(19)
(11)EP 3 033 167 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.07.2020 Bulletin 2020/31

(21)Application number: 14836943.2

(22)Date of filing:  13.08.2014
(51)International Patent Classification (IPC): 
B01F 3/04(2006.01)
B67D 1/04(2006.01)
B01F 15/00(2006.01)
A23L 2/54(2006.01)
B67D 1/00(2006.01)
(86)International application number:
PCT/AU2014/000804
(87)International publication number:
WO 2015/021498 (19.02.2015 Gazette  2015/07)

(54)

CARBONATOR

KARBONISIERER

SATURATEUR


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 13.08.2013 AU 2013903050

(43)Date of publication of application:
22.06.2016 Bulletin 2016/25

(73)Proprietor: Breville Pty Limited
Alexandria, New South Wales 2015 (AU)

(72)Inventors:
  • THANGAMUTHU, Sathiaseelan
    Old Toongabbie, NSW 2146 (AU)
  • CHALK, Simon James
    Redfern New South Wales 2016 (AU)
  • PSAROLOGOS, Con
    Bardwell Valley New South Wales 2207 (AU)
  • GRIGOR, Andrew John
    Kensington New South Wales 2033 (AU)
  • WHITE, Gerard Andrew
    Darlington New South Wales 2008 (AU)
  • LEE, Chiu Keung Kenneth
    St Leonards New South Wales 2065 (AU)

(74)Representative: Zimmermann, Tankred Klaus et al
Schoppe, Zimmermann, Stöckeler Zinkler, Schenk & Partner mbB Patentanwälte Radlkoferstrasse 2
81373 München
81373 München (DE)


(56)References cited: : 
EP-A1- 2 053 014
WO-A1-02/057003
GB-A- 2 077 126
US-A1- 2013 026 665
WO-A1-01/03817
WO-A1-2012/162762
US-A1- 2003 075 813
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of the Invention



    [0001] The invention relates to domestic carbonation devices and more particularly to a carbonation device that accepts a replaceable bottle for the purpose of carbonating its contents. The invention is defined by the claims.

    Background of the Invention



    [0002] Domestic carbonators are well known. These devices operate by dispensing or injecting pressurized carbon dioxide into a liquid that is contained in a bottle. The present invention seeks to improve known devices and methods of domestic carbonation by simplifying and automating aspects of the carbonation process, by sensing or obtaining key parameters in the carbonation process and by using information provided by the sensors and other inputs to provide enhanced performance, safety or ease of operation.

    [0003] The engagement between cylinder of pressurized CO2 and the device that receives it is sometimes unstable or potentially unsafe.

    [0004] Domestic carbonation devices generally lack the means of sensing the level of water or other liquid in the bottle that is to be carbonated. However, the water level in the bottle has an impact on the performance of the device.

    [0005] Carbonation devices generally rely on replaceable pressurized cylinders of carbon dioxide. However, as the cylinder is depleted, the cylinder pressure drops. This drop in pressure over successive carbonation cycles can result in inconsistent carbonation results.

    [0006] Domestic carbonation devices sometimes count the number of carbonation operations for the purpose of providing an indication of the remaining carbon dioxide in a replaceable cylinder. However, failure to reset the counter after a cylinder has been changed, or if the initial cylinder volume is input incorrectly into the device, misleading indications of remaining CO2 volume in the cylinder can cause the consumer to dispose of a cylinder that may actually have useful amounts of carbon dioxide remaining.

    [0007] The solubility of the carbon dioxide in a liquid is proportional to the time under pressure and inversely proportional to the temperature. A typical domestic carbonation device docs not adjust the carbonation time or pressure to compensate for the actual temperature of the liquid being carbonated. Accordingly, inconsistent or sub-optimal carbonation results are sometimes obtained.

    [0008] Domestic carbonation devices generally lack any form of feedback or direct indication of the amount of carbon dioxide that has been injected into the water or other liquid. Because optimal carbonation requires the appropriate delivery of carbon dioxide injection into the liquid, inconsistent carbonation results are sometimes obtained.

    [0009] Domestic carbonation devices are somewhat inflexible in the volume of CO2 gas that is delivered for injection into the bottle containing the liquid to be carbonated. In some devices, the smallest volume of gas that the device is able to dispense or deliver is sometimes more than is actually desired or required by the consumer.

    [0010] When the liquid to be carbonated is flavoured or sweetened, inadvertent discharge of the liquid into the overflow or vent leading from the bottle comprises a contamination that has the potential to become mouldy overtime.

    [0011] WO 2012162762 A1 describes a domestic carbonation appliance having a replaceable CO2 cylinder and accepting a refillable bottle with a removeable cap. The cap can cooperate with a carbonation head of a domestic carbonation device but lacks bayonette or thread features for engaging the carbonation head. The device provides for "one-touch" carbonation.

    Summary of the Invention



    [0012] It is an object of the present invention to provide a carbonation device for carbonating the contents of a bottle including a liquid such that a carbonation level is the same, from one bottle filling operation to the next, regardless of the actual volume of CO2 gas contained in the supply cylinder.

    [0013] This object is achieved by a carbonation device according to claim 1. The invention is defined by the claims.

    [0014] In some aspects of the technology, the liquid level in a bottle to be carbonated is determined by measuring the pressure in the bottle during carbonation and obtaining an indication of liquid level based on the time required to reach a particular or target pressure.

    [0015] In other aspects of the technology, consistent carbonation is achieved by measuring the pressure within a bottle being carbonated while periodically filling and venting. The periodic rise and fall of the pressure in the bottle is used as an indication of when optimum carbonation is obtained.

    [0016] In some aspects of the technology, the residual volume of CO2 in a cylinder is determined by measuring the time it takes the pressure in a bottle to be carbonated to reach a target value.

    [0017] In some aspects of the technology, a liquid beverage temperature in a bottle to be carbonated is either determined directly or input by a user. The device then adjusts the volume of carbon dioxide delivered to the liquid in accordance with the indicated or determined temperature.

    [0018] In some aspects of the technology a separate and single purpose user input is provided that causes the device's microprocessor to activate a pull solenoid or solenoid valve associated with the carbon dioxide cylinder so that a relatively small gas volume is discharged. This relatively small volume corresponds to a volume that is considerably less than the minimum gas discharge volumes associated with typical domestic carbonation devices, or the minimum discharge required to carbonate the smallest bottle that the device is configured to handle.

