • LENZ G ET AL: "General Optical All-Pass Filter Structures for Dispersion Control in WDM Systems", JOURNAL OF LIGHTWAVE TECHNOLOGY, IEEE SERVICE CENTER, NEW YORK, NY, US, vol. 17, no. 7, 1 July 1999 (1999-07-01), XP011029460, ISSN: 0733-8724
  • JINGUJI K ET AL: "MACH-ZEHNDER INTERFEROMETER TYPE OPTICAL WAVEGUIDE COUPLER WITH WAVELENGTH-FLATTENED COUPLING RATIO", ELECTRONICS LETTERS, IEE STEVENAGE, GB, vol. 26, no. 17, 16 August 1990 (1990-08-16), page 1326/1327, XP000108989, ISSN: 0013-5194
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

Field of the Invention



[0001] The present invention relates to optical devices comprising reflector(s).

Background



[0002] As it is known by those skilled in the art, a lot of optical devices need one or more reflectors for providing their functionalities. This is notably the case of Fabry-Perot lasers, tunable lasers, RSOA ("Reflective Semiconductor Optical Amplifier"), reflective arrayed waveguide grating (or R-AWG), echelle gratings as well as more complex photonics integrated circuits (or PIC).

[0003] Actually, cleaved facets are the standart way to realize reflectors for integrated waveguides. Once these cleaved facets have received a coating they can provide a controlled level of reflection, because a fine tuning of the reflection coefficient can be set by the coating parameters (and notably the thickness and the type of material). However, this solution is not integrated and cannot be implemented within a PIC, for instance between a laser and a modulator inside an integrated laser modulator (or ILM). Furthermore, with the developpement of wide gain active components, broadband passive elements are now required in order to benefit from these active components. So, there is now a great demand for integrated broadband controlled reflectors. This is notably the case in widely tunable lasers where they may be used for the feedback control.

[0004] Two main solutions have been proposed for realizing integrated reflectors (or mirrors): bragg reflectors and reflective loops.

[0005] A bragg reflector consist in teeth etched in a chosen zone of a waveguide. When the index difference between the optical mode in the chosen etched zone and in the non-etched zone of the waveguide is large, a relatively broadband reflection can be achieved. However there are significant losses and a wavelength dependence that is an issue for obtaining a controlled reflection coefficient over a wide wavelength range.

[0006] A reflective loop can be realized with MMI ("MultiMode Interference") coupler(s) or directional coupler(s). An example of reflective loop comprising a directional coupler is schematically illustrated in Figure 1. This type of reflector allows the reflection/transmission ratio to be set by means of a judicious choice of the coupling coefficient, is easier to implement compared to a bragg grating because the critical dimension is relaxed, and induces very low loss and offers performances tolerant to fabrication variations. However, it does not show a broadband behavior because of the large variation of the coupling coefficient with the wavelength.
XP011426069 (Madsen C. K. et AL, IEEE Photonics Technology Letters , vol. 11, no. 12, 1 December 1999, pages 1623-1625) discloses integrated all-pass filters for tunable dispersion and dispersion slope compensation. US 2003/202743 A1 discloses a wavelength dispersion compensating filter constructed by serially connecting two or more Mach-Zehnder interferometers.
XP011029460 (LENZ G. et AL, Journal Of Lightwave Technology, vol. 17, no. 7, 1 July 1999) discloses general optical all-pass filter structures for dispersion control in WDM systems comprising ring resonators.
US 5,453,836 discloses a fiber optic laser rotation sensor utilizing a fiber loop reflector. Another optical device with two couplers and a MZI interlaced in between is known from XP000108989 (MACH-ZEHNDER INTERFEROMETER TYPE OPTICAL WAVEGUIDE COUPLER WITH WAVELENGTH-FLATTENED COUPLING RATIO, from JINGUJI K.ET AL., ELECTRONICS LETTERS 1990-08-16)

Summary



[0007] So an object of this invention is to improve the situation.

[0008] In an embodiment, an optical device comprises a substrate on which is defined at least one primary waveguide defining a loop reflector, comprising first and second directional couplers, and a Mach-Zehnder interferometer intercalated between the first and second directional couplers and arranged for compensating a wavelength dependence of these directional couplers.

[0009] So, the optical device now comprises one or more integrated broadband reflectors with low losses and offering several degrees of freedom allowing to adjust the reflection/transmission coefficient and to obtain a flat response on more than 100 nm to 500 nm.