    [0019] In some embodiments of the invention, an exhaust path from a bottle being carbonated can be opened. Clean water from a bottle is then forced with carbon dioxide into the exhaust path so that it flows into the open exhaust line. This has the effect of purging or cleaning the exhaust line of unwanted residue.

    Brief Description of the Drawing Figures



    [0020] In order that the invention be better understood, reference is now made to the following drawing figures in which:
    Figure 1
    is a perspective view of a domestic beverage carbonator.
    Figure 2
    is a rear perspective view of the carbonator shown in Figure 1.
    Figure 3
    is a perspective view of the base of a carbonator.
    Figure 4
    is a cross sectional view of the base depicted in Figure 3.
    Figure 5
    is a top plan view of a CO2 cylinder support.
    Figure 6
    is a cross sectional view of the device depicted in Figure 5.
    Figure 7
    is a cross sectional view of the device depicted in Figure 5.
    Figure 8
    is a top plan view of a user interface of a beverage carbonator.
    Figure 9
    is a schematic diagram of a beverage carbonator according to an embodiment.
    Figure 10
    are graphs illustrating the operation of a carbonator's solenoid valves in relation to the rise and fall of pressure within a beverage bottle whose contents are being carbonated.
    Figure 11
    is a cross sectional view of a carbonator.
    Figure 12
    is an exploded perspective of a fill bead and bottle to be carbonated.
    Figure 13
    are cite elevations illustrating the operation of the fill head shown in Figure 12.
    Figure 14
    is a cross section of the fill head shown in Figure 12.
    Figure 15
    illustrates common cross sectional view, the operation of the fill head shown in Figure 12.
    Figure 16
    illustrates common cross sectional view, the operation of the fill head shown in Figure 12.
    Figure 17
    is a cross sectional view of a domestic carbonator.
    Figures 18(a) and (b)
    are perspective and cross sectional views of a baffle apparatus.
    Figure 19
    is a graph illustrating pressure thresholds used to determine bottle fill level.
    Figure 20
    is a flow chart illustrating the operation of a domestic carbonator.
    Figure 21
    illustrates a pressure and temperature indicating bottle cap end top and cross sectional views.

    Detailed Description



    [0021] As shown in Figure 1, a carbonation device 100 comprises a base 101 and a compartment 102 that are interconnected by a body 103. The base 101 contains a plinth and drip tray 104 for supporting a bottle to be carbonated 105. The bottle makes a sealing engagement with a fill head 106.

    [0022] As shown in Figure 2, a rear of the body 103 has a recess 200 that partially can form the shape of a cylinder for receiving a carbon dioxide gas cylinder 201. The cylinder is inserted by introducing the bottom 202 of the cylinder 201 into the recess area 200. A reciprocating bottle support 203 is located at the lower extent of the recess 200. Owing to the bias of the reciprocating support 203 the cylinder 200 is urged into engagement with a cylinder coupling 204 located adjacent to an upper extent of the recess 200 and preferably within the fill head compartment 102, The bias assists the user by urging the bottle upward as it is being manually threaded into engagement.

    [0023] As shown in Figures 3 and 4. the reciprocating bottle support, in this example, includes at one end of a cylinder engaging portion 301 and remotely from it, or at an opposite end, one or more pivot points 302. The support 203 is restrained by the pivot points 302 and rotates about them. In this example, each of the cylinder supports' pivot points 302 is supported by a leg 306. In this example, the support has two parallel legs 306, 307 that are each joined to the cylinder engaging portion 301. The space between the parallel legs 306, 307 creates a clearance for other parts of the device. The cylinder support 203, its pivot points 302 and the springs 303 are contained within a base portion 308 having a side wall 309 surrounding a bottom surface 310 under which are located supporting feet 311 for stabilising the device. The end of the support having the cylinder engaging portion 203 is urged upwardly by one or more coil springs 303. The cylinder engaging portion 301 comprises a circular well 301a, and upstanding and a circular rim 304 within it. The area within the upstanding lip 304 comprises a circular well or depression 305.

    [0024] A sensor or contact switch in the base 401 communicates the presence of the bottle 201 to the processor 902.

    [0025] As shown in Figure 5 the circular and upstanding lip 304 may be eccentric to the outer side wall 501 of the toroidal well 303. This eccentricity is caused by moving the centre of the circular lip 502 closer to the front of the cylinder supporting portion 503 than the centre 504 of the toroidal well 504.

    [0026] As shown in Figures 6 and 7, a cylinder supporting portion 301 in accordance with Figures 3 and 5 can accept cylinders of different diameters.

    [0027] As shown in Figure 6, the base 601 of a smaller cylinder 600 can be accommodated fully within the upstanding lip 304 so that the underside 602 of the cylinder 600 comes to rest on the upper surface of the central well 305.

    [0028] As shown in Figure 7, a larger CO2 cylinder 701 has an under surface featuring one or more circular recesses 702. In this example, the outermost two concentric circular recesses 702 receives the upstanding rim 304.

    [0029] As suggested by Figures 2 and 8, a forward surface of a carbonation device 801 may be provided with a user interface comprising various user operated controls 802 and a graphic display 803 such as an LCD display or other means of electronic display such as 1-ED indicators. In this example, push button type input controls with illuminated surrounding rings are used to start and stop the device 804, to optionally toggle between chilled water and room temperature water 805 and optionally to request a small volume delivery of gas 806. A rotating knob allows a user to input liquid temperature options or carbonation level 807. The display 803 is used (for example) to indicate user selections, process parameters and the operational state of the device.

    [0030] A domestic carbonation machine may offer various levels of carbonation to suite a variety of consumer preferences. Conventionally, distinct levels of carbonation are provided in discreet stepwise increments. However, a user desiring only a slight increase in a carbonation level, either before or after carbonation has been completed, is generally left with a single option, that being re-carbonation or extended carbonation based on the lowest delivery volume or time setting available on the machine. However, when a user requires only a slight increase, the lowest carbonation level available from the machine's control panel may be excessive. Accordingly, a selector, control or other user input 806 on the user interface may be used to provide a signal to the microprocessor so as to Increase the duration of the gas discharge from the cylinder by an amount that is less than the lowest discharge setting of a convention domestic carbonation machine.