[0010] The optical device may include additional characteristics considered separately or combined, and notably:
  • each primary waveguide may be a rib or strip waveguide defined onto a silicon substrate;
  • each rib or strip waveguide may be made of silicon;
  • each rib or strip waveguide may have a full thickness comprised between approximately 200 nm and approximately 500 nm, and an etched part with a local thickness comprised between approximately 50 nm and approximately 500 nm and with a width comprised between approximately 200 nm and approximately 800 nm;
  • the first directional coupler may have a length comprised between approximately 5 µm and approximately 200 µm, the second directional coupler may have a length comprised between approximately 5 µm and approximately 200 µm, and the Mach-Zehnder interferometer may have a length comprised between approximately 0,1 µm and approximately 2 µm;
  • in a first embodiment, it may comprise first and second primary waveguides, each having an input/output end, a secondary waveguide comprising a gain section intercalated between a first end, connected to the input/output end of the first primary waveguide, and a second end, a ring resonator intercalated between the second end of the secondary waveguide and the input/output end of the second primary waveguide, and a heating means defined over the ring resonator and arranged for controlling a filter peak wavelength of the ring resonator and for selecting a laser optical mode;
  • in a second embodiment, it may comprise first and second primary waveguides, each having an input/output end, a secondary waveguide comprising a gain section intercalated between a first end, connected to the input/output end of the first primary waveguide, and a second end, an intermediate waveguide comprising first and second ends, a first ring resonator with a wavelength spectral filtering and intercalated between the second end of the secondary waveguide and the first end of the intermediate waveguide for coupling the secondary waveguide to the intermediate waveguide, a first heating means defined over the first ring resonator and arranged for controlling a filter peak wavelength of this first ring resonator, a second ring resonator with a wavelength spectral filtering and intercalated between the second end of the intermediate waveguide and the input/output end of the second primary waveguide, and a second heating means defined over the second ring resonator and arranged for controlling a filter peak wavelength of this second ring resonator;
  • the first primary waveguide may be a reflector with a reflection coefficient comprised between approximately 80% and approximately 100%, and the second primary waveguide may be a reflector with a reflection coefficient comprised between approximately 10% and approximately 60% and comprising an output for delivering photons. In a variant, the second primary waveguide may be a reflector with a reflection coefficient comprised between approximately 80% and approximately 100%, and the first primary waveguide may be a reflector with a reflection coefficient comprised between approximately 10% and approximately 60% and comprising an output for delivering photons;
  • it may further comprise an integrated element chosen from a group comprising a semiconductor optical amplifier (or SOA), a silicon photonic modulator (or SPM), a semiconductor electroabsorption modulator (EAM), a silicon photonic coherent mixer coupled to balanced photodiodes, and comprising an end connected to an output end of one of the first and second primary waveguides that is intended for delivering photons;
  • in a third embodiment, it may comprise at least two primary waveguides and a reflective arrayed waveguide grating or an echelle grating comprising at least one input connected to an input waveguide, at least two outputs connected respectively to output waveguides and at least two inputs/outputs connected respectively to output ends of the primary waveguides via waveguides.

Brief Description of the Figures



[0011] Some embodiments of an optical device in accordance with embodiments of the present invention are now described, by way of examples only, and with reference to the accompanying drawings, in which:
  • Figure 1 schematically illustrates, in a top view, an example of loop reflector of the state of art, and
  • Figures 2 to 9 schematically illustrates, in a top view, eight examples of embodiment of an optical device according to the invention.

Description of Embodiments



[0012] Hereafter is notably disclosed an integrated optical device 1 comprising at least one integrated broadand reflector 3j.

[0013] Eight examples of an optical device 1 according to the invention are schematically illustrated in Figures 2 to 9. As illustrated, such an optical device 1 comprises a substrate 2 and at least one primary waveguide 3j defined on this substrate 2.

[0014] Each primary waveguide 3j defines a loop reflector, that comprises first 41 and second 42 directional couplers, and a Mach-Zehnder interferometer 5, that is intercalated (and integrated) between the first 41 and second 42 directional couplers and arranged for compensating a wavelength dependence of the directional couplers 4i (i = 1 or 2).

[0015] So, each primary waveguide 3j can be considered as a reflective wideband wavelength insensitive coupler (or RWINC), i.e. a new type of WINC working in a reflective mode.

[0016] It is recalled that a WINC ("Wideband wavelength INsensitive Coupler") comprises two coupled waveguides defining together two directional couplers separated by a Mach-Zehnder configuration intended for compensating their wavelength dependence, but without providing any feedback into the same waveguide. Details of a WINC can be found in the document of Takagi, A; Jinguji, K.; Kawachi, M., "Silica-based waveguide-type wavelength-insensitive couplers (WINC's) with series-tapered coupling structure", IEEE Journal of Lightwave Technology, vol.10, n°12, pp.1814,1824, Dec 1992.

[0017] So, each primary waveguide 3j (or RWINC) offers several degrees of freedom allowing to adjust its reflection/transmission coefficient and to obtain a flat response on more than 100 nm to 500 nm. These degrees of freedom follows from the respective designs of the first 41 and second 42 directional couplers and the Mach-Zehnder interferometer 5.

[0018] For instance, each primary waveguide 3j may be a rib or strip waveguide that is defined onto a silicon substrate 2, possibily with interposition of an intermediate dielectric layer of SiO2 material and possibly buried by a dielectric material.

[0019] It is recalled that a rib waveguide is a waveguide that is partially etched, and a strip waveguide is a completely etched waveguide, possibly buried by dielectric material.

[0020] In the case where the rib or strip waveguide 3j is defined onto a silicon substrate 2, it can be also made of silicon. For instance, this rib or strip waveguide 3j may have a full thickness (in its non-etched part) comprised between approximately 200 nm and approximately 500 nm, and an etched part with a local thickness comprised between approximately 50 nm and approximately 500 nm and with a width comprised between approximately 200 nm and approximately 800 nm.

[0021] Also for instance, the first directional coupler 41 may have a length comprised between approximately 5 µm and approximately 200 µm, the second directional coupler 42 may have a length comprised between approximately 5 µm and approximately 200 µm, and the Mach-Zehnder interferometer 5 may have a length comprised between approximately 0.1 µm and approximately 2 µm.

[0022] The intervals of values given in the two last paragraphs contain values allowing to control the power reflection/transmission of each primary waveguide 3j in combination with its shape.

[0023] As an example, for obtaining an input power reflection equal to 20%, the full thickness of the rib waveguide may be approximately equal to 300 nm, the rib local (or intermediate) thickness may be approximately equal to 150 nm, the rib width may be approximately equal to 550 nm, the first directional coupler length may be approximately equal to 13.29 µm, the second directional coupler length may be approximately equal to 7.35 µm, and the Mach-Zehnder interferometer length may be approximately equal to 0.267 µm.

[0024] The values given in the last paragraph allow a working at a center wavelength of 1.3 µm on a wavelength window covering approximately 200 nm from approximately 1200 nm to approximately 1400 nm, with transmission and reflection power variations remaining under 0.1 dB.

[0025] It is important to note that the RWINC 3j is robust against the fabrication variations. Indeed, when the waveguide width is increased by 10 nm (for instance from 550 nm to 560 nm), while keeping the other parameters constant, the reflection and transmission coefficients remain within 0.1 dB.

[0026] As illustrated in Figure 2 to 9, one or more primary waveguides 32 may be combined with one or more other integrated optical elements or components.

[0027] In the non-limiting first example illustrated in Figure 2, the optical device 1 comprises a first primary waveguides 31 defining a RWINC and having an input end and an output end.

[0028] In the non-limiting second and third examples illustrated in Figures 3 and 4, the optical device 1 comprises first 31 and second 32 primary waveguides defining two RWINCs, a secondary waveguide 6, a ring resonator 7 and a heating means 8 in order to define a hybrid laser 18 or 18' with a broadband and controlled feedback provided by the two RWINCs 3j. Each primary waveguide 3j has an input/output end. The secondary waveguide 6 comprises a gain section, for instance made of Indium Phosphide (or InP), and intercalated between first and second ends. The first end of the secondary waveguide 6 is connected to the input/output end of the first primary waveguide 31. The ring resonator 7 is intercalated between the second end of the secondary waveguide 6 and the input/output end of the second primary waveguide 32. The heating means 8 is defined over the ring resonator 7 and is arranged for controlling the filter peak wavelength of the ring resonator 7 and for selecting a laser optical mode.

[0029] In the non-limiting example illustrated in Figure 3, the first primary waveguide 31 is a reflector with a reflection coefficient comprised between approximately 80% and approximately 100%, while the second primary waveguide 32 is an other reflector with a reflection coefficient comprised between approximately 10% and approximately 60% and that comprises an output 20 for delivering photons generated by the hybrid laser 18. For instance, the reflection coefficient of the second primary waveguide 32 may be equal to 30%.

[0030] In the non-limiting example illustrated in Figure 4, the second primary waveguide 32 is a reflector with a reflection coefficient comprised between approximately 80% and approximately 100%, while the first primary waveguide 31 is an other reflector with a reflection coefficient comprised between approximately 10% and approximately 60% and that comprises an output 20' for delivering photons generated by the hybrid laser 18'. For instance, the reflection coefficient of the first primary waveguide 31 may be equal to 30%.