    [0031] A schematic diagram of an embodiment is provided in Figure 9. In this example, a CO2 cylinder 900 is associated with a sensor 901 that indicates to a microprocessor 902 whether or not the cylinder 900 is in place. The cylinder is attached to an actuator coupling and valve 903 having an actuating stem 904 that is triggered (for example) by a lever 905. One end of the lever is driven by a fill solenoid 906 that is controlled by the microprocessor 902. A gas fill line 907 leads from the actuator valve 903 to the replaceable bottles fill head 908. The fill head 908 includes means for sealing the fill head against the bottle to be filled 909. The fill head 908 further comprises a gas injection nozzle 910 that is adapted to enter the mouth 911 of the bottle to be filled 909. The fill head may also incorporate one or more sensors 912, 912a, 912b such as temperature or pressure sensors. The sensor 912a may be located on the nozzle 910. A sensor 912b may be located on the nozzle or fill head above the intended maximum fill level of the bottle 909. The fill head may have an exhaust safety valve 913 for relieving excess pressure. The fill head also has an outlet port 914 that leads to a gas outlet path 915 that terminates in a vent 920. The gas outlet path leads to an exhaust solenoid valve 916 and, by way of a T junction 917 to a pressure transducer 918. The pressure transducer supplies information to the processor 902 relating to the pressure in the bottle. A micro switch 919 adjacent to the fill head, may be used to indicate when the bottle 909 is in correct position for filling and is associated with the microprocessor 902. The exhaust solenoid valve 916 is controlled by the microprocessor 902. The exhaust solenoid valve may be normally open type solenoid valve that controls the discharge from the atmospheric vent 920. The device may incorporate a tilt switch 921 that cooperates with the microprocessor 902, thus allowing the microprocessor 902 to stop the operation of the device and to vent it if the device is not sufficiently upright.

    [0032] It is advantageous to determine the liquid level in the bottle to be carbonated. With reference to Figure 9, the sensor 912 is a pressure sensor or transducer. When the liquid level in the bottle 9 is inadequate or in excess, the internal pressure as sensed by the transducer 912 will be excessive when compared by the processor 902 to a stored reference value. When the excess pressure state is detected by the microprocessor 902, it causes the exhaust solenoid to open the outlet path to the atmosphere so as to relieve the internal pressure in the bottle 909. The over pressuring of the bottle 909 by inadequate gas space above the liquid is caused when absorption of injected carbon dioxide by the contents of the bottle is inadequate for the purpose of dissolving the dose of carbon dioxide that is provided by the fill head.

    [0033] The fill head's pressure transducer 912 can also work with the microprocessor 909 for the purpose of achieving consistent carbonation results. With reference to Figures 9 and 10 this is done by activating the supply solenoid 906 a first time while the exhaust solenoid 916 is closed. This causes a rise 1000 in the bottle's internal pressure. When the internal pressure reaches a pre-established user selected or other upper limit 1001 the supply solenoid is switched off 1002. After a rest interval 1003, the exhaust solenoid is opened 1004. This causes a decrease 1005 in the bottle s internal pressure when undissolved gas is discharged. When a lower pressure limit 1006 is reached, the exhaust valve is closed 1007. After a second rest interval 1008, the supply solenoid is activated a second time 1009. This causes a second episode of carbonation which in turns results in an increase of the internal pressure 1010 of the bottle 909. This process is repeated thereby causing further carbonation of the contents of the bottle. The more times this cycle is repeated, the closer the actual carbonation is to the desired carbonation limit. This will ensure that the carbonation level is the same, from one bottle filling operation to the next, regardless of the actual volume of CO2 gas contained in the supply cylinder.

    [0034] As shown in Figure 9a, the pull solenoid and valve arrangement 903, 904, 905, 906 can be replaced by a direct acting solenoid valve or actuator 950 that is controlled by the device's processor 902.

    [0035] The same arrangement depicted in Figure 9 can be used to determine or approximate the amount of CO2 gas remaining in a CO2 supply cylinder. This is done by utilising the pressure transducer 912 and microprocessor 902 to measure both the pressure rise in the bottle 909 and the time over which the pressure increase occurs. When the rate of pressure increase is higher, the gas cylinder 900 is known to be fuller than when the pressure rise time is smaller. The microprocessor can also compare rise times between any two carbonation cycles and use the differences in detected pressure and time to provide information about the fill level of the cylinder 900. Accurate assessment of the fill level of the cylinder prevents inadvertent waste resulting from premature replacement of a cylinder with a new cylinder.

    [0036] The sensor 912b may also cooperate with the device's processor 902 to determine when the liquid level in a bottle being filled has reached an acceptable level or volume. To perform this method, a filled bottle is engaged with the fill head and the solenoid or mechanism that activates the carbon dioxide gas cylinder is activated for a pre-determined time interval 1901 as show in Figure 19. After the interval 1901, the gas flow is stopped 1902 and the sensor and processor perform a pressure determination, this being the pressure of the gaseous head above the liquid. For this method it is required that the pressure sensor 912b be located above the liquid level when the bottle is coupled to the fill head. Once the interior of the bottle is isolated from the source of pressurized CO2, a pressure reading is taken. If the determined pressure is above a pre-determined threshold level 1903 the liquid level in the bottle is deemed excessive. If the pressure reading is below a second threshold 1904 the liquid level in the bottle is deemed to be inadequate. Where the determined liquid level is excessive or inadequate, the user is provided with a visible or audible warning on the device's interface 803. If the determined pressure is between the first and the second threshold then the fluid level is deemed to be adequate and the processor allows the fill process to continue. The activation interval of the solenoid 1901 and the thresholds 1903, 1904 depend on the mechanism used and the size and configuration of the bottle being filled.

    [0037] The solubility of carbon dioxide gas usually decreases as the temperature of the liquid increases. Thus, liquid that is cold or may have been refrigerated will generally hold a greater amount of carbon dioxide gas than a similar volume of water at room temperature. As suggested by Figure 8, a user input, preferably in the form of a toggle-like control such as a button or switch can be used to provide information to the processor 902 regarding water temperature. By operating the switch or toggle 805, a user can provide information to the processor as to whether or not the beverage to be carbonated is chilled. When the user indicator, as determined by the processor, relates to a chilled beverage or a liquid, the processor can adjust the carbonation time, via the signal to the pull solenoid 906 to effectively compensate for the approximate beverage temperature. In the alternative, the processor can cause an increase in the pressure of the gas stream to the bottle 909 or the duration of the discharge, or both of these in order to achieve a consistent level of carbonation between chilled and unchilled liquids.