[0031] In the non-limiting examples illustrated in Figure 3 and 4, the laser cavity includes one gain section and one ring resonator (RR) acting as a filter for single mode selection. In the configuration of Figure 3, the RWINC partial reflector for the output is located after the ring resonator RR. In the configuration of Figure 4, the RWINC partial reflector for the output is located after the gain section. In the configuration of Figure 3, the side mode suppression ratio (SMSR) is expected to be better than in the configuration of Figure 4, but the output power is expected to be lower.

[0032] In the non-limiting fourth and fifth examples illustrated in Figures 5 and 6, the optical device 1 comprises first 31 and second 32 primary waveguides defining two RWINCs, a secondary waveguide 6, an intermediate waveguide 9, a first ring resonator 10 acting as a filter, a second ring resonator 11 acting as a filter, and first 12 and second 12' heating means to respectively tune the first 10 and second 11 ring resonators in order to define an other hybrid laser 19 or 19' with a broadband and controlled feedback provided by the two RWINCs 3j. Each primary waveguide 3j has an input/output end. The secondary waveguide 6 comprises a gain section, for instance made of Indium Phosphide (or InP), and intercalated between first and second ends. The first end of the secondary waveguide 6 is connected to the input/output end of the first primary waveguide 31. The intermediate waveguide 9 comprises first and second ends. The first ring resonator 10 is intercalated between the second end of the secondary waveguide 6 and the first end of the intermediate waveguide 9 for coupling this secondary waveguide 6 to this intermediate waveguide 9. The heating means 12 is defined over the first ring resonator 10 and is arranged for controlling the peak wavelength of this first ring resonator 10. The second ring resonator 11 is intercalated between the second end of the intermediate waveguide 9 and the input/output end of the second primary waveguide 32. The heating means 12' is defined over the second ring resonator 11 and is arranged for controlling the peak wavelength of this second ring resonator 11. Coordinated tuning of both first 10 and second 11 ring resonators filters allow for single mode selection and laser wavelength tuning.

[0033] The use of first 10 and second 11 ring resonators filters can allow for a larger tuning range and a better side mode suppression ratio (SMSR) for the laser. Usually, the first 10 and second 11 ring resonators have a slightly different Free Spectral Range (FSR) resulting in a composite filter with very large FSR. Vernier effect is being used to obtain large tuning ranges. Hyrbid laser making use of this filtering technique to obtain a wide tuning range are described in Le Liepvre, A.; Jany, C.; Accard, A.; Lamponi, M.; Poingt, F.; Make, D.; Lelarge, F.; Fedeli, J.-M.; Messaoudene, S.; Bordel, D.; Duan, G.-H., "Widely wavelength tunable hybrid III-V/silicon laser with 45 nm tuning range fabricated using a wafer bonding technique", Group IV Photonics (GFP), 2012 IEEE 9th International Conference, pp.54,56, 29-31 Aug. 2012.

[0034] In the non-limiting example illustrated in Figure 5, the first primary waveguide 31 is a reflector with a reflection coefficient approximately equal to 100%, while the second primary waveguide 32 is an other reflector with a reflection coefficient comprised between approximately 10% and approximately 60% and that comprises an output 20 for delivering photons generated by the hybrid laser 19. For instance, the reflection coefficient of the second primary waveguide 32 may be equal to 30%.

[0035] In the non-limiting example illustrated in Figure 6, the second primary waveguide 32 is a reflector with a reflection coefficient approximately equal to 100%, while the first primary waveguide 31 is an other reflector with a reflection coefficient comprised between approximately 10% and approximately 60% and that comprises an output 20' for delivering photons generated by the hybrid laser 19'. For instance, the reflection coefficient of the first primary waveguide 31 may be equal to 30%.

[0036] In the non-limiting sixth and seventh examples illustrated in Figures 7 and 8, the optical device 1 comprises a hybrid laser 18, 18', 19 or 19' (such as the ones illustrated in Figures 3 to 6) combined with an integrated element that may be chosen from a group comprising a semiconductor optical amplifier (or SOA) 21, a silicon photonic modulator (or SPM) 21 or a semiconductor electroabsorbtion modulator (EAM) 21, and a silicon photonic coherent mixer 22 coupled to balanced photodiodes 23, for instance. Each integrated element comprises an end connected to an output end delivering photons and belonging to one of the first 31 and second 32 primary waveguides of the hybrid laser 18, 18', 19 or 19'. The hybrid laser could be also of the Fabry-Perot type, notably in the case where it is coupled to a silicon photonic modulator.

[0037] The use of RWINCs 3j in a tunable laser allows a robustness of fabrication, broadband performances in low loss and flat response, and a controlled reflectivity.

[0038] In the non-limiting eighth example illustrated in Figure 9, the optical device 1 comprises at least two primary waveguides 3j combined with a reflective arrayed waveguide grating (or R-AWG) 24 or an echelle grating. The use of flat reflectors (RWINCs) 3j allows large wavelength windows.