    [0038] In the alternative, and with reference to Figure 9, a sensor 912 associated with the fill head can directly determine the temperature of the liquid in the bottle 909 and this temperature information can be provided to the processor 902. The processor will act in accordance with the measured temperature so that consistent carbonation is achieved regardless of the actual beverage temperature.

    [0039] With respect to the graph of pressure versus time at the bottom of Figure 10, it will be appreciated that the level of carbonation in the liquid being carbonated can be related to the integral or area under the pressure curve during CO2 discharge. Because the carbonation process proceeds in multiple discrete increments rather than continuously, the total carbonation is the sum of the integrals during carbonation periods. For example, and with reference to Figure 10 the area under the pressure curve starting from the initial time at which carbonation is first initiated 1020 to the time at which the fill solenoid is first turned off 1021 indicates the extent of carbonation up until the second of these points in time 1021. Further carbonation is added at a point in time 1022 when the fill solenoid is next activated and stops at a point in time when the fill solenoid is next deactivated 1023. Accordingly, the total delivered carbonation would be the sum of the areas under the pressure curve between the first time interval (1020 to 1021) plus the area under the curve for the second interval (1022 to 1023). The processor can be caused to increase the carbonation level, for example, by increasing the range between the upper cut-off pressure limit 1024 and the pressure cut-off lower limit 1025. A second way of increasing the carbonation is to increase the length of the time intervals 1026, 1027 that the fill solenoid is activated. Thus tor the carbonation of chilled water and upper pressure limit of 5.52 x 105 Pa (80 psi) and a lower pressure limit of 2.76 x 105 Pa (40 psi) may be adequate whereas for room temperature water, an upper limit for pressure may be 100psi and a lower limit be 4.14 x 105 Pa (60 psi). In this way, carbonation cycles for chilled and room temperature liquids may utilise the same solenoid timing intervals depicted in Figure 10. In the alternative, both chilled and room temperature liquids can be carbonated between an upper limit of 5.52 x 105 Pa (80 psi) and a lower limit of 2.76 x 105 Pa (40 psi) while changing, particularly lengthening, the "on" duration of the fill solenoid 1026, 1027 etc.

    [0040] The apparatus suggested by Figures 9 and 11 may also be employed to provide a self-cleaning mode. In a self-cleaning mode, the vent solenoid 198 is opened while a carbonation operation is conducted on a bottle 909 having clean water in it. This action will cause clean water to enter the gas discharge line 19, the water eventually exiting the discharge vent 920, preferably into a drip tray 930 located under or accessible from under the bottle being carbonated (see Figure 2).

    [0041] As shown in Figure 12, an alternate style fill head 1200 comprises an upper part 1201 that reciprocates relative to a lower part 1202. The lower part of the fill head 1202 has a collar with an open side 1203 that incorporates a "U" shaped groove 1204 that is adapted to receive a circumferential flange 1205 located in the neck area of a bottle 1206 that is suitable for carbonation. The groove 1204 is spaced away from the main platform 1207 of the lower part by, for example, a "U" shaped channel 1208.

    [0042] The main platform 1207 has a central opening 1209 supported by a number of upright guide posts 1210. In this example, there are four guide posts 2010 located on an upper surface of the main body 1207 and perpendicular to it. The upper part 1201 of the fill head comprises a reciprocating platform 1211 in which is formed a number of through holes 1212. The through holes 1212 are equal in number to the number of posts 1210 and arranged to slidably receive each of the guide posts 1210. The reciprocating platform 1211 has a guide cylinder 1213 located above the upper surface of the platform 1211 and a sealing plug 1214 having an internal bore that is co-extensive with the internal bore of the guide cylinder 1213. As the reciprocating platform 1211 moves toward the main body 1217, the plug 1214 passes through the central opening 1209 of the lower platform 1207 and is able to enter into and seal against the inside of the spout or neck area 1214 of the bottle 1206. The bore through the guide cylinder 1213 and plug 1214 receives a reciprocating carbonation needle or injector 1215. The carbonation needle is biased into an upper position by a compression spring 1216. The upper part of the compression spring 1216 bears against the lower edge 1217 of an enlarged portion 1218 carried by the carbonation needle 1215. The enlarged portion 1218 also has a circumferential groove 1219. As the carbonation needle 1215 is lowered into the bottle 1206, the groove 1219 is captured by a latch assembly 1220. As will be explained, the motion of the reciprocating platform 1211 is governed by the insertion of the bottle 1206 into the collar of the fill head by a user.

    [0043] As suggested by Figures 12 and 13, a forward portion 1300 of the lower platform 1202 is pivotally attached to the chassis or frame of the carbonator. In the example, the lower platform is provided with a stub shaft or post 1221 on either side. Thus, the lower platform pivots around the post 1221, the pivoting motion of the lower platform is moderated by a pair of flexible beams 1222. In this example, each beam has a circular collar at each end. One collar 1223 attaches to the rear portion of the lower platform 1301 by means of a stub 1302 located above the upper surface of the lower platform 1207. As suggested by Figure 13, rotation of the lower platform from its initial or inclined platform position 1303 causes the beams 1222 to bend and causes the reciprocating platform 1211 to move toward the lower platform. The motion of the reciprocating platform 1211 is governed by a pair of links 1304. The links 1304 are attached to pivot stubs 1305 carried on the lateral edges of the reciprocating platform, toward the rear of the platform, that is, behind the centre line of the plug 1214. When the fill head reaches a fully engaged orientation 1306 the beams 1222 arc able to extend fully and contribute to the rotation of the fill head into position in accordance with the effort they exert on the stubs 1302. In the fully engaged orientation 1306 the reciprocating platform's links 1304 are essentially vertical and thus resist upward vertical forces on the plug 1214. After being fully engaged, the bottle becomes disengaged from the fill head only by tilting the bottle toward the initial or insertion position. This causes a reversal of the motions shown in Figure 13 and returns the fill head to the initial orientation in which the plug 1214 is withdrawn from the bottle 1206. Once the plug 1214 is retracted from the bottle 1206, the bottle can be removed from the collar 1203.

    [0044] As shown in Figure 14, the upper and reciprocating part of the fill head 1201 incorporates a pivoting spring loaded latch assembly 1401. The pivoting latch assembly 1401 rotates about a pair or pivots or stubs 1402 located opposite one another on an exterior of the assembly 1401. The stubs engage with and pivot about openings 1403 formed into the side walls of a recess 1404 formed through a side wall of the plug 1214. The recess has a lower slanted floor 1415 that limits the rotation of the pivoting latch assembly 1401. Figure 14 also illustrates that the lower end of the plug is tapered 1416 to facilitate its insertion into the mouth of the bottle 1206. A circumferential elastomeric seal 1417 is located in a groove above the taper 1416. Pressurised carbon dioxide introduced into the guide cylinder 1213 drives the CO2 needle 1215 down and into a fill orientation. In this orientation, the enlarged portion's circumferential groove 1219 captures the latch assembly 1401. The enlarged portion 1218 has a circumferential seal in a groove located above the capture groove 1219 and a tapered lower end 1418 that both helps the enlarged portion initially clear the latch, also limiting the downward travel of the enlarged portion when it bears against a narrowed portion of the central bore 1419. In this example, the narrowing of the central bore 1419 occurs in the area of the recess 1404. In this example, the compression spring 1260 is captured between the floor 1420 of the plug and the lower part of the enlarged portion 1218. A second or auxiliary bore 1421 extends through the reciprocating platform 1211 and the plug 1214 are thus providing a second through bore for communicating with an interior of the bottle.

    [0045] As suggested in Figures 14 and 15, the pivoting latch assembly 1401 comprises a pivoting body 1501 within which is contained a reciprocating pin 1502 that is urged toward the CO2 injector pin 1215 by a compression spring 1503. As the pin 1215 descends under the influence of pressurised CO2 1510, the tapered portion 1415 urges the pin 1502 to retract, then engage the groove 1219, with the reciprocating latch in a generally horizontal orientation. As shown in Figures 16, the tilting action 1601 that initiates the withdrawal of the bottle 1206 and the pivoting of the fill head 1200 is also associated with a depressurisation of the CO2 in the guide cylinder 1213. Depressurising the guide cylinder 1213 allows the compression spring 1216 to bear on the enlarged portion 1218 and drive it upward and away from the bottle 1602. The action of the groove 1219 on the reciprocating pin 1502 causes the pivoting latch assembly 1401 to rotate about its pivot points and thus clear the groove 1219, 1603. Unrestrained by the pivoting latch mechanism 1401, the compression spring 1216 drives the needle 1215 until it is fully contained within the plug, 1604. As suggested by Figures 14 and 16, the movement of the pivoting latch assembly 1401 is limited by those parts of the plug that are below it, namely the inclined floor 1415 and a horizontal shoulder 1605 located above and radially inward of the inclined floor 1415.

    [0046] As shown in Figure 17, gaseous exhaust expelled from the CO2 fill system are carried downward by a vertical exhaust tube 1700 located between the bottle being filled 1701 and the CO2 bottle 1702. The exhaust tube 1700 leads to a baffle apparatus 1703. The baffle apparatus 1703 muffles the sounds otherwise made by exhaust gasses and prevents the pressure of the exhaust gasses and liquids from discharging at high velocities. In this example, the baffle apparatus 1703 has an exhaust port 1704 that discharges into the drip tray 1705 of the carbonator 1706.

    [0047] As shown in Figure 18, the baffle apparatus 1703 comprises an outer housing 1801 that removably receives a perforated or porous silencer 1802. In this example, the silencer is carried by a threaded cap 1803 that engages and seals against a co-operating threaded opening 1804 that passes through the housing 1801. Gasses and liquids entering the baffle apparatus from the exhaust tube 1700 pass through a horizontally oriented entry port 1805. A bend in the port 1806 redirects the flow of gas and liquid to the interior chamber of the generally cylindrical or hollow baffle 1802. Gasses are collected within the housing and are vented upward through a tortuous channel 1807 having a gas vent opening 1808 at its upper extremity. Liquids fall through or are propelled through the baffle and accumulate above the interior floor 1809. The liquid discharge opening 1704 collects and discharges the accumulated liquid into, for example, the drip tray 1705. The baffle 1802 can be removed by unscrewing the cap 1803, for cleaning replacement or maintenance.

    [0048] The flow chart of Figure 20 illustrates a typical operational cycle of a beverage carbonator made in accordance with the teachings of the present invention. The process begins with the powering up of the device. Checking for the presence of the bottle to be carbonated is not required during the power up. Thereafter, a bottle containing liquid to be carbonated is coupled to the fill head 2000. The processor looks for a signal from the presence sensor or switch 401 to determine if the bottle to be filled is present 2001. If this check fails, the user is alerted by a warning or indicator on the user interface. for example, by an LED or using the display 803. This will cause the user to reinsert or reattach the bottle 2002. If the processor confirms the presence of the bottle the user can input a carbonation level using the control 807 and initiate a carbonation cycle using the start/cancel button 804. This initiates a carbonation cycle 2003. Thereafter, the processor determines the temperature of the liquid in the bottle 2004 or receives a signal from the user's toggle switch 805. This causes the exhaust solenoid, otherwise open, to close 2005. The actuator valve or solenoid is then opened or activated for single pulse 2006. The processor uses the resultant pressure level determination from within the bottle to be carbonated as an indication of the actual fluid level in the bottle to be filled 2007. If the water level is determined to be inadequate, the user is provided with an audible or visible warning on the user interface 2008, If the water level is determined to be acceptable, the liquid is carbonated by the addition of pressurized carbon dioxide gas as previously outlined. The carbonation pressure and time are adjusted to suit the indicated water temperature 2009. The delivered gas volume is determined by the processor 2010. If the determined volume of gas actually delivered is lower than the volume required the user receives an error message from the interface 2011. The delivered gas volume is detected by the processor 2012. When the delivered gas volume is adequate the delivery of pressurized CO2 is stopped by the processor 2013. The processor continuously check for the presence of the bottle from the time that the liquid temperature is determined 2004 until the CO2 supply is turned off 2013. If the bottle is not detected, at any point during that portion of the process, the supply of CO2 is ceased by activating the pull solenoid and the exhaust valve is opened to the atmosphere. A warning will be provided to the user with the interface. The user will then reinsert or reseat the bottle to be carbonated and start the process again by selecting a carbonation level and activating the start switch 2003. If, for example, the processor determines that the bottle is not correctly positioned or is not in position at all, the processor will cause the exhaust valve or exhaust solenoid previously closed in step 205 to open and vent the pressure in the head space above the liquid in the bottle. It may remain open for example, for 2 seconds in order to vent the head space. Thereafter, the exhaust valve will close for an interval of, for example, 30 seconds 2014 to prevent unnecessary discharge of dissolved gas from the liquid being carbonated. The user will be unable to remove the bottle or will be advised against removing the bottle whenever there is excessive pressure in the head space. If the process has proceeded without error, the beverage is ready 2015.