[0039] The reflective arrayed waveguide grating 24 or echelle grating comprises at least one input connected to an input waveguide 25 defined on the substrate 1, at least two outputs connected respectively to output waveguides 26 defined on the substrate 1, and at least two inputs/outputs connected respectively to output ends of the primary waveguides 3j via waveguides 27 defined on the substrate 1. In the non-limiting example illustrated in Figure 9, the reflective arrayed waveguide grating 24 comprises one input connected to an input waveguide 25, four outputs connected respectively to four output waveguides 26, and seven inputs/outputs connected respectively to output ends of seven primary waveguides 3j via seven waveguides 27. But the respective numbers of inputs, outputs and inputs/outputs of the reflective arrayed waveguide grating 24 could be different from the ones illustrated in Figure 9.

[0040] The invention offers several advantages, amongst which:
  • the integration of reflectors with other integrated optical elements (or components), which is not the case when the reflector comprises cleaved facets,
  • an extended wavelength window compare to the one offered by a loop reflector,
  • an extended wavelength window and lower losses compare to the ones offered by a bragg reflector.


[0041] It should be appreciated by those skilled in the art that any block diagram herein represent conceptual views of illustrative circuitry embodying the principles of the invention.

[0042] The description and drawings merely illustrate the principles of the invention. It will thus be appreciated that those skilled in the art will be able to devise various arrangements that, although not explicitly described or shown herein, embody the principles of the invention and are included within the scope of the appended claims. Furthermore, all examples recited herein are principally intended expressly to be only for pedagogical purposes to aid the reader in understanding the principles of the invention and the concepts contributed by the inventor(s) to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention, as well as specific examples thereof, are intended to encompass equivalents thereof.


Claims

1. Optical device (1) comprising a substrate (2) on which is defined at least one primary waveguide (3j) defining a loop reflector, comprising first (41) and second (42) directional couplers, and a Mach-Zehnder interferometer (5) characterised in that said Mach-Zehnder interferometer (5) is intercalated between said first (41) and second (42) directional couplers and arranged for compensating a wavelength dependence of said directional couplers (4i).
 
2. Optical device according to claim 1, wherein said primary waveguide (3j) is a rib or strip waveguide defined onto a silicon substrate (2).
 
3. Optical device according to claim 2, wherein said rib or strip waveguide is made of silicon.
 
4. Optical device according to claim 3, wherein said rib waveguide has a full thickness comprised between approximately 200 nm and approximately 500 nm, and an etched part with a local thickness comprised between approximately 50 nm and approximately 500 nm and with a width comprised between approximately 200 nm and approximately 800 nm.
 
5. Optical device according to one of claims 3 and 4, wherein said first directional coupler (41) has a length comprised between approximately 5 µm and approximately 200 µm, said second directional coupler (42) has a length comprised between approximately 5 µm and approximately 200 µm, and said Mach-Zehnder interferometer (5) has a length comprised between approximately 0.1 µm and approximately 2 µm.
 
6. Optical device according to one of claims 1 to 5, wherein it comprises first (31) and second (32) primary waveguides, each having an input/output end, a secondary waveguide (6) comprising a gain section intercalated between a first end, connected to the input/output end of said first primary waveguide (31), and a second end, a ring resonator (7) intercalated between the second end of said secondary waveguide (6) and the input/output end of said second primary waveguide (32), and a heating means (8) defined over said ring resonator (7) and arranged for controlling a filter peak wavelength of said ring resonator (7) and for selecting a laser optical mode.
 
7. Optical device according to one of claims 1 to 5, wherein it comprises first (31) and second (32) primary waveguides, each having an input/output end, a secondary waveguide (6) comprising a gain section intercalated between a first end, connected to the input/output end of said first primary waveguide (31), and a second end, an intermediate waveguide (9) comprising first and second ends, a first ring resonator (10) with a wavelength spectral filtering and intercalated between the second end of said secondary waveguide (6) and the first end of said intermediate waveguide (9) for coupling said secondary waveguide (6) to said intermediate waveguide (9), a first heating means (12) defined over said first ring resonator (10) and arranged for controlling a filter peak wavelength of said first ring resonator (10), a second ring resonator (11) with a wavelength spectral filtering and intercalated between the second end of said intermediate waveguide (9) and the input/output end of said second primary waveguide (32), and a second heating means (12') defined over said second ring resonator (11) and arranged for controlling a filter peak wavelength of said second ring resonator (11).
 