    [0049] Even after the beverage is nominally ready for consumption, the user may use an activator or controller on the interface to request an additional but small amount of further carbonation 806, 2016. This causes the exhaust solenoid to close to the environment 2017 and the pull solenoid to be activated for a brief interval, say 1 second 2018. Thereafter, the carbonation cycle is terminated 2013. The additional carbonation sequence 2016 can also be accessed from the activator 806 outside of or in parallel with the processors that determine the primary carbonation sequence 2019 so long as the processor has determined that the bottle to be carbonated is correctly retained by the device 2001.

    [0050] As shown in Figure 21, a cap 2100 capable of sealing a carbonated beverage bottle 201 comprises a body 2101 within which is located a source of power such as a battery and processor 2101 adapted to receive signals from, for example, a pressure sensor 2103 or a temperature sensor 2104 (or both of these) located on an underside 2105 of the cap 2100. The underside 2105 is isolated from the environment by internal side walls 2106 of the cap which may be threaded 2107 or otherwise adapted to make a sealing engagement with a bottle. An upper surface 2108 or an external side wall 2109 of the cap may be provided with a graphic display 2110, 2111. The display would provide a user with information about the temperature and pressure as sensed by the sensors 2103, 2104.


    Claims

    1. A carbonation device having a microprocessor (902), the carbonation device adapted to carbonate the contents of a bottle (909) containing a liquid, the bottle (909) having a maximum fill level, comprising:

    a pull solenoid and valve arrangement (903, 904, 905, 906) or a direct acting solenoid valve or actuator (950) adapted to be attached to a carbon dioxide cylinder (900);

    the pull solenoid and valve arrangement (903, 904, 905, 906) or the direct acting solenoid valve or actuator (950) adapted to supply carbon dioxide to a fill head (908), the fill head (908) being connected to a fill line (907) from the delivery valve (903, 950) and to a vent (920),

    an exhaust solenoid valve (916) being adapted to control the vent;

    the fill head (908) having a pressure sensor (912, 912b) that is arranged to provide a pressure signal to the microprocessor (902), the pressure sensor (912, 912b) located such that, when the bottle (909) is in a sealed engagement with the fill head (908), it is above the maximum fill level of the bottle;

    characterised in that

    the carbonation device is to determine or approximate an amount of carbon dioxide gas remaining in a carbon dioxide cylinder (900) by utilising the pressure sensor (912, 912b) and the microprocessor (902) to measure both the pressure rise in the bottle (909) and a time over which the pressure increase occurs, and

    the microprocessor is configured to compare rise times between any two carbonation cycles and to use the differences in detected pressure and time to provide information about the fill level of the carbon dioxide cylinder (900).


     
    2. The carbonation device of claim 1, wherein:
    the carbonation device is to perform a carbonation process in multiple discrete increments.
     
    3. The carbonation device of claim 2, wherein:
    the microprocessor (902) is adapted to control the exhaust solenoid valve (916), the exhaust solenoid valve (916) being switchable between a closed and an open state, the carbonation device being arranged such that the exhaust solenoid (916) remains closed as carbon dioxide is supplied to the fill head (908), until the pressure signal received by the microprocessor (902) from the pressure sensor (912, 912b) reaches an upper pressure limit.
     
    4. The carbonation device of claim 3, wherein:

    the microprocessor (902) is adapted to operate the pull solenoid and valve arrangement (903, 904, 905, 906) or the direct acting solenoid valve or actuator (950) in the multiple discrete increments, each increment resulting in an increase (1000, 1010) in pressure over a period of time, as measured by the pressure sensor (912, 912b) and the microprocessor (902);

    each increment having predetermined upper (1001) and lower (1006) pressure limits and thus defining a rising pressure curve (1000, 1010) over time; and

    the microprocessor (902) is adapted to sum the integrals of the rising pressure curves (1000, 1010) to determine a total delivered carbonation.


     
    5. The carbonation device of claim 4, wherein:
    the lower pressure limit (1025) for an increment is 4.14 x 105 Pa (60 psi) and the upper pressure limit (1024) is 6.89 x 105 Pa (100 psi) or 2.76 x 105 Pa (40 psi) and the upper pressure limit (1024) is 5.52 x 105 Pa (80 psi).
     
    6. The carbonation device of claim 4, wherein:
    the microprocessor (902) is adapted to operate the pull solenoid and valve arrangement (903, 904, 905, 906) or the direct acting solenoid valve or actuator (950) such that an increment is followed by a predetermined rest interval (1003).
     
    7. The carbonation device of claim 4, wherein:
    the microprocessor (902) is adapted to operate the exhaust solenoid (916) such that it is opened for a time period between increments.
     
    8. The carbonation device of claim 7, wherein:
    the microprocessor (902) is adapted to operate the exhaust solenoid (916) to close when the lower pressure limit (1006) is reached.
     
    9. The carbonation device of claim 8, wherein:
    the microprocessor (902) is adapted to operate the exhaust solenoid (916) such that a second rest interval (1008) follows closure of the exhaust solenoid (916).
     
    10. The carbonation device of claim 1, wherein:

    the microprocessor (902) is adapted to receive from a temperature sensor a temperature input signal that relates to the temperature of the contents of the bottle (909); and

    the microprocessor (902) is adapted to cause an adjustment in a delivery volume of carbon dioxide when the contents are chilled.


     
    11. The carbonation device of claim 1, wherein:
    the carbonation device includes a user interface (802, 803) that is adapted to indicate user selections, process parameters and / or the operational state of the carbonation device.
     


    Ansprüche

    1. Eine Karbonisierungsvorrichtung, die einen Mikroprozessor (902) aufweist, wobei die Karbonisierungsvorrichtung dazu angepasst ist, den Inhalt einer Flasche (909), die eine Flüssigkeit enthält, zu karbonisieren, wobei die Flasche (909) einen maximalen Füllstand aufweist, mit folgenden Merkmalen:

    einer Zugsolenoid- und Ventilanordnung (903, 904, 905, 906) oder einem direkt wirkenden Solenoidventil oder Stellglied (950), das dazu angepasst ist, an einem Kohlendioxidzylinder (900) befestigt zu werden;

    wobei die Zugsolenoid- und Ventilanordnung (903, 904, 905, 906) oder das direkt wirkende Solenoidventil oder Stellglied (950) dazu angepasst sind, Kohlendioxid einem Füllkopf (908) zuzuführen, wobei der Füllkopf (908) mit einer Füllleitung (907) von dem Förderventil (903, 950) und mit einer Lüftung (920) verbunden ist,

    einem Abluftsolenoidventil (916), das dazu angepasst ist, die Lüftung zu steuern;

    wobei der Füllkopf (908) einen Drucksensor (912, 912b) aufweist, der dazu angeordnet ist, dem Mikroprozessor (902) ein Drucksignal bereitzustellen, wobei der Drucksensor (912, 912b) derart platziert ist, dass er sich dann, wenn sich die Flasche (909) in einer abgedichteten Ineingriffnahme mit dem Füllkopf (908) befindet, über dem maximalen Füllstand der Flasche befindet;

    dadurch gekennzeichnet, dass

    die Karbonisierungsvorrichtung eine in einem Kohlendioxidzylinder (900) verbleibende Menge an Kohlendioxidgas bestimmen oder annähernd bestimmen soll, indem sie den Drucksensor (912, 912b) und den Mikroprozessor (902) verwendet, um sowohl den Druckanstieg in der Flasche (909) als auch einen Zeitraum, über den hinweg der Druckanstieg erfolgt, zu messen, und

    der Mikroprozessor dazu konfiguriert ist, Anstiegszeiten zwischen beliebigen zwei Karbonisierungszyklen zu vergleichen und die Differenzen des erfassten Drucks und der erfassten Zeit dazu zu verwenden, Informationen über den Füllstand des Kohlendioxidzylinders (900) bereitzustellen.


     
    2. Die Karbonisierungsvorrichtung gemäß Anspruch 1, bei der:
    die Karbonisierungsvorrichtung einen Karbonisierungsvorgang in mehreren gesonderten Inkrementen durchführen soll.
     
    3. Die Karbonisierungsvorrichtung gemäß Anspruch 2, bei der:
    der Mikroprozessor (902) dazu angepasst ist, das Abluftsolenoidventil (916) zu steuern, wobei das Abluftsolenoidventil (916) zwischen einem geschlossenen und einem offenen Zustand schaltbar ist, wobei die Karbonisierungsvorrichtung derart angeordnet ist, dass das Abluftsolenoid (916) geschlossen bleibt, während Kohlendioxid dem Füllkopf (908) zugeführt wird, bis das seitens des Mikroprozessors (902) von dem Drucksensor (912, 912b) empfangene Drucksignal eine obere Druckgrenze erreicht.
     
    4. Die Karbonisierungsvorrichtung gemäß Anspruch 3, bei der:

    der Mikroprozessor (902) dazu angepasst ist, die Zugsolenoid- und Ventilanordnung (903, 904, 905, 906) oder das direkt wirkende Solenoidventil oder Stellglied (950) bei den mehreren gesonderten Inkrementen zu betätigen, wobei jedes Inkrement zu einer Zunahme (1000, 1010) des Drucks über einen Zeitraum hinweg führt, wie durch den Drucksensor (912, 912b) und den Mikroprozessor (902) gemessen wird;

    jedes Inkrement eine vorbestimmte obere (1001) und untere (1006) Druckgrenze aufweist und somit über die Zeit hinweg eine Druckanstiegskurve (1000, 1010) definiert; und

    der Mikroprozessor (902) dazu angepasst ist, die Integrale der Druckanstiegskurven (1000, 1010) zu summieren, um eine insgesamt erfolgte Karbonisierung zu bestimmen.


     
    5. Die Karbonisierungsvorrichtung gemäß Anspruch 4, bei der:
    die untere Druckgrenze (1025) für ein Inkrement 4,14 x 105 Pa (60 psi) beträgt und die obere Druckgrenze (1024) 6,89 x 105 Pa (100 psi) oder 2,76 x 105 Pa (40 psi) beträgt und die obere Druckgrenze (1024) 5,52 x 105 Pa (80 psi) beträgt.
     
    6. Die Karbonisierungsvorrichtung gemäß Anspruch 4, bei der:
    der Mikroprozessor (902) dazu angepasst ist, die Zugsolenoid- und Ventilanordnung (903, 904, 905, 906) oder das einem direkt wirkende Solenoidventil oder Stellglied (950) derart zu betätigen, dass auf ein Inkrement ein vorbestimmtes Ruheintervall (1003) folgt.
     
    7. Die Karbonisierungsvorrichtung gemäß Anspruch 4, bei der:
    der Mikroprozessor (902) dazu angepasst ist, das Abluftsolenoid (916) dahingehend zu betätigen, dass es für einen Zeitraum zwischen Inkrementen geöffnet wird.
     
    8. Die Karbonisierungsvorrichtung gemäß Anspruch 7, bei der:
    der Mikroprozessor (902) dazu angepasst ist, das Abluftsolenoid (916) dahingehend zu betätigen, dass es sich schließt, wenn die untere Druckgrenze (1006) erreicht ist.
     
    9. Die Karbonisierungsvorrichtung gemäß Anspruch 8, bei der:
    der Mikroprozessor (902) dazu angepasst ist, das Abluftsolenoid (916) derart zu betätigen, dass auf das Schließen des Abluftsolenoids (916) hin ein zweites Ruheintervall (1008) folgt.
     
    10. Die Karbonisierungsvorrichtung gemäß Anspruch 1, bei der:

    der Mikroprozessor (902) dazu angepasst ist, von einem Temperatursensor ein Temperatureingangssignal zu empfangen, das sich auf die Temperatur des Inhalts der Flasche (909) bezieht; und

    der Mikroprozessor (902) dazu angepasst ist, eine Anpassung einer Fördermenge an Kohlendioxid zu bewirken, wenn der Inhalt gekühlt wird.