8. Optical device according to one of claims 6 and 7, wherein said first primary waveguide (31) is a reflector with a reflection coefficient comprised between approximately 80% and approximately 100%, and said second primary waveguide (32) is a reflector with a reflection coefficient comprised between approximately 10% and approximately 60% and comprising an output for delivering photons.
 
9. Optical device according to one of claims 6 and 7, wherein said second primary waveguide (32) is a reflector with a reflection coefficient comprised between approximately 80% and approximately 100%, and said first primary waveguide (31) is a reflector with a reflection coefficient comprised between approximately 10% and approximately 60% and comprising an output for delivering photons.
 
10. Optical device according to one of claims 6 to 9, wherein it further comprises an integrated element chosen from a group comprising a semiconductor optical amplifier, a semiconductor electroabsorption modulator, a silicon photonic modulator, a silicon photonic coherent mixer coupled to balanced photodiodes, and comprising an end connected to an output end of one of said first (31) and second (32) primary waveguides that is intended for delivering photons.
 
11. Optical device according to one of claims 1 to 5, wherein it comprises at least two primary waveguides (3j) and a reflective arrayed waveguide grating (24) or an echelle grating comprising at least one input connected to an input waveguide (25), at least two outputs connected respectively to output waveguides (26) and at least two inputs/outputs connected respectively to output ends of said primary waveguides (3j) via waveguides (27).
 


Ansprüche

1. Optische Vorrichtung (1), ein Substrat (2) umfassend, auf dem mindestens ein primärer Wellenleiter (3j) definiert ist, der einen Schleifenreflektor, der einen ersten (41) und einen zweiten (42) Richtungskoppler umfasst, und ein Mach-Zehnder-Interferometer (5) definiert, dadurch gekennzeichnet, dass das Mach-Zehnder-Interferometer (5) zwischen dem ersten (41) und dem zweiten (42) Richtungskoppler interkaliert ist und zum Kompensieren einer Wellenlängenabhängigkeit der Richtungskoppler (41) eingerichtet ist.
 
2. Optische Vorrichtung nach Anspruch 1, wobei der primäre Wellenleiter (3j) ein Rippen- oder Streifenwellenleiter ist, der auf einem SiliziumSubstrat (2) definiert ist.
 
3. Optische Vorrichtung nach Anspruch 2, wobei der Rippen- oder Streifenwellenleiter aus Silizium angefertigt ist.
 
4. Optische Vorrichtung nach Anspruch 3, wobei der Rippenwellenleiter eine volle Dicke, die zwischen ungefähr 200 nm und ungefähr 500 nm umfasst, und ein geätztes Teil mit einer lokalen Dicke, die zwischen ungefähr 50 nm und ungefähr 500 nm umfasst, und mit einer Breite aufweist, die zwischen ungefähr 200 nm und ungefähr 800 nm umfasst.
 
5. Optische Vorrichtung nach einem der Ansprüche 3 und 4, wobei der erste Richtungskoppler (41) eine Länge aufweist, die zwischen ungefähr 5 µm und ungefähr 200 µm umfasst, der zweite Richtungskoppler (42) eine Länge aufweist, die zwischen ungefähr 5 µm und ungefähr 200 µm umfasst, und das Mach-Zehnder-Interferometer (5) eine Länge aufweist, die zwischen ungefähr 0,1 µm und ungefähr 2 µm umfasst.
 
6. Optische Vorrichtung nach einem der Ansprüche 1 bis 5, wobei sie einen ersten (31) und einen zweiten (32) primären Wellenleiter, der jeder eine Eingangs-/Ausgangsseite aufweist, einen sekundären Wellenleiter (6), der einen Verstärkungsabschnitt umfasst, der zwischen einem ersten Ende, das mit der Eingangs-/Ausgangsseite des ersten primären Wellenleiters (31) verbunden ist, und einem zweiten Ende interkaliert ist, einen Ringresonator (7), der zwischen dem zweiten Ende des sekundären Wellenleiters (6) und der Eingangs-/Ausgangsseite des zweiten primären Wellenleiters (32) interkaliert ist, und ein Heizmittel (8) umfasst, das über dem Ringresonator (7) definiert ist und zum Steuern einer Filterspitzenwellenlänge des Ringresonators (7) und zum Auswählen einer laseroptischen Betriebsart eingerichtet ist.
 
7. Optische Vorrichtung nach einem der Ansprüche 1 bis 5, wobei sie einen ersten (31) und einen zweiten (32) primären Wellenleiter, der jeder eine Eingangs-/Ausgangsseite aufweist, einen sekundären Wellenleiter (6), der einen Verstärkungsabschnitt umfasst, der zwischen einem ersten Ende, das mit der Eingangs-/Ausgangsseite des ersten primären Wellenleiters (31) verbunden ist, und einem zweiten Ende interkaliert ist, einen Zwischenwellenleiter (9), der ein erstes und ein zweites Ende umfasst, einen ersten Ringresonator (10) mit einer Wellenlängenspektralfilterung, und der zwischen dem zweiten Ende des sekundären Wellenleiters (6) und dem ersten Ende des Zwischenwellenleiters (9) zum Koppeln des sekundären Wellenleiters (6) an den Zwischenwellenleiter (9) interkaliert ist, ein erstes Heizmittel (12), das über dem ersten Ringresonator (10) definiert ist und zum Steuern einer Filterspitzenwellenlänge des ersten Ringresonators (10) eingerichtet ist, einen zweiten Ringresonator (11) mit einer Wellenlängenspektralfilterung, und der zwischen dem zweiten Ende des Zwischenwellenleiters (9) und der Eingangs-/Ausgangsseite des zweiten primären Wellenleiters (32) interkaliert ist, und ein zweites Heizmittel (12') umfasst, das über dem zweiten Ringresonator (11) definiert ist und zum Steuern einer Filterspitzenwellenlänge des zweiten Ringresonators (11) eingerichtet ist.
 
8. Optische Vorrichtung nach einem der Ansprüche 6 und 7, wobei der erste primäre Wellenleiter (31) ein Reflektor mit einem Reflexionskoeffizienten ist, der zwischen ungefähr 80 % und ungefähr 100 % umfasst, und der zweite primäre Wellenleiter (32) ein Reflektor mit einem Reflexionskoeffizienten ist, der zwischen ungefähr 10 % und ungefähr 60 % umfasst und einen Ausgang zum Liefern von Photonen umfasst.
 
9. Optische Vorrichtung nach einem der Ansprüche 6 und 7, wobei der zweite primäre Wellenleiter (32) ein Reflektor mit einem Reflexionskoeffizienten ist, der zwischen ungefähr 80 % und ungefähr 100 % umfasst, und der erste primäre Wellenleiter (31) ein Reflektor mit einem Reflexionskoeffizienten ist, der zwischen ungefähr 10 % und ungefähr 60 % umfasst und einen Ausgang zum Liefern von Photonen umfasst.
 
10. Optische Vorrichtung nach einem der Ansprüche 6 bis 9, wobei sie weiterhin ein integriertes Element umfasst, das aus einer Gruppe ausgewählt ist, umfassend einen optischen Halbleiterverstärker, einen Halbleiterelektroabsorptionsmodulator, einen Silizium-Photonenmodulator, einen kohärenten Silizium-Photonenmischer, der mit symmetrischen Fotodioden gekoppelt ist, und ein Ende umfasst, das mit einer Ausgangsseite des ersten (31) oder des zweiten (32) primären Wellenleiters verbunden ist, die zum Liefern von Photonen vorgesehen ist.
 
11. Optische Vorrichtung nach einem der Ansprüche 1 bis 5, wobei sie mindestens zwei primäre Wellenleiter (3j) und ein reflektierendes Wellenleitergitter (24) oder ein Echellegitter umfasst, das mindestens einen Eingang, der mit einem Eingangswellenleiter (25) verbunden ist, mindestens zwei Ausgänge, die jeweils mit Ausgangswellenleitern (26) verbunden sind, und mindestens zwei Eingänge/Ausgänge umfasst, die jeweils über Wellenleiter (27) mit Ausgangsseiten der primären Wellenleiter (3j) verbunden sind.
 


Revendications

1. Dispositif optique (1), comprenant un substrat (2) sur lequel est défini au moins un guide d'ondes primaire (3j) définissant un réflecteur en boucle, comprenant des premier (41) et second (42) coupleurs directionnels, et un interféromètre de Mach-Zehnder (5), caractérisé en ce que ledit interféromètre de Mach-Zehnder (5) est intercalé entre lesdits premier (41) et second (42) coupleurs directionnels et agencé pour compenser une dépendance de longueur d'onde desdits coupleurs directionnels (41).
 
2. Dispositif optique selon la revendication 1, dans lequel ledit guide d'ondes primaire (3j) est un guide d'ondes en nervure ou bande défini sur un substrat de silicium (2).
 
3. Dispositif optique selon la revendication 2, dans lequel ledit guide d'ondes en nervure ou bande est fait de silicium.
 
4. Dispositif optique selon la revendication 3, dans lequel ledit guide d'ondes en nervure a une épaisseur complète comprise entre approximativement 200 nm et approximativement 500 nm, et une partie gravée avec une épaisseur locale comprise entre approximativement 50 nm et approximativement 500 nm et avec une largeur comprise entre approximativement 200 nm et approximativement 800 nm.
 