     
    11. Die Karbonisierungsvorrichtung gemäß Anspruch 1, bei der:
    die Karbonisierungsvorrichtung eine Benutzerschnittstelle (802, 803) umfasst, die dazu angepasst ist, Benutzerauswahlen, Prozessparameter und/oder den Betriebszustand der Karbonisierungsvorrichtung anzugeben.
     


    Revendications

    1. Dispositif de carbonatation présentant un microprocesseur (902), le dispositif de carbonatation étant adapté pour carbonater le contenu d'une bouteille (909) contenant un liquide, la bouteille (909) présentant un niveau de remplissage maximum, comprenant:

    un aménagement d'électro-aimant tirant et de soupape (903, 904, 905, 906) ou une électrovanne ou un actionneur à action directe (950) adapté(e) pour être fixé(e) à un cylindre de dioxyde de carbone (900);

    l'aménagement d'électro-aimant tirant et de soupape (903, 904, 905, 906) ou l'électrovanne ou l'actionneur à action directe (950) étant adaptés pour alimenter du dioxyde de carbone vers une tête de remplissage (908), la tête de remplissage (908) étant connectée à une ligne de remplissage (907) à partir de la soupape de refoulement (903, 950) et vers un évent (920),

    une électrovanne d'échappement (916) adaptée pour commander l'évent;

    la tête de remplissage (908) présentant un capteur de pression (912, 912b) qui est aménagé pour fournir un signal de pression au microprocesseur (902), le capteur de pression (912, 912b) étant situé de sorte que, lorsque la bouteille (909) est en prise étanche avec la tête de remplissage (908), il se situe au-dessus du niveau de remplissage maximum de la bouteille;

    caractérisé par le fait que

    le dispositif de carbonatation doit déterminer ou approximer une quantité de dioxyde de carbone gazeux restant dans un cylindre de dioxyde de carbone (900) à l'aide du capteur de pression (912, 912b) et du microprocesseur (902) pour mesurer tant l'augmentation de pression dans la bouteille (909) qu'un temps au cours duquel se produit l'augmentation de pression, et

    le microprocesseur est configuré pour comparer les temps d'augmentation entre deux cycles de carbonatation quelconques et pour utiliser les différences de pression et de temps détectées pour fournir des informations sur le niveau de remplissage du cylindre de dioxyde de carbone (900).


     
    2. Dispositif de carbonatation selon la revendication 1, dans lequel:
    le dispositif de carbonatation doit effectuer un processus de carbonatation par plusieurs incréments discrets.
     
    3. Dispositif de carbonatation selon la revendication 2, dans lequel:
    le microprocesseur (902) est adapté pour commander l'électrovanne d'échappement (916), l'électrovanne d'échappement (916) pouvant être commutée entre un état fermé et un état ouvert, le dispositif de carbonatation étant disposé de sorte que l'électrovanne d'échappement (916) reste fermée tandis que du dioxyde de carbone est alimenté vers la tête de remplissage (908), jusqu'à ce que le signal de pression reçu par le microprocesseur (902) du capteur de pression (912, 912b) atteigne une limite de pression supérieure.
     
    4. Dispositif de carbonatation selon la revendication 3, dans lequel:

    le microprocesseur (902) est adapté pour faire fonctionner le l'aménagement d'électro-aimant tirant et de soupape (903, 904, 905, 906) ou l'électrovanne ou l'actionneur à action directe (950) selon les multiples incréments discrets, chaque incrément entraînant une augmentation (1000, 1010) en pression sur un laps de temps, telle que mesurée par le capteur de pression (912, 912b) et le microprocesseur (902);

    chaque incrément présentant des limites de pression supérieure (1001) et inférieure (1006) prédéterminées et définissant ainsi une courbe de pression croissante (1000, 1010) dans le temps; et

    le microprocesseur (902) est adapté pour additionner les intégrales des courbes de pression croissante (1000, 1010) pour déterminer une carbonatation totale délivrée.


     
    5. Dispositif de carbonatation selon la revendication 4, dans lequel:
    la limite de pression inférieure (1025) pour un incrément est de 4,14 x 105 Pa (60 psi) et la limite de pression supérieure (1024) est de 6,89 x 105 Pa (100 psi) ou de 2,76 x 105 Pa (40 psi) et la limite de pression supérieure (1024) est de 5,52 x 105 Pa (80 psi).
     
    6. Dispositif de carbonatation selon la revendication 4, dans lequel:
    le microprocesseur (902) est adapté pour faire fonctionner l'aménagement d'électro-aimant tirant et de soupape (903, 904, 905, 906) ou l'électrovanne ou l'actionneur à action directe (950) de sorte qu'un incrément soit suivi d'un intervalle de repos prédéterminé (1003).
     
    7. Dispositif de carbonatation selon la revendication 4, dans lequel:
    le microprocesseur (902) est adapté pour faire fonctionner l'électrovanne d'échappement (916) de sorte qu'elle soit ouverte pendant un laps de temps entre incréments.
     
    8. Dispositif de carbonatation selon la revendication 7, dans lequel:
    le microprocesseur (902) est adapté pour faire fonctionner l'électrovanne d'échappement (916) de manière à se fermer lorsque la limite de pression inférieure (1006) est atteinte.
     
    9. Dispositif de carbonatation selon la revendication 8, dans lequel:
    le microprocesseur (902) est adapté pour faire fonctionner l'électrovanne d'échappement (916) de sorte qu'un deuxième intervalle de repos (1008) suive la fermeture de l'électrovanne d'échappement (916).
     
    10. Dispositif de carbonatation selon la revendication 1, dans lequel:

    le microprocesseur (902) est adapté pour recevoir d'un capteur de température un signal d'entrée de température qui se rapporte à la température du contenu de la bouteille (909); et

    le microprocesseur (902) est adapté pour provoquer un ajustement d'un volume de délivrance de dioxyde de carbone lorsque le contenu est refroidi.


     
    11. Dispositif de carbonatation selon la revendication 1, dans lequel:
    le dispositif de carbonatation comporte une interface d'utilisateur (802, 803) qui est adaptée pour indiquer les sélections d'utilisateur, les paramètres de processus et/ou l'état de fonctionnement du dispositif de carbonatation.
     




    Drawing
























































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description