5. Dispositif optique selon l'une des revendications 3 et 4, dans lequel ledit premier coupleur directionnel (41) a une longueur comprise entre approximativement 5 µm et approximativement 200 µm, ledit second coupleur directionnel (42) a une longueur comprise entre approximativement 5 µm et approximativement 200 µm, et ledit interféromètre de Mach-Zehnder (5) a une longueur comprise entre approximativement 0,1 µm et approximativement 2 µm.
 
6. Dispositif optique selon l'une des revendications 1 à 5, dans lequel il comprend des premier (31) et second (32) guides d'ondes primaires, chacun ayant une extrémité d'entrée/de sortie, un guide d'ondes secondaire (6) comprenant une section de gain intercalée entre une première extrémité, connectée à l'extrémité d'entrée/de sortie dudit premier guide d'ondes primaire (31), et une seconde extrémité, un résonateur annulaire (7) intercalé entre la seconde extrémité dudit guide d'ondes secondaire (6) et l'extrémité d'entrée/de sortie dudit second guide d'ondes primaire (32), et un moyen chauffant (8) défini par-dessus ledit résonateur annulaire (7) et agencé pour commander une longueur d'onde de crête de filtre dudit résonateur annulaire (7) et pour sélectionner un mode optique laser.
 
7. Dispositif optique selon l'une des revendications 1 à 5, dans lequel il comprend des premier (31) et second (32) guides d'ondes primaires, chacun ayant une extrémité d'entrée/de sortie, un guide d'ondes secondaire (6) comprenant une section de gain intercalée entre une première extrémité, connectée à l'extrémité d'entrée/de sortie dudit premier guide d'ondes primaire (31), et une seconde extrémité, un guide d'ondes intermédiaire (9) comprenant des première et seconde extrémités, un premier résonateur annulaire (10) avec une filtrage spectral de longueur d'onde et intercalé entre la seconde extrémité dudit guide d'ondes secondaire (6) et la première extrémité dudit guide d'ondes intermédiaire (9) pour coupler ledit guide d'ondes secondaire (6) audit guide d'ondes intermédiaire (9), un premier moyen chauffant (12) défini par-dessus ledit premier résonateur annulaire (10) et agencé pour commander une longueur d'onde de crête de filtre dudit premier résonateur annulaire (10), un second résonateur annulaire (11) avec un filtrage spectral de longueur d'onde et intercalé entre la seconde extrémité dudit guide d'ondes intermédiaire (9) et l'extrémité d'entrée/de sortie dudit second guide d'ondes primaire (32), et un second moyen chauffant (12') défini par-dessus ledit second résonateur annulaire (11) et agencé pour commander une longueur d'onde de crête de filtre dudit second résonateur annulaire (11).
 
8. Dispositif optique selon l'une des revendications 6 et 7, dans lequel ledit premier guide d'ondes primaire (31) est un réflecteur avec un coefficient de réflexion compris entre approximativement 80 % et approximativement 100 %, et ledit second guide d'ondes primaire (32) est un réflecteur avec un coefficient de réflexion compris entre approximativement 10 % et approximativement 60 % et comprenant une sortie pour distribuer des photons.
 
9. Dispositif optique selon l'une des revendications 6 et 7, dans lequel ledit second guide d'ondes primaire (32) est un réflecteur avec un coefficient de réflexion comprise entre approximativement 80 % et approximativement 100 %, et ledit premier guide d'ondes primaire (31) est un réflecteur avec un coefficient de réflexion comprise entre approximativement 10 % et approximativement 60 % et comprenant une sortie pour distribuer des photons.
 
10. Dispositif optique selon l'une des revendications 6 à 9, dans lequel il comprend en outre un élément intégré choisi à partir d'un groupe comprenant un amplificateur optique à semi-conducteur, un modulateur d'électro-absorption à semi-conducteur, un modulateur photonique en silicium, un mélangeur cohérent photonique en silicium couplé à des photodiodes équilibrées, et comprenant une extrémité connectée à une extrémité de sortie d'un desdits premier (31) et second (32) guides d'ondes primaires qui est prévue pour distribuer des photons.
 
11. Dispositif optique selon l'une des revendications 1 à 5, dans lequel il comprend au moins deux guides d'ondes primaires (3j) et un réseau guide d'ondes disposé de façon réfléchissante (24) ou un réseau échelle comprenant au moins une entrée connectée à un guide d'ondes d'entrée (25), au moins deux sorties connectées respectivement à des guides d'ondes de sortie (26) et au moins deux entrées/sorties connectées respectivement à des extrémités de sortie desdits guides d'ondes primaires (3j) par l'intermédiaire de guides d'ondes (27).
 




Drawing














Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description